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Abstract. A new variational formulation of the linear elasticity problem with Neumann
or periodic boundary conditions is presented. This formulation does not require any quotient
spaces and is advisable for finite element approximations.

1. Introduction. In this paper we give an unconventional variational ap-
proach for solving the Neumann problem of linear elasticity on Ω ⊂ R

d, d ∈
{1, 2, 3}, where Ω is a bounded domain with Lipschitz boundary ∂Ω. The solu-
tion will be sought in the standard product Sobolev space

(H1(Ω))d = H1(Ω) × . . . × H1(Ω)︸ ︷︷ ︸
d times

,

with no other restrictions upon the solution. Thus the formulation will be suitable
for finite element approximations.

Recall first the classical formulation of the Neumann problem in linear elas-
ticity (the so-called first basic problem of linear elasticity — see [8, p. 95]) for
a nonhomogeneous and anisotropic material, in general: Find a displacement
u ∈ (C2(Ω))d such that, for i = 1, . . . , d, we have

−
d∑

j,k,l=1

∂

∂xj
(cijklεkl(u)) = fi in Ω ,(1.1)
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d∑

j,k,l=1

njcijklεkl(u) = gi on ∂Ω ,(1.2)

where nj are components of the outward unit normal to ∂Ω,

(1.3) εkl(v) =
1

2

(
∂vk

∂xl
+

∂vl

∂xk

)
, v = (v1, . . . , vd)

T ∈ (H1(Ω))d ,

ε = (εkl)
d
k,l=1

is the strain tensor and cijkl ∈ C1(Ω) are elastic coefficients satis-
fying

(1.4) cjikl = cijkl = cklij , i, j, k, l = 1, . . . , d .

We moreover assume that there exists a constant C > 0 such that

(1.5)
d∑

i,j,k,l=1

cijkl(x)eijekl > C
d∑

i,j=1

e2

ij

for any x ∈ Ω and any symmetric matrix (eij)
d
i,j=1

, eij ∈ R
1. The body forces f =

(f1, . . . , fd)
T ∈ (L2(Ω))d and surface forces g = (g1, . . . , gd)

T ∈ (L2(∂Ω))d are
supposed to satisfy the following equilibrium condition (for forces and moments):

(1.6)
∫

Ω

fT p dx +
∫

∂Ω

gT p ds = 0 ∀p ∈ P ,

where

(1.7) P = {p ∈ (H1(Ω))d | ε(p) = 0} .

It is known that the space P is finite-dimensional (see e.g. [8, p. 78]),

(1.8) D ≡ dim P =
d(d + 1)

2

(D = D(d)). Basis functions pi = pi(x1, . . . , xd), i = 1, . . . ,D, in P can be chosen
for instance as follows:

(1.9)

p1 = 1 for d = 1 ,

p1 = (1, 0)T , p2 = (0, 1)T , p3 = (x2,−x1)
T for d = 2 ,

p1 = (1, 0, 0)T , p2 = (0, 1, 0)T , p3 = (0, 0, 1)T , p4 = (0, x3,−x2)
T ,

p5 = (−x3, 0, x1)
T , p6 = (x2,−x1, 0)

T for d = 3 .

We see that if u is a solution of the problem (1.1)–(1.2) then so is u + p for
any p ∈ P . Therefore, the standard primal variational formulation of (1.1)–(1.2)
is usually given in the quotient space (H1(Ω))d/P . However, quotient spaces are
not suitable for finite element approximations.

When d > 1, it is not advisable to look for a finite element solution uh of (1.1)–
(1.2) which would be fixed at D points. Note that the true solution u ∈ (H1(Ω))d

may have singularities just at some of these points, as H1(Ω) 6⊂ C(Ω) if d > 1.
Such finite element approximations can then be incorrect (see e.g. [1, p. 13]).
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When we employ a dual variational formulation to (1.1)–(1.2), then there is
no trouble with the uniqueness of the solution, but a stress tensor satisfying the
equilibrium equations must be known a priori (see [3, p. 50]). This fact often
makes the dual approach inapplicable.

