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1. Introduction. Consider quasilinear differential algebraic equations (DAEs)

(1.1) Ax′(t) + g(x(t)) = 0

where the leading coefficient matrix A ∈ L(Rm) is singular and g : D → Rm is C1,
D ⊆ Rm open. Those DAEs are well known to arise in describing the dynamics of
circuits, chemical reactions subject to invariants, constrained dynamical systems
etc. No doubt, stability criteria that can also be checked numerically would be
welcome even in those fields of applications.

From a geometric viewpoint, (1.1) should induce a smooth vector field on a
certain state manifold. However, if it does, the vector field as well as the manifold
are given only implicitly, and they are not available in practice for higher index
DAEs except for interesting case studies.

Further, it should be mentioned that viewing a DAE as a differential equation
on a manifold (see e.g. [8]) requires more smoothness than seems to be natural.

For instance, the so-called index 2 Hessenberg form DAE

(1.2) u′ − g(u, v) = 0 , h(u) = 0

leads to the vector field

(1.3)
u′ = g(u, v) ,

v′ = −(h′(u)g′v(u, v))−1{h′(u)g′u(u, v) + h′′(u)g(u, v)}g(u, v)

on the manifold

M2 := {(uT, vT)T ∈ Rm : h(u) = 0, h′(u)g(u, v) = 0}
where the matrix h′(u)g′v(u, v) is assumed to be nonsingular.
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For given (uT
0 , v

T
0 )T ∈ M2, system (1.2) is shown to have a solution u ∈ C1,

v ∈ C, passing through that point (cf. [7]) while the analogous initial value
problem (IVP) for (1.3) requires some more smoothness.

Moreover, considering the differential equation (1.3) on the whole space Rm
instead of on the manifoldM2 would not be helpful, since this so-called underlying
regular ordinary differential equation (ODE) might show a completely different
stability behaviour than (1.2) and (1.3) on M2.

In this paper we try to transfer classical results concerning Lyapunov stabil-
ity of stationary solutions of regular ODEs to the case of DAEs (1.1), keeping
smoothness as low as possible. For equilibrium points x∗ ∈ D of (1.1), we formu-
late stability criteria in terms of the matrices A, g′(x∗) only.

As a by-product, we prove certain new solvability statements for index 3 equa-
tions (1.1) as well as for index 1 equations

(1.4) A(x(t))x′(t) + g(x(t)) = 0 ,

where the leading coefficient matrix A(x) has an x-dependent null space.
The paper is organized as follows: In Section 2 we collect the necessary back-

ground material, report on index 1 and index 2 results, and apply them to equa-
tion (1.4). Section 3 deals with solvability and asymptotical stability for index 3
DAEs. The results obtained are then specified for the case of constrained multi-
body systems. The Appendix contains some facts we need on matrix calculus.

2. Index 1 and index 2 cases. Let Q ∈ L(Rm) denote any projector onto
the null space ker(A) =: N of the leading coefficient A, and let P := I − Q.
Because of A = AP , equation (1.1) may be rewritten as

(2.1) A(Px)′(t) + g(x(t)) = 0 .

Now we agree to accept continuous functions x : I → Rm with continuously
differentiable components Px, which satisfy (2.1) on the interval I ⊆ R, to be
solutions of (1.1). Denote the related function space by

C1
N (I,Rm) := {x ∈ C(I,Rm) : Px ∈ C1(I,Rm)},

or briefly by C1
N .

Trivially, all orbits belong to the set

(2.2) M1 := {w ∈ D : g(w) ∈ im(A)} ,

i.e., if x ∈ C1
N solves the DAE (1.1), then

x(t) ∈M1, t ∈ I .

The best understood class of DAEs is that of index 1 equations, for which M1

becomes the set of all consistent initial values, that is, a solution passes through
each x0 ∈M1, meaning that M1 becomes the state manifold.
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Definition. The DAE (1.1) is called an index 1 tractable (or a transferable)
DAE on D if the decomposition

(2.3) S0(x)⊕N = Rm, x ∈ D ,
holds, where

(2.4) S0(x) := TxM1 = {z ∈ Rm : g′(x)z ∈ im(A)}
is the tangent space of M1 at x ∈M1.

R e m a r k s. 1. An equivalent formulation of (2.3) is the following: The matrix
pencil {A, g′(x)} is regular, and index{A, g′(x)} = 1, x ∈ D. This is the origin of
the notion of an “index 1 DAE” (coming from [2]).

2. Put B := g′(x0) for given x0 ∈M1. Then, by Lemma 4.1 below, A+BQ =
A1 is nonsingular. Define u0 := Px0, v0 := Qx0; further, let u0 ∈ im(P ) be
determined by g(u0 + v0) = −Au0. Consider F (w, u) := Aw + g(u + Qw) on a
neighbourhood of (w0, u0), w0 := u0 + v0. Clearly, F (w0, u0) = 0, F ′w(w0, u0) =
A1, so that the Implicit Function Theorem provides a C1 function w = f(u),
F (f(u), u) = 0. Solving the IVP

(2.5) u′(t) + PA−1
1 g(u(t) +Qf(u(t))) = 0, u(t0) = u0 = Px0

and putting

(2.6) v(t) := Qf(u(t))

we may easily check x(t) := u(t) + v(t) to be the only solution of (1.1) satisfying

(2.7) x(t0) = x0 ∈M1 .

Hence, the IVP (1.1), (2.7) is locally, equivalently transferred into the state vari-
able form (2.5), (2.6), which leads to the notion of a “transferable DAE” (cf. [3]).

3. Since f is C1, so is v. Consequently, solutions of an index 1 DAE (1.1) are
C1 solutions in fact.

4. Obviously, also the IVPs for (1.1) with the initial condition

(2.8) P (x(t)− x0) = 0, x0 ∈ Rm, |Px0 − Px0| sufficiently small ,

do have solutions

x(t;x0, t0) = u(t;Px0, t0) +Qf(u(t;Px0, t0)) ,

but now the related consistent initial value is x(t0;x0, t0) = Px0 + Qf(Px0).
In general, we expect that x(t0;x0, t0) 6= x0 since we have not tried to choose
x0 ∈M1.

