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In papers [1, 2] the perturbation of the Stokes problem was studied. We mean
the case when the original Stokes problem for incompressible media is replaced
by elasticity theory equations with Poisson ratio ν approximately equal to 1/2.
In this case it was proved that uε → u0, pε → p0 where ε ∼ 1/2 − ν, (uε, pε)
is a solution of the boundary value problem for elasticity theory equations and
(u0, p0) is the solution of the Stokes problem. But in the papers mentioned above
only the case ε = const was considered. We will consider the case ε = ε(x). Our
technique is different but the results are almost the same. So let us consider the
boundary value problem for elasticity theory equations when the Lamé coefficient
µ is constant.

For the sake of simplicity of presentation we will consider the Dirichlet bound-
ary conditions

(1)
µ∆u+∇(λ+ µ) div u = F ,

u|∂Ω = 0 .

Unless otherwise stated, we will assume that µ = const. In this case, similarly
to [3], the boundary value problem (1) can be rewritten in the following form:

(2)
−∆u+∇p = f ,

αp+ div u = 0 , u|∂Ω = 0 ;

here f = −F/µ and α = µ/(λ+µ). It can be easily seen that the boundary value
problem (2) has a more general form than (1) since it covers the case α = 0 on
part of or on the whole domain Ω.
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Along with (2) let us consider the perturbed boundary value problem

(3)
−∆uε +∇pε = fε ,

(α+ ε)pε + div uε = 0 , uε|∂Ω = 0 .

For α = const it was proved that

(4) ‖uε − u‖W 1
2

+ ‖p− pε‖ ≤ cε .
Below we will establish the validity of this estimate for the case of variable α.

Note that 0 ≤ α ≤ 1. If p ∈ L2 then by p′ we will denote the orthogonal pro-
jection of p onto the subspace of functions from the space L2 which are orthogonal
to unity (we will denote this subspace by L2/R1). Therefore, we have

p = s+ p′ , s = const , (p′, 1) ≡
∫
Ω

p′ dx = 0 .

Let us prove the uniform boundedness of the functions uε and pε. To this end,
we take the scalar product of the first equation (3) by uε and the scalar product
of the second equation (3) by pε and sum up the results; thus we obtain

(5) ‖uε‖21 + ((α+ ε)pε, pε) = (fε, uε) .

From the first equation (3) for an arbitrary nonzero vector-function φ we obtain

(6)
|(∇pε, ϕ)|
‖φ‖1

≤ |(∇uε,∇ϕ)|
‖φ‖1

+
|(fε, ϕ)|
‖φ‖1

≤ ‖uε‖1 + ‖fε‖−1 .

We use the Babuška–Brezzi inequality from [4]:

‖q‖L2 ≤ c0 sup
ϕ∈W

◦
1
2

|(q,divϕ)|
‖ϕ‖1

.

This inequality and the estimate (6) yield

(7) ‖p′ε‖ ≤ c0(‖uε‖1 + ‖fε‖−1) .

Here and above we use the standard notations

‖q‖ = ‖q‖L2 , ‖f‖−1 = sup
ϕ∈W 1

2

(ϕ, f)
‖ϕ‖1

, ‖ϕ‖1 = ‖∇ϕ‖ .

Since α+ ε ≥ ε > 0, the equality (5) gives the estimate

‖uε‖1 ≤ ‖fε‖−1 .

From this estimate and the inequality (7) we obtain

(8) ‖uε‖1 + ‖p′ε‖ ≤ (2c0 + 1)‖fε‖−1 .

Finally, since fε → f the inequality (8) implies the existence of a constant c1
independent of ε such that the following inequality is satisfied:

(9) ‖uε‖1 + ‖p′ε‖ ≤ c1‖f‖−1 .

This means that the norms ‖uε‖1 and ‖p′ε‖ are uniformly bounded with respect
to ε.
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Let pε = sε + p′ε. Let us prove the uniform boundedness of |sε|. Using the
expansion of pε and estimating the right-hand side of the equality (5) by the
ε-inequality we obtain

(10) 3
4‖uε‖

2
1 + s2ε(α+ ε, 1) + 2sε((α+ ε), p′ε) + ((α+ ε)p′ε, p

′
ε) ≤ c21‖fε‖2−1 .