Another variational formulation of (1.1)–(1.2) is presented in [8, p. 99]. Here
the authors define linear functionals qi, i = 1, . . . ,D, by

(1.10) qi(v) =
∫

S

vT pi ds, v ∈ (H1(Ω))d,

where the pi are given by (1.9) and S 6= ∅ is an arbitrary open part of the
boundary ∂Ω0 of a domain Ω0 ⊆ Ω with Lipschitz boundary. They further prove
that the bilinear form

(1.11) a(v,w) =
∫

Ω

d∑

i,j,k,l=1

cijklεij(v)εkl(w) dx, v, w ∈ (H1(Ω))d ,

associated with the problem (1.1)–(1.2) is Vp-elliptic for

(1.12) Vp = {v ∈ (H1(Ω))d | qi(v) = 0, i = 1, . . . ,D} .

However, this space is again unsuitable for finite element approximations due to
the constraints qi(v) = 0.

In Section 2 we will introduce a new variational formulation of (1.1)–(1.2),
where the linear functionals qi will appear in a modified bilinear form ã(·, ·),
but they will not appear in the space of test functions. Section 3 is devoted to
finite element approximations. A weak formulation of the Neumann problem with
periodic boundary conditions is presented in Section 4.

2.New variational approach to the Neumann problem in linear elas-

ticity. Throughout the paper the symbols C,C1, C2 stand for the so-called generic
positive constants which need not be the same at each occurrence. The standard
norm in (Hk(Ω))m (k,m integers) is denoted by ‖ · ‖k,Ω. Set

V = (H1(Ω))d ,

and for cijkl ∈ L∞(Ω) define a symmetric bilinear form

(2.1) ã(v,w) = a(v,w) +

D∑

i=1

γiqi(v)qi(w), v, w ∈ V ,

where γi > 0 are fixed constants, and D, qi and a(·, ·) are defined by (1.8), (1.10)
and (1.11), respectively. Further, we put

(2.2) b(v) =
∫

Ω

fT v dx +
∫

∂Ω

gT v ds, v ∈ V .

We will show that there is a unique solution of the following problem: Find
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u ∈ V such that

(2.3) ã(u, v) = b(v) ∀v ∈ V .

If, moreover, u ∈ (C2(Ω))d, we shall prove that u solves (1.1)–(1.2). First, we
introduce an important lemma.

Lemma 2.1. There exist positive constants C1, C2 such that

(2.4) C1‖v‖
2

1,Ω ≤ ‖ε(v)‖2

0,Ω +

D∑

i=1

q2

i (v) ≤ C2‖v‖
2

1,Ω ∀v ∈ V ,

where the qi are defined by (1.10).

The proof is based upon Korn’s inequality and can be found in [2, p. 309]. For
the case d = 3 see also [8, p. 97].

Theorem 2.2. There exists a unique solution u ∈ V of problem (2.3). This

solution satisfies the conditions

(2.5) qi(u) = 0, i = 1, . . . ,D ,

where the qi are defined by (1.10).

P r o o f. From (1.11) and (1.5) we see that there exists a constant C > 0 such
that

(2.6) a(v, v) ≥ C‖ε(v)‖2

0,Ω ∀v ∈ V .

Moreover, by (1.7),

(2.7) a(v, p) = 0 ∀v ∈ V ∀p ∈ P .

(So, in particular, a(p, p) = 0 for any p ∈ P , i.e., the bilinear form a(·, ·) is not
V -elliptic.) By (2.1), (2.6) and (2.4), we find that ã(·, ·) is V -elliptic,

ã(v, v) = a(v, v) +

D∑

i=1

γiq
2

i (v)

≥ C‖ε(v)‖2

0,Ω +

D∑

i=1

γiq
2

i (v) ≥ C1‖v‖
2

1,Ω ∀v ∈ V .