5. Obviously, we can apply the above definition to each open subset U ⊂ D
instead of D itself.

Theorem 2.1. Let g be a C2 function, and x∗ ∈ D be an equilibrium point of
(1.1), i.e. g(x∗) = 0. Let {A, g′(x∗)} be a regular index 1 pencil , and let all its
eigenvalues have negative real parts. Then there are a τ > 0 and a δ(ε) > 0 for
each ε > 0 such that
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(i) all IVPs (1.1), (2.8), |Px0 − Px∗| ≤ τ have unique solutions defined on
[t0,∞),

(ii) |Px0 − Px∗| ≤ δ(ε) implies |x(t;x0, t0)− x∗| ≤ ε, t ≥ t0, and
(iii) |x(t;x0, t0)− x∗| → 0 (t→∞).

P r o o f. Without loss of generality we may assume Q to project onto N along
S(x∗).

Define B := g′(x∗). Clearly, the matrix M := −PA−1
1 B is responsible for the

stability behaviour of the ODE given by (2.5).
By Lemma 4.1, we have M = PM = MP , Q = QA−1

1 B.
Suppose (λA+B)w = 0, w 6= 0. Multiplying by PA−1

1 and QA−1
1 we decouple

this equation into

(λP −M)w = 0, Qw = 0 .

Therefore, all eigenvalues of the pencil are at the same time eigenvalues of M .
On the other hand, each nontrivial eigenvalue of M belongs also to the pencil
spectrum, since Mz = λz, λ 6= 0, z 6= 0 implies z = Pz, A−1

1 Bz −QA−1
1 Bz + λz

= 0, thus Bz+λA1Pz = Bz+λAz = 0. Additionally, M has the zero eigenvalue,
the related eigenvectors span ker(A) = ker(M).

Finally, by slightly modified standard arguments (cf. [7], Lemma 4.4), which
take into account that we are interested in initial values for (2.5) belonging to
im(P ) only, the statements of the theorem may be obtained.

R e m a r k s. 1. Theorem 2.1 generalizes the classical Lyapunov Theorem (with
A = I, P = I, M1 = D). Note that the assumption for g to be C2 is standard
there.

2. Note that A1(x) := A + g′(x)Q remains nonsingular for x from a neigh-
bourhood U ⊆ D of x∗, since so is A1(x∗) = A + BQ. This means that (1.1) is
an index 1 DAE on U .

Due to Theorem 2.1, in order to be sure that an equilibrium is asymptotically
stable it will do to check the spectrum of the pencil {A, g′(x∗)} only. Moreover,
if the DAE (1.1) itself is not known to have index 1 in advance, it is sufficient to
compute index 1 for the pencil formed at this single point.

Unfortunately, for higher index DAEs the situation is more complicated. On
the one hand, the state manifold is now a submanifold of M1 only. This fact is
illustrated e.g. by example (1.2), where we would have M1 :={(uT, vT)T∈Rm :
h(u) = 0}, butM2 given in §1 is the state manifold. On the other hand, the pencil
{A, g′(x0)} given at a single point x0 only does not contain sufficient information
for determining the index. This will be demonstrated by example (2.12) below.

Definition. The DAE (1.1) is called index 2 tractable on D if

S0(x) ∩N 6= {0} ,(2.9)
S1(x)⊕N1(x) = Rm, x ∈ D ,(2.10)
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where

S1(x) := {z ∈ Rm : g′(x)Pz ∈ im(A1(x))}, A1(x) := A+ g′(x)Q ,

and the null space N1(x) := ker(A1(x)) has constant dimension (see e.g. [5], [7]).

R e m a r k s. 1. Note that the conditions (2.9), (2.10) are satisfied if and only
if {A, g′(x)} is a regular index 2 pencil for all x ∈ D ([5], Theorem 2.6).

2. Dimension changes of the null space N1(x) may give rise to new singularities
like bifurcations etc. (cf. also example (2.12) below).

3. By Lemma 4.1 below, the condition (2.10) is satisfied if and only if the
matrix

G2(x) := A1(x) + g′(x)PQ1(x)
remains nonsingular for all x ∈ D, where Q1(x) ∈ L(Rm) denotes any projector
onto N1(x).

4. Again we can apply our definition to an open subset U ⊂ D instead of D.
5. It may be shown that

(2.11) M2 = {w ∈M1 : g′(w)PA+g(w) ∈ im(A1(w))}
describes the state manifold of an index 2 DAE (1.1), where A+ denotes the
Moore–Penrose inverse of A. However, formula (2.11) seems to be of no practical
use.

6. Recall that index 1 DAEs were characterized by nonsingular A1(x), that is,
we obtain M2 =M1 when formally computing M2 for an index 1 equation.

The problem with testing index 2 at a single point is the following: Suppose
that, at some point x0, we know A1(x0) to be singular, but G2(x0) nonsingular.
Clearly, for x belonging to a neighbourhood of x0, G2(x) remains nonsingular
provided Q1(x) is continuous. However, A1(x) may become nonsingular for x 6=x0

or change the null space dimension.
Let us illustrate this situation by the following example (cf. [1], [7]), which

describes a simple nonlinear resistor circuit. For the system

(2.12)


x′1 − α(x3) = 0 ,
x′2 − β(x3) = 0 ,

x3
3 + x2x3 + x1 = 0

with smooth given functions α, β : R→ R, we compute

A1(x) =

 1 0 −α′(x3)
0 1 −β′(x3)
0 0 x2 + 3x2

3

 , P = A =

 1 0 0
0 1 0
0 0 0

 ;

further,
N = {z ∈ R3 : z1 = z2 = 0} ,

S0(x) = {z ∈ R3 : z1 + x3z2 + (x2 + 3x2
3)z3 = 0} ,

M1 := {w ∈ R3 : w1 + w2w3 + w3
3 = 0} .
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Trivially, all solutions of (2.12) lie within the set M1, describing a surface that
has a fold. Denote by H := {x ∈M1 : x2 + 3x2

3 = 0} the set of points belonging
to the fold curves.

Clearly, (2.12) has index 1 on R3\{x∈R3 : x2+3x2
2 = 0}, and there are unique

solutions passing through the points x0 ∈M1\H at time t0. However, on H the
situation changes considerably, since A1(x) becomes singular there. Formally, we
have

N1(x) = {z ∈ R3 : z1 − 2x3z3 = 0, z2 = z3} ,
S1(x) = {z ∈ R3 : z1 + x3z2 = 0} = S0(x) for x ∈ H ,

hence N1(x) ∩ S1(x) = {0} for all x ∈ H\{0}, thus all related pencils {A, g′(x)}
are regular of index 2. Different choices of α, β lead to bifurcations and impasse
points (cf. [1], [7]). In the trivial case of α(x3) ≡ β(x3) ≡ 0, all solutions are
stationary.