From (1.10), the Cauchy–Schwarz inequality and the trace theorem we see that
the qi are continuous,

(2.8) |qi(v)| ≤
∫

S

|vT pi| ds ≤ ‖v‖0,S‖p
i‖0,S ≤ C‖v‖1,Ω

∀v ∈ V, i = 1, . . . ,D .
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Hence, by (2.1), (1.11), (2.8) and (1.3) we deduce that ã(·, ·) is also continuous,

|ã(v,w)| ≤ |a(v,w)| +
D∑

i=1

γi|qi(v)||qi(w)|

≤ C1‖ε(v)‖0,Ω‖ε(w)‖0,Ω + C2‖v‖1,Ω‖w‖1,Ω

≤ C‖v‖1,Ω‖w‖1,Ω ∀v,w ∈ V .

Since the linear form (2.2) is continuous as well, the existence of a unique u ∈ V
satisfying (2.3) follows from the well-known Lax–Milgram lemma.

Further, we prove (2.5). So, let u ∈ V be the solution of problem (2.3). Then
according to (2.7), (2.1), (2.3), (2.2) and (1.6), we obtain

(2.9)

D∑

i=1

γiqi(u)qi(p) = a(u, p) +

D∑

i=1

γiqi(u)qi(p) = ã(u, p) = b(p) = 0

for all p ∈ P . Letting

(2.10) αi = γiqi(u) ,

we shall prove that

(2.11)
D∑

i=1

αiqi(p) = 0 ∀p ∈ P ⇒ αi = 0, i = 1, . . . ,D.

Let us take, in particular,

(2.12) p =
D∑

i=1

αip
i ,

where the pi are defined by (1.9). Then by (2.9), (2.10), (1.10) and (2.12) we get

0 =

D∑

i=1

αiqi(p) =

D∑

i=1

αi

∫

S

pT pi ds =
∫

S

pT p ds ,

which yields

(2.13) p = 0 on S .

If d = 1 then clearly α1 = 0. Consider the case d = 2. Since S 6= ∅ is an open
part of the boundary ∂Ω0, there exist at least two different points (x1, x2)

T and
(y1, y2)

T lying on S. So by (2.12), (1.9) and (2.13) we have
(

α1 + α3x2

α2 − α3x1

)
= 0,

(
α1 + α3y2

α2 − α3y1

)
= 0 ,

which yields α3 = 0 and thus also α1 = α2 = 0. For d = 3 we also have α1 =
. . . = α6 = 0, which is proved in [7, p. 91]. Hence (2.11) holds, and by (2.10) we
find that qi(u) = 0 for every i = 1, . . . ,D.

R e m a r k 2.3. From (2.9) we see that the equilibrium condition (1.6) in fact
implies (2.5). The converse is also true. Namely, by (2.1) and (2.5) we find that
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ã(u, v) = a(u, v) for any v ∈ V , and thus the variational solution u ∈ V satisfies,
by (2.3), the relation

(2.14) a(u, v) = b(v) ∀v ∈ V .

From here, (2.7) and (2.2) we get the equilibrium condition (1.6):

0 = a(u, p) = b(p) =
∫

Ω

fT p dx +
∫

∂Ω

gT p ds ∀p ∈ P .

Next we prove two theorems characterizing a connection between the classical
and variational Neumann problem.

Theorem 2.4. Let the coefficients cijkl occurring in (1.11) belong to C1(Ω)
and let the variational solution u of problem (2.3) belong to (C2(Ω))d. Then u is

also the classical solution of problem (1.1)–(1.2).