On the whole, the DAE (2.12) represents a rather singular index 1 DAE (with
singularities on H). Obviously, checking only the pencil {A, g′(x0)} for some x0∈
H would not provide sufficient information on the DAE.

To avoid those singularities we restrict the class of DAEs. By [7], Lemma 2.2,
for a large class of DAEs, considering a single pencil {A, g′(x0)} will do.

Lemma 2.2. Let R ∈ L(Rm) denote any projector onto im(A). For given
x0 ∈ D, with B := g′(x0), let the matrix pencil {A,B} be regular with index 2.
Suppose

(2.13) (I −R){g(y)− g(Py)} ∈ im((I −R)BQ), y ∈ U0 ,

where U0 ⊂ D denotes a neighbourhood of x0. Then the DAE (1.1) is index 2
tractable on a neighbourhood U ⊆ U0 of x0.

For the proof we refer to [7].
Note that condition (2.13) means, roughly speaking, that the derivative free

part (I −R)g(x) in (1.1) should depend on the component Qx only linearly. The
Hessenberg form DAE (1.2) has this property trivially.

Theorem 2.3. Let g : D → Rm be of class C1, and let the assumptions
of Lemma 2.2 be valid. Additionally , let Q1, P1, A2 ∈ L(Rm) be determined by
Lemma 4.2 below , and let the consistency conditions

(2.14) g(x0) ∈ im(A), QA−1
2 g(x0) = 0

be satisfied. Then

(i) There is a τ > 0 so that all IVPs for (1.1) completed by the initial condi-
tion

(2.15)
PP1x(t0) = PP1x

0, x0 ∈ Rm ,
|PP1x

0 − PP1x0| ≤ τ,

are solvable in C1
N .
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(ii) If , additionally , Q1A
−1
2 g is of class C2 then these IVPs are uniquely

solvable, and the solutions belong to the class C1.

For the proof we refer to [7]. Recall only that the basic idea is to use the
decoupling of the linear part of

Ax′(t) +Bx(t) + h(x(t)) = 0 ,

where h(y) := g(y)− g′(x0)y.
The inherent local state equation is of type

(2.16)
u′ + PP1A

−1
2 Bu+ PP1A

−1
2 h(ϕ(u)) = 0 ,

u(t0) = PP1x
0 .

Theorem 2.4. Let g : D → Rm be of class C2, x∗ ∈ D, g(x∗) = 0; further , let
condition (2.13) be valid on a neighbourhood U0 of x∗. Let the pencil {A, g′(x∗)}
be regular of index 2, and let all its eigenvalues have negative real parts. Then
there are τ > 0 and δ(ε) > 0 for each ε > 0 such that

(i) all IVPs (1.1), (2.15), |PP1(x0 − x∗)| ≤ τ have unique solutions defined
on [t0,∞),

(ii) |PP1x
0 − PP1x∗| ≤ δ(ε) implies |x(t;x0, t0)− x∗| ≤ ε for all t ≥ t0, and

(iii) |x(t;x0, t0)− x∗| → 0 (t→∞).

The proof is carried out in [7]. There, due to Lemma 4.4 below, a Lyapunov
function related to im(PP1) is used to continue the local solutions provided by
Theorem 2.3 and the locally inherent regular ODE (2.16).

Next we apply the above results to the equation

(2.17) A(x(t))x′(t) + g(x(t)) = 0 ,

where the matrix function A : D → L(Rm) is also assumed to belong to C1.
If A(y) has a constant null space, i.e.

ker(A(y)) =: N, y ∈ D ,

then we turn to the enlarged system

(2.18)

{
Px′ − y = 0 ,

A(x)y + g(x) = 0 ,

where P = I −Q, and Q denotes a projector onto N as above.
If the null space of A(y) depends on y, then we turn to

(2.19)

{
x′ − y = 0 ,

A(x)y + g(x) = 0 .

Both enlarged systems (2.18) and (2.19) have the form (1.1), i.e.

Ãx̃′(t) + g̃(x̃(t)) = 0 .
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In the first case, index 1 tractability (transferability) is defined (cf. e.g. [3]) as
described above by the use of

A(x) and A′x(x)y + g′(x)

instead of A and g′(x). In particular, the “transferability matrix” is now (on
account of A′x(x)yQ = 0)

A1(x) = A(x) + g′(x)Q .

It is well known that (2.18) is index 1 tractable on D × Rm if and only if (2.17)
is index 1 tractable on D. For given x0 ∈ D, y0 ∈ Rm, the related matrices for
(2.18) are

P̃ = Ã =
[
P 0
0 0

]
, Q̃ =

[
Q 0
0 I

]
,

B̃ =
[

0 −I
A′x(x0)y0 + g′(x0) A(x0)

]
,

Ã1 = Ã+ B̃Q̃ =
[

P −I
g′(x0)Q A(x0)

]
,

Ã−1
1 =

[
P A−1

1 (x0)
−Q PA−1

1 (x0)

]
,

M̃ = −P̃ Ã−1
1 B̃ = −

[
PA−1

1 (A′xy0 + g′(x0)) 0
0 0

]
.

Hence, Theorem 2.1 can be applied immediately.

In the second case, if ker(A(y)) depends on y, we may formally extend the
notion “index 1” via the transferability matrix

(2.20) A(x) + (A′x(x)y + g′(x))Q(x) =: A1(x, y) ,

where Q(x) is again a projector onto ker(A(x)). Now we derive, for given x0 ∈ D,
y0 ∈ Rm,

P̃ = Ã =
[
I 0
0 0

]
, Q̃ =

[
0 0
0 I

]
, Ã1 =

[
I −I
0 A(x0)

]
.

Ã1 is singular since so is A(x0). Further,

Q̃1 =
[
Q(x0) 0
Q(x0) 0

]
projects onto ker(Ã1),

P̃ P̃1 =
[
P (x0) 0

0 0

]
, Ã2 = Ã1 + B̃P̃ Q̃1 =

[
I −I
A A(x0)

]
,

where A := (A′x(x0)y0 + g′(x0))Q(x0).
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The matrix Ã2 is nonsingular provided that so is A1(x0, y0). Hence {Ã, B̃} is
a regular index 2 pencil. Further, we compute

Ã−1
2 =

[
I −A−1

1 A A−1
1

−A−1
1 A A−1

1

]
, A1 := A1(x0, y0) ,

P̃ P̃1Ã
−1
2 B̃ =

[
P (x0)A−1

1 (A′x(x0)y0 + g′(x0)) 0
0 0

]
.

Theorem 2.5. Let A(·) and g(·) belong to the class C1. For given x0 ∈ D,
y0 ∈ Rm, let the matrix A1(x0, y0) given by (2.20) be nonsingular ; moreover , let

(2.21) im(A(x)) = im(A(x0))

for all x from a neighbourhood of x0. Additionally , let the consistency conditions

(2.22) A(x0)y0 + g(x0) = 0 , A1(x0, y0)y0 + g(x0) = 0

be satisfied. Then

(i) The IVPs for (2.17) with the initial conditions

P (x0)(x(t0)− x0) = 0, x0 ∈ Rm ,
|P (x0)(x0 − x0)| ≤ τ, τ sufficiently small ,

are solvable in C1.
(ii) If , moreover , A(·) and g(·) are even C2 functions, then the IVPs are

uniquely solvable, and the solutions belong to C2.

P r o o f. Condition (2.21) is nothing else but condition (2.13) for (2.19).
Namely, we have here

R̃ =
(
I 0
0 0

)
, (I − R̃)B̃Q̃ =

[
0 0
0 A(x0)

]
.

Thus we have to satisfy now

A(x)y + g(x)− g(x) ∈ im(A(x0)), i.e. (2.21).

The consistency conditions (2.22) are derived from (2.14) for (2.19). Hence, the
statement is proved by applying Theorem 2.3 to the enlarged system (2.19).

R e m a r k s. 1. Clearly, Theorem 2.4 can also be applied to (2.19) in the same
manner. If x0 is now an equilibrium of (2.17), then the spectrum of the matrix

−P (x0)A−1
1 (A′x(x0)y0 + g′(x0))

and the pencil
{A(x0), A′x(x0)y0 + g′(x0)} ,

is responsible for the stability behaviour.
2. Denote by x∗(·) : [t0, T ] → Rm the solution of (2.17) with x∗(t0) = x0

provided by Theorem 2.5(ii). Consider the perturbed IVPs

(2.23) A(x(t))x′(t) + g(x(t)) = q(t), P (x0)(x(t0)− x0) = 0 .
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Then, due to [7], Theorem 3.3, the IVP (2.23) has a unique C1 solution x(·) :
[t0, T ]→ Rm, provided

‖q‖∞ + ‖(Q(x0)A−1
1 q)′‖∞

is sufficiently small. Moreover, we have

(2.24) ‖x− x∗‖C1 ≤ K{‖q‖∞ + ‖(Q(x0)A−1
1 q)′‖∞} .

3. The consistency conditions (2.22) are obviously equivalent to

A(x0)y0 + g(x0) = 0, Q(x0)y0 = 0

because of A1(x0, y0)−1A(x0) = P (x0).

3. Index 3 case. In this section we try to obtain analogues of Theorems 2.3
and 2.4 for an appropriate class of index 3 DAEs.

We continue investigating the DAE (1.1). By Lemma 4.3 below, for fixed
x0 ∈ M1 := {x ∈ D : g(x0) ∈ im(A)}, we determine the matrices A1, A2, A3,
and the projector matrices Q, Q1, Q2, P = I − Q, P1 = I − Q1, P2 = I − Q2,
according to the pencil

(3.1) {A, g′(x0)} =: {A,B}
which is now assumed to be regular with index 3. Note that the pencil (3.1) is
a regular index 3 pencil if and only if A1, A2 are singular but A3 is nonsingular
(see e.g. [4]).

We will use a similar technique of decoupling (1.1) by projections as in [7] for
index 2 DAEs. To give a first insight into that procedure, let us briefly deal with
the linear constant coefficient DAE

(3.2) Ax′(t) +Bx(t) = q(t) .

Due to Lemma 4.3 below, (3.2) is equivalent to the system

(3.3)


(PP1P2x)′ + PP1P2A

−1
3 BPP1P2x = PP1P2A

−1
3 q ,

−(QP1Q2x)′ − (QQ1x)′ +Qx = QP1P2A
−1
3 q ,

−(Q1Q2x)′ +Q1x = Q1P2A
−1
3 q ,

Q2x = Q2A
−1
3 q .

This is realized by scaling (3.2) by A−1
3 and decomposing I = PP1P2 +QP1P2 +

Q1P2 +Q2. Note that these products of projectors are projectors again.
The system shows clearly the different quality of the solution components:

PP1P2x solves a regular explicit ODE, Q2x is an “algebraic” component, com-
puting Q1x includes a differentiation, and for the null space component certain
components of q have to be differentiated twice. We are going to take this into
account by using the decomposition

(3.4) I = PP1P2 + PP1Q2 + PQ1 +Q

for the solutions. Note that the products in (3.4) are also projectors.
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Rewriting the nonlinear DAE (1.1) as

(3.5) Ax′(t) +B(x(t)− x0) + h(x(t)) + g(x0) = 0 ,

where h(y) := g(y)− g(x0)− g′(x0)(y − x0), y ∈ D, and putting

u := PP1P2x, v := Q2x, w := Q1x, z := Qx ,

u0 := PP1P2x0, v0 := Q2x0, w0 := Q1x0, z0 := Qx0 ,

we proceed with (3.5) as we did with (3.3) before. This leads to

u′ + PP1P2A
−1
3 B(u− u0) + PP1P2A

−1
3 (h(u+ PP1v + Pw + z) + g(x0)) = 0 ,

−(QP1v)′ − (Qw)′ + z − z0 +QP1P2A
−1
3 (h(u+ PP1v + Pw + z) + g(x0)) = 0 ,

−(Q1v)′ + w − w0 +Q1P2A
−1
3 (h(u+ PP1v + Pw + z) + g(x0)) = 0 ,

v − v0 +Q2A
−1
3 h(u+ PP1v + Pw + z) = 0

since Q2A
−1
3 g(x0) = 0.

Next we restrict the class of DAEs as for Lemma 2.2, aiming at decoupling the
above nonlinear system. We formulate these restrictions in terms of the decoupling
technique; they will be discussed below.