P r o o f. Denote by C∞
0

(Ω) the space of infinitely differentiable functions with
a compact support in Ω. Then by (2.14), the symmetry of a(·, ·), (1.4) and by
Green’s formula

(2.15) 0 = a(u, v) − b(v) = a(v, u) − b(v)

=
∫

Ω

(
1

2

∑

i,j,k,l

cijklεkl(u)

(
∂vi

∂xj
+

∂vj

∂xi

)
− fT v

)
dx

= −
∫

Ω

(
1

2

∑

i,j,k,l

(
∂

∂xj
(cijklεkl(u))vi +

∂

∂xi
(cjiklεkl(u))vj

)
+ fT v

)
dx

= −
∑

i

∫

Ω

(( ∑

j,k,l

∂

∂xj
(cijklεkl(u)) + fi

)
vi

)
dx

∀v = (v1, . . . , vd)
T ∈ (C∞

0 (Ω))d ,

which yields (1.1) due to the density C∞
0

(Ω) = H1(Ω).
We proceed analogously to derive the boundary condition (1.2). We use the

just derived (1.1), again the symmetry of a(·, ·) and cijkl, Green’s formula and
(2.14) to get

0 = a(v, u) − b(v)(2.16)

=
∫

∂Ω

(
1

2

∑

i,j,k,l

(njcijklεkl(u)vi + nicjiklεkl(u)vj) − gT v

)
ds

=
∑

i

∫

∂Ω

( ∑

j,k,l

njcijklεkl(u) − gi

)
vi ds ∀v = (v1, . . . , vd)

T ∈ V .

Denote by H1/2(∂Ω) the space of traces of all functions from H1(Ω). Then due
to [7, p. 87] we have the following density:

L2(∂Ω) = H1/2(∂Ω) ,
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where the closure is taken under the ‖ ·‖0,∂Ω -norm. From here and (2.16) we find
that (1.2) holds.

Theorem 2.5. Let u ∈ (C2(Ω))d be the classical solution of problem (1.1)–
(1.2). Then u is the variational solution of problem (2.3) provided (2.5) holds.

P r o o f. Let v = (v1, . . . , vd)
T ∈V be arbitrary and let us multiply (1.1) by vi.

Then the integration over Ω, summation over i = 1, . . . , d, and the use of Green’s
formula yield (as in (2.15) and (2.16))

0 = −
∑

i,j,k,l

∫

Ω

((
∂

∂xj
(cijklεkl(u)) + fi

)
vi

)
dx

=
∑

i,j,k,l

( ∫

Ω

(
1

2
cijklεkl(u)

(
∂vi

∂xj
+

∂vj

∂xi

)
− fivi

)
dx −
∫

∂Ω

njcijklεkl(u)vi ds

)
.

Hence, by (1.2), (1.3), (1.11) and (2.2) we have

0 = a(v, u) − b(v) ∀v ∈ V .

Finally, from (2.1), (2.5) and the symmetry of a(·, ·) we arrive at

ã(u, v) = a(u, v) = b(v) ∀v ∈ V .

R e m a r k 2.6. Since ã(·, ·) is symmetric, the weak formulation (2.3) of the
Neumann problem is obviously equivalent to minimizing the functional J(v) =
1

2
ã(v, v)−b(v) over V for arbitrary positive γ1, . . . , γD. This is the so-called vari-

ational formulation. Such an approach leads, by (2.1), to exact penalties methods
(see [5, 11]).

3.Finite element approximation. Throughout this section we assume that
Vh ⊂ V is an arbitrary finite element space such that P ⊂ Vh. Let the set S from
(1.10) be chosen so that S is a union of some faces of several elements. A discrete
analogue of problem (2.3) consists in finding uh ∈ Vh so that

(3.1) ã(uh, vh) = b(vh) ∀vh ∈ Vh .

Theorem 3.1. There exists a unique solution uh ∈ Vh of problem (3.1). This

solution satisfies the conditions

(3.2) qi(uh) = 0, i = 1, . . . ,D,

where the qi are defined by (1.10).

The proof is similar to that of Theorem 2.2.

Theorem 3.2. The discrete solution uh of problem (3.1) is independent of the

parameters γi from (2.1).

P r o o f. Let u1

h and u2

h be two solutions of (3.1) corresponding to two different
sequences {γ1

i } and {γ2

i }, respectively. Then, by (3.2),

(3.3) qi(u
1

h) = qi(u
2

h) = 0, i = 1, . . . ,D .
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From this and (2.1) we see that

ã(uk
h, vh) = a(uk

h, vh) = b(vh) ∀vh ∈ Vh, k = 1, 2 ,

which yields

a(u1

h − u2

h, vh) = 0 ∀vh ∈ Vh .

Setting here vh = u1

h − u2

h, we find by (2.6) that

C‖ε(u1

h − u2

h)‖2

0,Ω ≤ a(u1

h − u2

h, u1

h − u2

h) = 0 ,

which implies that ε(u1

h − u2

h) = 0 almost everywhere in Ω. Hence, by (3.3) and
(2.4), we have u1

h − u2

h = 0.

Let m = dim Vh and let {vi}m
i=1

be a finite element basis of Vh. Set

(3.4) Ã = (ã(vi, vj))m
i,j=1, A = (a(vi, vj))m

i,j=1 .

Notice that the width of the band of the stiffness matrix Ã depends upon the
choice of the set S occurring in (1.10). We will illustrate this fact in the following
example.

Example 3.3. Let Ω = (0, 1)×(0, 1) and let N > 1 be a given integer. Divide
each side of Ω into N − 1 equal parts and consider a uniform triangulation of Ω
as sketched in Figure 1.

Fig. 1

Assume that the nodes xj , j = 1, . . . , N2, are numbered e.g. row-wise and denote
by ϕi the standard Courant piecewise linear basis functions, i.e., ϕi(xj) = δij for
i, j = 1, . . . , N2. Let the space Vh be generated by continuous piecewise linear
vector fields over each triangulation. The functions

v2i−1 = (ϕi, 0)T , v2i = (0, ϕi)T , i = 1, . . . ,m (= 2N2) ,

can obviously be taken as a basis in Vh. Then the symmetric matrix A from
(3.4) has a band structure. The half bandwidth equals 2N +2. We can easily see

by (2.1) that the half bandwidth of Ã will be the same if we choose S from (1.10)
as the lower (or upper) side of Ω — cf. Figure 1. On the other hand, although
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the choice S = ∂Ω would yield a sparse matrix Ã, the band structure would be
lost. That is why the set S has to be chosen appropriately. Let us note that the
choice of γ1, . . . , γD from (2.1) has no influence upon the structure of Ã, but has

a certain influence on the condition number of Ã (see [5]).

Let us further note that the classical setting of the discrete Neumann problem
consists in minimizing the quadratic functional

(3.5) I(y) = yT Ay − 2yT b

subject to the linear constraints

(3.6) Qy = 0,

where A given in (3.4) is singular, b = (b(vi))m
i=1

and Q is a D × m matrix
corresponding to a discretization of the constraints qi(v) = 0 (i = 1, . . . ,D) from
(1.12). The method of Lagrange’s multipliers applied to (3.5)–(3.6) then yields
the system (cf. [6, p. 1263])

(
A QT

Q 0

)(
y

λ

)
=

(
b

0

)
,

whose matrix is nonsingular but indefinite. On the contrary, formulation (3.1)
leads to the system

Ãy = b ,

whose matrix is positive definite.

R e m a r k 3.4. The problem of convergence of ‖u−uh‖1,Ω , where u and uh are
defined by (2.3) and (3.1), respectively, can be transformed by Céa’s well-known
lemma (see e.g. [4, p. 41]) to the study of approximation properties of the system
{Vh} of finite element subspaces in V .

R e m a r k 3.5. According to [2, p. 309 or p. 317], Lemma 2.1 remains valid if
the integration domain S in (1.10) is replaced by Ωi or Si, i = 1, . . . ,D, where
Ωi 6= ∅ are subdomains of Ω with Lipschitz boundaries and Si 6= ∅ are arbitrary
open parts of ∂Ωi. Thus all the previous theorems may be formulated also for
this case.