Let the conditions

Q2A
−1
3 {g(y)− g(PP1y)} = 0, y ∈ U ,(3.6)

(Q1 + PP1)P2A
−1
3 {g(y)− g(Py)} = 0, y ∈ U ,(3.7)

be satisfied, where U ⊂ D denotes a neighbourhood of x0. They lead to

Q2A
−1
3 {h(y)− h(PP1y)} = 0, y ∈ U ,(3.8)

(Q1 + PP1)P2A
−1
3 {h(y)− h(Py)} = 0, y ∈ U ,(3.9)

because of

Q2A
−1
3 B = Q2A

−1
3 BPP1, (Q1 + PP1)P2A

−1
3 BQ = 0 .

Due to the conditions (3.8), (3.9) the above system simplifies to

(3.10) u′ + PP1P2A
−1
3 B(u− u0) + PP1P2A

−1
3 (h(u+ PP1v + Pw) + g(x0)) = 0 ,

(3.11) − (QP1v)′ − (Qw)′ + z − z0
+QP1P2A

−1
3 (h(u+ PP1v + Pw + z) + g(x0)) = 0 ,

(3.12) − (Q1v)′ + w − w0 +Q1P2A
−1
3 (h(u+ PP1v + Pw) + g(x0)) = 0 ,

(3.13) v − v0 +Q2A
−1
3 h(u+ PP1v) = 0 .

Next we assume that x0 is a consistent initial value, and that x ∈ C1
N solves

the related IVP. Hence u, v, w∈C1, z∈C form a solution of (3.10)–(3.13) passing
through u0, v0, w0, z0. Note that h(x0) = 0, h′(x0) = 0, and h is of class C1.

Differentiating (3.13) we get

v′(t) +Q2A
−1
3 h′(u(t) + PP1v(t))(u′(t) + PP1v

′(t)) = 0 ,



256 R. MÄRZ

which leads to

v′(t0) = 0, Q1v
′(t0) = 0, QP1v

′(t0) = 0 .

Consequently, (3.12) is satisfied at t = t0 if and only if the consistency condition

(3.14) Q1P2A
−1
3 g(x0) = 0

is satisfied.
From (3.12) it is clear that Q1v is of class C2. Further, from (3.10) we know

that so is u.
Consequently, also the related components of h and g should be C2.
In the following we simply assume Q2A

−1
3 g to be a C2 function. Then so is

Q2A
−1
3 h.

From (3.12), (3.13), (3.10) we derive

w′(t0) = Q1v
′′(t0) = −Q1Q2A

−1
3 h′′(x0)u′(t0)u′(t0)

= −Q1Q2A
−1
3 h′′(x0)PP1P2A

−1
3 g(x0)PP1P2A

−1
3 g(x0) .

Now, an additional consistency condition follows from (3.11), namely

(3.15) QP1P2A
−1
3 g(x0)=−QQ1Q2A

−1
3 g′′(x0)PP1P2A

−1
3 g(x0)PP1P2A

−1
3 g(x0) .

Theorem 3.1. Let g be a C1 function, x0 ∈ D be fixed , B := g′(x0). Let the
pencil {A,B} be regular with index 3, and let Q, Q1, Q2, A1, A2, A3 be determined
by Lemma 4.4 below. Let Q2A

−1
3 g be a C2 function, and the conditions (3.6), (3.7)

be satisfied. Additionally , assume the consistency conditions (3.14), (3.15) and

(3.16) g(x0) ∈ im(A)

to be satisfied. Then there is a τ > 0 such that all IVPs for (1.1) with initial
conditions

(3.17)
PP1P2(x(t0)− x0) = 0, x0 ∈ Rm ,
|PP1P2(x0 − x0)| ≤ τ

are uniquely solvable in C1
N .

P r o o f. For simplicity assume x0 = 0 and u0 = 0, v0 = 0, w0 = 0, z0 = 0.
The system (3.10)–(3.13) gives the idea how to proceed. Motivated by (3.13)

consider the C2 function

F (u, v) := v +Q2A
−1
3 h(u+ PP1v)

acting from Rm × Rm into Rm.
Because of F (0, 0) = 0, F ′v(0, 0) = I, the Implicit Function Theorem provides

a C2 function f with

F (u, f(u)) = 0, u ∈ B(0, %1) ,
f(0) = 0, f ′(0) = 0 ,

f ′′(0) = −F ′′uu(0, 0) = −Q2A
−1
3 h′′(0) = −Q2A

−1
3 g′′(0) .
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Next, if we supposed the IVP were solvable we would have (cf. (3.10))

v(t) = f(u(t)) ,

v′(t) = − f ′(u(t)){PP1P2A
−1
3 Bu(t)

+ PP1P2A
−1
3 (h(u(t) + PP1f(u(t)) + Pw(t)) + g(0))} .

This fact, together with (3.12), motivates us to consider the C1 function

K(u,w) := w +Q1P2A
−1
3 h(u+ PP1f(u) + Pw)

+Q1f
′(u){PP1P2A

−1
3 Bu+ PP1P2A

−1
3 (h(u+ PP1f(u) + Pw) + g(0))}

acting from Rm × Rm into Rm. Since K(0, 0) = 0, K ′w(0, 0) = I, there is a C1

function k : B(0, %2)→ Rm such that

k(0) = 0, K(u, k(u)) = 0, u ∈ B(0, %2) .

Additionally, we derive

k′(0) = −K ′u(0, 0) = −Q1f
′′(0)PP1P2A

−1
3 g(0)(3.18)

= Q1Q2A
−1
3 g′′(0)PP1P2A

−1
3 g(0) .

Inserting v = f(u), w = k(u) formally into (3.10) provides the regular ODE

(3.19) u′ + PP1P2A
−1
3 Bu+ PP1P2A

−1
3 (h(u+ PP1f(u) + Pk(u)) + g(0)) = 0 .

Further, inspired by (3.11) consider the additional function

L(u, z) := z +QP1P2A
−1
3 (h(u+ PP1f(u) + Pk(u) + z) + g(0))

+ (Qk′(u) +QP1f
′(u))PP1P2A

−1
3 {Bu

+ h(u+ PP1f(u) + Pk(u)) + g(0)} .

L is continuous and has a continuous partial Jacobian L′z. We have

L(0, 0) = QP1P2A
−1
3 g(0) +Qk′(0)PP1P2A

−1
3 g(0) = 0

according to condition (3.15); further, L′z(0, 0) = I. Again the Implicit Func-
tion Theorem provides a continuous function l : B(0, %3) → Rm with l(0) = 0,
L(u, l(u)) = 0, u ∈ B(0, %3).