4. Periodic boundary conditions. Assume that Ω is rectangular, Ω =
(0, r1) × . . . × (0, rd), and consider the problem given by (1.1) with the following
periodic boundary conditions:

(4.1)

u|Fm
= u|F ′

m
, m = 1, . . . , d,

d∑

j,k,l=1

njcijklεkl(u)|Fm
=

d∑

j,k,l=1

njcijklεkl(u)|F ′

m
, i,m = 1, . . . , d,

where Fm and F ′
m are opposite faces of Ω which are perpendicular to the axis

xm, m = 1, . . . , d, and cijkl are from C1(Ω) for the time being. The necessity of
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solving such a problem arises in studying materials with periodic structure. For
single elliptic equations with periodic boundary conditions see e.g. [9, 10]. Set

(4.2) W = {w ∈ V | w|Fm
= w|F ′

m
, m = 1, . . . , d}

and suppose that some smooth u satisfies (1.1)+(4.1). Multiplying (1.1) by an
arbitrary function w ∈ W , integrating this over Ω and using (1.3), (1.4), the
Green formula and (4.1), we come to

(4.3) a(u,w) = b(w) ∀w ∈ W ,

where a(·, ·) is defined in (1.11), cijkl may belong to L∞(Ω) now, and

(4.4) b(w) =
∫

Ω

fT w dx, w ∈ W .

Since the functions pi, i = 1, . . . , d, given by (1.9), are constant and belong to W ,
we find by (1.11) and (4.3) that

(4.5) b(pi) = 0, i = 1, . . . , d .

Note that a(·, ·) is not W -elliptic, since

(4.6) a(pi, pi) = 0, i = 1, . . . , d .

It is elliptic only over the space

U = {v ∈ V | qi(v) = 0, v|Fi
= v|F ′

i

, i = 1, . . . , d} ,

where the qi are defined in (1.10). The space U is, however, unsuitable for finite
element approximation, as FE-basis functions would have too complicated shape
due to the constraints occurring in U . Thus analogously to (2.1), we introduce a
modified bilinear form

(4.7)
∗
a(v,w) = a(v,w) +

d∑

i=1

γiqi(v)qi(w), v, w ∈ W ,

where γi > 0 are fixed constants. Consider now a related problem: Find u ∈ W
such that

(4.8)
∗
a(u,w) = b(w) ∀w ∈ W .

Theorem 4.1. There exists a unique solution u ∈ W of (4.8). This solution

satisfies the conditions

(4.9) qi(u) = 0, i = 1, . . . , d .

P r o o f. We first prove by contradiction that

(4.10) ‖w‖2

1,Ω ≤ C
(
‖ε(w)‖2

0,Ω +
d∑

i=1

q2

i (w)
)

∀w ∈ W .
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So, let there exist a sequence {wm}∞m=1 ⊂ W such that

(4.11) ‖wm‖2

1,Ω > m
(
‖ε(wm)‖2

0,Ω +

d∑

i=1

q2

i (wm)
)

.

We may assume, moreover, that the wm are normalized so that

(4.12) ‖wm‖1,Ω = 1, m = 1, 2, . . .

From (4.11) and (4.12) we see that

(4.13) ‖ε(wm)‖0,Ω → 0 as m → ∞ ,

and for any i ∈ {1, . . . , d},

(4.14) qi(wm) → 0 as m → ∞ .

Since the imbedding H1(Ω) ⊂ L2(Ω) is compact, there exist w0 ∈ (L2(Ω))d and
a subsequence of {wm}, still denoted by {wm}, such that

(4.15) ‖wm − w0‖0,Ω → 0 as m → ∞ .

Using now the coercivity of strains, i.e.

C‖v‖2

1,Ω ≤ ‖ε(v)‖2

0,Ω + ‖v‖2

0,Ω ∀v ∈ V

(see e.g. [8, p. 79]), we get for any m, r ∈ {1, 2, . . .}

C‖wm − wr‖
2

1,Ω

≤ ‖ε(wm)‖2

0,Ω + 2‖ε(wm)‖0,Ω‖ε(wr)‖0,Ω + ‖ε(wr)‖
2

0,Ω + ‖wm − wr‖
2

0,Ω .