Next, return to the regular ODE (3.19). Multiplying it by I −PP1P2 we find

(I − PP1P2)u′ = 0, i.e. ((I − PP1P2)u)′ = 0 .

Therefore, choosing

(3.20) u(t0) = PP1P2x
0

we obtain an IVP-solution which does not leave the subspace im(PP1P2).
On the other hand, by construction,

f(u) = Q2f(u), k(u) = Q1k(u), l(u) = Ql(u)

for u ∈ B(0, %4), %4 = min{%1, %2, %3}.
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Finally, the ODE (3.19) should be regarded on a region that is determined
by B(0, %4) as well as by U of the conditions (3.6), (3.7). Solving the IVP (3.19),
(3.20) and putting

x(t) := u(t) + PP1f(u(t)) + Pk(u(t)) + l(u(t)), t ∈ I ,
we obtain a C1

N solution of (1.1), (3.17).

R e m a r k s. 1. Note that the solution components PP1P2x, Q2x are even C2

functions.
2. If, additionally, Q2A

−1
3 g ∈ C3, (PP1 + Q1)P2A

−1
3 g ∈ C2, then f ∈ C3,

k ∈ C2 and l ∈ C1, hence x ∈ C1, Px ∈ C2.
3. The explicit ODE (3.19) represents the inherent local state system of (1.1).
4. Denote again by R ∈ L(Rm) a projector onto im(A). Then

(3.21) (I −R){g(y)− g(PP1y)} ∈ im((I −R)B(Q+ PQ1)), y ∈ U,
is an equivalent formulation of (3.6). Roughly speaking, this requires the deriva-
tive free part in (1.1) to depend only linearly on the components Qx, PQ1x.

5. Since Q2A
−1
3 A = 0,

(3.22) (I −R)g ∈ C2 implies Q2A
−1
3 g ∈ C2 .

Theorem 3.2. Let g : D → Rm be of class C2, x∗ ∈ D, g(x∗) = 0, B := g′(x∗),
let the pencil {A,B} be regular of index 3, and let all its eigenvalues have negative
real parts. Further , let the conditions (3.6), (3.7) be satisfied on a neighbourhood
U of x∗.

Then there are τ > 0 and δ(ε) > 0 for each ε > 0, such that

(i) all IVPs (1.1), (3.17), |PP1P2(x0−x∗)| ≤ τ have unique solutions defined
on [t0,∞),

(ii) |PP1P2(x0 − x∗)| ≤ δ(ε) implies |x(t;x0, t0)− x∗| ≤ ε for all t ≥ t0, and
(iii) |x(t;x0, t0)− x∗| → 0 (t→∞).

P r o o f. For more transparence, assume x∗ = 0. Since g(x∗) = 0, the consis-
tency conditions (3.14), (3.15), (3.16) are satisfied trivially, hence the IVPs (1.1),
(3.17) have local C1

N solutions x(·) : I → Rm. Then the components u := PP1P2x
solve the regular IVPs (cf. (3.19))

u′ + PP1P2A
−1
3 Bu+ PP1P2A

−1
3 h(u+ PP1f(u) + Pk(u)) = 0 ,(3.23)

u(t0) = PP1P2x
0, |PP1P2x

0| ≤ τ ,(3.24)

and x = u+ PP1f(u) + Pk(u) + l(u).
Recall from Theorem 3.1 that f ∈ C2, k ∈ C1, l ∈ C.
By Lemma 4.5 below, the matrix M := −PP1P2A

−1
3 B has the same nontrivial

eigenvalues as the pencil {A,B}. The remaining eigenvalues of M = PP1P2M =
MPP1P2 are zero, and their structure is simple. Therefore, Lemma 4.4 below
provides a scalar product which may be applied as a local Lyapunov function
related to im(PP1P2) to the explicit ODE (3.23) in the standard way (see e.g. [6],
Theorem 4.3). There, we take into consideration that S(u) := h(u+ PP1f(u) +
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Pk(u)) is continuously differentiable, S(0) = 0, S ′(0) = 0, and that, as is easy to
check,

|S(u)| ≤ c|u|2 for u ∈ B(0, %)
with small %.

By Theorem 3.2, checking the spectrum of the pencil {A,B} or, equivalently,
that of the matrix PP1P2A

−1
3 B, and proving the conditions (3.6), (3.7) to be sat-

isfied, will do to know whether an equilibrium point x∗ of (1.1) is asymptotically
stable.

For important classes of DAEs (1.1) the conditions (3.6), (3.7) are valid due
to the special structure of those equations. We finish this paper by considering
Euler–Lagrange formulations of constrained multibody systems in some more
detail. Consider the nonlinear system

(3.25)


u′ − v = 0 ,

v′ + f(u, v) + h′(u)Tw = 0 ,
h(u) = 0 .

Assume h′(u) to have full rank, i.e. the holonomic constraints to be linearly in-
dependent. Note that w represents the Lagrange multiplier, u the position, and
v the velocity. For given xT

0 = (uT
0 , v

T
0 , w

T
0 ) we compute

A =

 I 0 0
0 I 0
0 0 0

 , B =

 0 −I 0
F G HT

H 0 0

 ,
where F := f ′u(u0, v0) + h′′(u0)Tw0, G := f ′v(u0, v0), H := h′(u0). Since H
has full rank, HHT is nonsingular. Define PH := H+H, QH := I − H+H,
H+ = HT(HHT)−1. Choosing

Q =

 0 0 0
0 0 0
α β I

 ,
α := (HHT)−1H{FQH +GQHGPH}, β := (HHT)−1HGQH ,

we derive

A1 = A+BQ =

 I 0 0
HTα I +HTβ HT

0 0 0

 ,
B1 = BP =

 0 −I 0
F −HTα G−HTβ 0

H 0 0

 ,
ker(A1) = {(uT, vT, wT)T : u = 0, v +HTβv +HTw = 0}

= {(uT, vT, wT)T : u = 0, v = PHv, w = −(HHT)−1Hv} ;
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further,

Q1 =

 0 0 0
0 PH 0
0 −(HHT)−1H 0

 ,
A2 = A1 +B1Q1 =

 I −PH 0
HTα I +HTβ +GPH HT

0 0 0

 ,
ker(A2) = {(uT, vT, wT)T : u = PHu, v = PHu−QHGPHu ,

w = −(HHT)−1(Hu+HGPHu)} ,
S2 = {(uT, vT, wT)T : Hu = 0} ,

Q2 =

 PH 0 0
PH −QHGPH 0 0

−(HHT)−1H(I +GPH) 0 0

 ,
A3 = A2 +B1P1Q2

=

 I +QHGPH −PH 0
HTα+ FPH −GQHGPH I +HTβ −GPH HT

H 0 0

 .
Then A3 is nonsingular, A−1

3 equals QH 0 (I −QHG)H+

−PH +QHGPH QH (I −QHG−QHF +QHGQHG)H+

γ (HHT)−1H(I −GQH) δ

,
where

γ := (HHT)−1H(I +GPH −GQHGPH − FQH) ,

δ := (HHT)−1H(−I −G− F +GQHG+GQHF

+ FQHG−GQHGQHG)H+ .