This estimate, (4.13) and (4.15) imply that {wm} is a Cauchy sequence in V .
Applying (4.15) once again, we find that w0 ∈ V and that

(4.16) ‖wm − w0‖1,Ω → 0 as m → ∞ .

Since all wm belong to W , we further deduce by the trace theorem that also
w0 ∈ W . Moreover, (4.13) and (4.16) yield

ε(w0) = 0 .

From this and (1.9) we observe that w0 must be constant on Ω as w0 ∈ W is
periodic. Finally, from definition (1.10) we get

(4.17) w0 = 0 ,

since by (2.8), (4.16) and (4.14) we have qi(w0) = 0 for i = 1, . . . , d. However,
(4.17) contradicts (4.12) and (4.16), i.e., (4.10) holds.

Now from (4.7), (1.5) and (4.10), we observe that
∗
a(·, ·) is W -elliptic, i.e.

∗
a(w,w) = a(w,w) +

d∑

i=1

γiq
2

i (w) ≥ C1‖ε(w)‖2

0,Ω + C2

d∑

i=1

q2

i (w) ≥ C3‖w‖2

1,Ω

for all w ∈ W . Since, moreover, the forms (4.4) and (4.7) are continuous, the
existence of a unique solution u ∈ W follows from the Lax–Milgram lemma.
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Further we prove (4.9). By (2.7), (4.7), (4.8) and (4.5),

d∑

i=1

γiqi(u)qi(p
j) = a(u, pj) +

d∑

i=1

γiqi(u)qi(p
j) =

∗
a(u, pj) = b(pj) = 0

for any j = 1, . . . , d. Therefore, from (2.10) and (2.11) we come to (4.9).

R e m a r k 4.2. Theorems 2.4, 2.5 and Remark 2.6 can be stated analogously
also for periodic boundary conditions. If Wh ⊂ W is an arbitrary finite element
space which contains constant functions, then a discrete analogue of (4.8) consists
in finding uh ∈ Wh such that

(4.18)
∗
a(uh, wh) = b(wh) ∀wh ∈ Wh .

Theorems 3.1, 3.2 and Remarks 3.4 and 3.5 can be again easily modified to the
space Wh. Therefore, the discrete solution uh is independent of γ1, . . . , γd, but
the stiffness matrix associated with (4.18) and some basis {wi} ⊂ Wh essentially
depends upon γ1, . . . , γd. This can be seen from the following numerical example.

Example 4.3. Let d = 3 and suppose that the elastic body Ω = (0, 1)×(0, 1)×
(0, 1) consists of a homogeneous and isotropic material with Lamé’s constants
µ = c1212 = 1011[Nm−2] and λ = c1122 = 1011[Nm−2]. We choose the right-hand
side of (1.1) so that

u1(x1, x2, x3) =
1

100
sin(2πx1), u2 ≡ u3 ≡ 0

is the true solution of the problem (1.1)+(4.1). Let each edge of Ω be divided into
N equal parts and let Wh be the corresponding vector finite element space (from
(4.18)) generated by the standard trilinear elements, i.e., dimWh = 3N3. Let us
number the basis functions wi lexicographically. In order to define the bilinear
form (4.7), we further set S = {0}×(0, 1)×(0, 1) and γ1 = γ2 = γ3 = γ, where γ

is a positive parameter. Due to (4.2), the stiffness matrix (
∗
a(wi, wj)) associated

with (4.18) will not be a band matrix (as in Example 3.3), but will remain sparse.
The system of simultaneous equations has been solved iteratively by the SOR
method with ω = 1.4 and zero initial guess in all cases. In the first row of Table 1
we see the values of the expression

∗
a(w1, w1) − a(w1, w1)

a(w1, w1)
· 100%

for various values of the parameter γ. The iteration process has been stopped

Table 1

3% 7% 15% 30% 300%

N = 3 80 29 25 24 23
N = 4 110 51 28 26 25
N = 5 138 72 36 32 26
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when the Euclidean norm of two subsequent iterations was less than 10−6. The
corresponding numbers of iterations are given in Table 1.
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