Moreover, it may be checked that, in fact,

Q = QP1P2A
−1
3 B, Q1 = Q1P2A

−1
3 BP, Q2 = Q2A

−1
3 BPP1

are the projectors announced in Lemma 4.3 below.
Furthermore, we have

P =

 I 0 0
0 I 0
−α −β 0

 , PP1 =

 I 0 0
0 QH 0
−α −β 0

 ,
and PP1P2 =

 QH 0 0
QHGPH QH 0
−α −β 0

 .
Are the conditions (3.6), (3.7) satisfied? Because of
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(Q1 + PP1)P2A
−1
3 {g(x)− g(Px)}

=

 0
QHh

′(u)T(w + αu+ βv)
−βh′(u)T(w + αu+ βv)

 , x =

 u
v
w

 ,

condition (3.7) is satisfied for all x from a neighbourhood U of x0, provided

QHh
′(u)T = 0

for the component u, i.e.

ker(h′(u)) = ker(h′(u0)) .

On the other hand, for x ∈ U ,

Q2A
−1
3 {g(x)− g(PP1x)} =

 0 0 H+

0 0 (I −QHG)H+

0 0 −(HHT)−1H(I +G)H+


×

 −PHv
h′(u)T(w + αu+ βv) + f(u, v)− f(u,QHv)

0

 = 0 .

Next, consider the consistency conditions (3.14), (3.15), (3.16) applied to the
system (3.25). Formula (3.16) can be simplified to

h(u0) = 0 .

Condition (3.14) means now

0 =

 0 0 0
−PH PH 0

(HHT)−1H (HHT)−1H 0


×

 −QHv0
PHv0 −QHGPHv0 +QHf(u0, v0)

−γv0 + (HHT)−1H(I −GQH)(f(u0, v0) + h′(v0)Tw0)

 ,
that is, PHv0 = 0.

Further, it follows that

PP1P2A
−1
3 g(x0) =

 −QHv0
−QHGQHv0 +QHf(u0, v0)
−αQHv0 − βQHf(u0, v0)

 ,
QP1P2A

−1
3 g(x0) =

 0
0

(HHT)−1H{f(u0, v0) + h′(u0)Tw0}

 ,
QQ1Q2A

−1
3 =

 0 0 0
0 0 0

−(HHT)−1H 0 0

A−1
3 =

 0 0 0
0 0 0
0 0 −(HHT)−1

 ,
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QQ1Q2A
−1
3 g′′(x)yy =

 0
0

−(HHT)−1h′′(u)y1y1

 ,
and, since the last component of PP1P2A

−1
3 g(x0) belongs to im(QH),

QQ1Q2A
−1
3 g′′(x0)PP1P2A

−1
3 g(x0)PP1P2A

−1
3 g(x0) = 0

has to be true. Consequently, condition (3.15) is satisfied if

PHf(u0, v0) + h′(u0)Tw0 = 0 .

Now we summarize what we know about (3.25).

Corollary 3.3 Given the system (3.25) with f ∈ C1, h ∈ C2, and u0, v0, w0

with

(3.26) h(u0) = 0, PHv0 = 0, PHf(u0, v0) + h′(u0)Tw0 = 0 .

Additionally , suppose
ker(h′(u)) = ker(h′(u0))

in a neighbourhood of u0. Then

(i) Then the IVPs for (3.25) with

(3.27) QH(u(t0)− u0) = 0, QH(v(t0)− v0) = 0

are uniquely solvable in C1
N , provided |QH(u0 − u0)| and |QH(v0 − v0)| are suffi-

ciently small.
(ii) If , additionally , f ∈ C2, h ∈ C3, QHv0 = 0, QHf(u0, v0) = 0, and

det

λI −I 0
F λI +G HT

H 0 0

 = 0 implies Reλ < 0 ,

then (uT
0 , v

T
0 , w

T
0 )T is an asymptotically stable equilibrium of (3.25).

P r o o f. These statements are specifications of Theorems 3.1 and 3.2, respec-
tively. Thereby, Q2A

−1
3 g is C2 since so is h.

The initial condition (3.27) is equivalent to PP1P2(x(t0)− x0) = 0.

4. Appendix: Some linear algebra

Lemma 4.1. Let A,B,Q ∈ L(Rm) be given, Q2 = Q, im(Q) = ker(A), i.e. Q
projects Rm onto ker(A). Put S := {z ∈ Rm : Bz ∈ im(A)}. Then

(i) The decomposition Rm = S ⊕ ker(A) holds if and only if the matrix
G := A+BQ is nonsingular for any projector Q onto ker(A).

(ii) Rm = S ⊕ ker(A) implies G−1A = P , Q = G−1BQ, and QG−1B repre-
sents the projector onto ker(A) along S.

P r o o f. [3], Theorem A.13, Lemma A.14.
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Lemma 4.2. Let {A,B} be a regular index 2 matrix pencil , A,B ∈ L(Rm).
Then the projectors Q,Q1 ∈ L(Rm) may be chosen in such a way that

Q = QP1A
−1
2 B, Q1 = Q1A

−1
2 BP ,

Q projects onto ker(A),

A1 := A+BQ, A2 := A1 +BPQ1, P1 := I −Q1 ,

and Q1 projects onto ker(A1) along

S1 := {z ∈ Rm : BPz ∈ im(A1)} .
P r o o f. [7], Lemma 2.1.

Lemma 4.3. Let {A,B} be a regular index 3 matrix pencil. Then the projectors
Q,Q1, Q2 ∈ L(Rm) may be chosen in such a way that

Q2 = Q2A
−1
3 BPP1, Q1 = Q1P2A

−1
3 BP, Q = QP1P2A

−1
3 B ,

where A1 := A + BQ, A2 := A1 + BPQ1, A3 := A2 + BPP1Q2, P := I − Q,
Pi = I −Qi, i = 1, 2,

Q projects onto ker(A), Q1 projects onto ker(A1),
Q2 projects onto ker(A2) along S2 := {z ∈ Rm : BPP1z ∈ im(A2)} .

P r o o f. Choose any projector Q ∈ L(Rm) onto ker(A) and put

A1 := A+BQ, A2 := A1 +BPQ1, A3 := A2 +BPP1Q2

where Q1, Q2 ∈ L(Rm) are any projectors onto ker(A1) and ker(A2), respectively.
Due to [4], Theorem 3, A1, A2 are singular but A3 is not. By [4], Theorem 5,

we are allowed to choose Q1 in such a way that Q1Q = 0. Moreover, we may
choose Q2 to project onto ker(A2) along S2 := {z ∈ Rm : BPP1z ∈ im(A2)} by
applying Lemma 4.1. Thus, Q2 = Q2A

−1
3 BPP1.

Next, it is easy to check that

Q := QP1P2A
−1
3 B

is a projector onto ker(A).
Now, we start the above procedure again, by putting

A1 = A+BQ .

Taking into account that Q = QQ, Q = QQ, we evaluate

A1 = A1(I +QP1P2A
−1
3 BP ) ,

where F1 := I +QP1P2A
−1
3 BP is nonsingular, F−1

1 = I −QP1P2A
−1
3 BP . Hence

im(A1) = im(A1).
Furthermore, Q1P2A

−1
3 BP is a projector onto ker(A1), and thus Q1 :=

F−1
1 Q1P2A

−1
3 BPF1 projects onto ker(A1). However,

Q1 = Q1P2A
−1
3 BP ,

so that ker(A1) = ker(A1), Q1Q1 = Q1.
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Next compute

A2 := A1 +BPQ1 = A2F2 ,

where
F2 := F1 +Q1P2A

−1
3 BPP1 is nonsigular,

F−1
2 = I −QP1P2A

−1
3 BP −Q1P2A

−1
3 BPP1 .

We observe that im(A2) = im(A2).
Since Q2 := F−1

2 Q2F2 = Q2, we also have ker(A2) = ker(A2). Moreover,

S1 = S1, S2 = S2 ,

and A3 = A3F2.
Because of S2 = S2, ker(A2) = ker(A2), Q2 represents the projector onto

ker(A2) along S2. Due to Lemma 4.1,

Q2 = Q2A
−1
3 BPP 1 .

Further, it may be proved that

Q1 = Q1P 2A
−1
3 BP .

Does Q=QP 1P 2A
−1
3 B hold? Unfortunately, it does not in general. We derive

QP 1P 2A
−1
3 B = QP 1P 2A

−1
3 BP +QP 1P 2A

−1
3 BQ = QP 1P 2A

−1
3 BP +Q ,

but

QP 1P 2A
−1
3 BP = Q(Q1 −Q1)P2A

−1
3 BPP1P2

may not vanish.
Finally, start our procedure once more putting

Q := QP 1P 2A
−1
3 B .

By the same arguments as above, we obtain

Q1 = Q1P 2A
−1
3 BP = Q1, Q2 = Q2A

−1
3 BPP 1 = Q2 = Q2 ,

but now Q(Q1 −Q1)P 2A
−1
3 BPP 1P 2 = 0, and thus

QP 1P 2A
−1
3 B = Q .

Consequently, Q, Q1, Q2 are the projectors required.

Lemma 4.4. Given M,Π ∈L(Rm), Π2 =Π, M =ΠM =MΠ, rank(Π) =:µ.
Let M have µ nontrivial eigenvalues λ1, . . . , λµ, each with a negative real part.
Then there is a constant β > 0 and a regular matrix C ∈ L(Cm) such that

Re〈Mz, z〉C ≤ −β|z|2C , z ∈ im(Π) ,

where 〈u, v〉C := 〈C−1u,C−1v〉2.

P r o o f. [7], Lemma 4.2.
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Lemma 4.5. Given a regular index 3 matrix pencil {A,B}. Let Q, Q1, Q2 be
determined by Lemma 4.3, and

M := −PP1P2A
−1
3 B, µ := rank(PP1P2) .

Then
grad det(λA+B) = µ

and {A,B} has µ eigenvalues, say λ1, . . . , λµ.
Moreover , λ1, . . . , λµ also belong to the spectrum of M , where the correspond-

ing eigenvectors lie in im(PP1P2). The remaining eigenvalues of M are zero, and
the corresponding eigenvectors span ker(PP1P2).

P r o o f. Note that M = MPP1P2 = PP1P2M . Suppose (λA + B)w = 0,
w 6= 0. Multiplying by PP1P2A

−1
3 , QP1P2A

−1
3 , Q1P2A

−1
3 , Q2A

−1
3 yields

λPP1P2w −Mw = 0 ,
λ(−QQ1 −QP1Q2)w +Qw = 0 ,

λ(−Q1Q2)w +Q1w = 0 ,
Q2w = 0 ,

hence w = PP1P2w, Mw = λw.
On the other hand, suppose

Mz = λz, z 6= 0 .

If λ 6= 0, then M = PP1P2M yields z = PP1P2z 6= 0 immediately. In this case
we have

λPP1P2z = −PP1P2A
−1
3 BPP1P2z = −P1P2A

−1
3 BPP1P2z

= −P2A
−1
3 BPP1P2z = −A−1

3 BPP1P2z ,

since QP1P2A
−1
3 BP = 0, Q1P2A

−1
3 BPP1 = 0 and Q2A

−1
3 BPP1P2 = 0. Hence

λA3PP1P2z +BPP1P2z = 0, i.e. (λA+B)PP1P2z = 0.
If λ = 0 but PP1P2z 6= 0, we conclude as above that

0 = Mz = −PP1P2A
−1
3 BPP1P2z = −A−1

3 BPP1P2z ,

thus BPP1P2z = 0.
Finally, ker(PP1P2) ⊆ ker(M), and z ∈ ker(PP1P2), z ∈ im(M) ⊆ im(PP1P2)

imply z = 0, hence the related eigenstructure of M is simple.
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