Therefore, from the estimates (9) and (10) we have

(11) 3
4‖uε‖

2
1 + s2ε(α+ ε, 1) + 2sε(α+ ε, p′ε) + ((α+ ε)p′ε, p

′
ε) +‖p′ε‖2 ≤ 2c21‖f‖2−1 .

Using the ε-inequality we can estimate the term 2sε(α + ε, p′ε) on the left-hand
side of (11) as follows:

2|sε(α+ ε, p′ε)| = 2|(sε
√
α+ ε,

√
α+ εp′ε)|

≤ ε1s2ε(α+ ε, 1) +
1
ε1

((α+ ε)p′ε, p
′
ε) .

Let ε1 ≤ 1; substituting this inequality into the estimate (11) we obtain

(12)
3
4
‖uε‖21 + (1− ε1)s2ε(α, 1) +

(
1− 1

ε1

)
((α+ ε)p′ε, p

′
ε) + ‖p′ε‖2 ≤ 2c21‖f‖2−1 .

Since we are mainly interested in the asymptotic behaviour as ε→ 0, we assume
that ε ≤ 1. Taking into account that α≤1 and choosing ε1 = 4/5 we obtain from
the inequality (12) the estimate

1
5s

2
ε(α, 1) + 1

2‖p
′
ε‖2 ≤ c‖f‖2−1 .

But the inequality (9) yields the boundedness of the norm p′ε and thus

|sε| ≤
c√

(α, 1)
‖f‖−1 .

This gives the estimate of the form

(13) ‖pε‖2 = s2ε + ‖p′ε‖2 ≤ c2‖f‖2−1 .

Now we pass to the proof of the estimate (4). Let qε = p − pε, vε = u − uε.
The errors vε and qε are found by solving the problem

(14)
−∆vε +∇qε = f − fε ,

αqε + div vε = εpε , vε|∂Ω = 0 .

Let us form the scalar product of the first equation (14) and vε and the scalar
product of the second equation (14) and qε. Summing up the results we obtain
the equality

(15) ‖vε‖21 + (αqε, qε) = (f − fε, vε) + ε(pε, qε) .

From the first equation (14) we obtain as above the following estimate:

‖q′ε‖ ≤ c0(‖vε‖1 + ‖f − fε‖−1) .

Let us multiply both sides of the last inequality by an arbitrary constant λ and
take squares. Summing up this result and the equality (15) and estimating the
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right-hand side, we have

(16)
(

1
2
− c20λ

)
‖vε‖21 + (αqε, qε) + λ‖q′ε‖2

≤ εδ‖qε‖2 +
ε

4δ
‖pε‖2 +

(
1
2
− c20λ0

)
‖f − fε‖2−1 .

Let qε = lε + q′ε and lε = const. Then the following sequence of relations holds:

(αqε, qε) + λ‖q′ε‖2 = l2ε(α, 1) + 2lε(α, q′ε) + (αq′ε, q
′
ε) + λ‖q′ε‖2

≥ l2ε(α, 1) + α(q′ε, q
′
ε) + (λq′ε, q

′
ε)− ε1l2ε1(α, 1) +

1
ε1

(αq′ε, q
′
ε)

≥ (1− ε1)l2ε(α, 1) +
(
λ+ 1− 1

ε1

)
‖q′ε‖2 .

Let ε1 = 2/(2 + λ); then the last inequality yields the estimate

(αqε, qε) + λ‖q′ε‖2 ≥
λ(α, 1)
2 + λ

l2ε +
λ

2
‖q′ε‖2 ≥ c3‖qε‖2

where

c3 = c3(λ) = min
{
λ(α, 1)
2 + λ

,
λ

2

}
.

Note that c > 0 since (α, 1) > 0 by assumption. Choose λ = 1/(8c20) and
δ = c3/(2ε). Then from the inequality (16) we obtain the estimate

(17)
1
4
‖vε‖21 +

c3
2
‖qε‖2 ≤

ε2

2c3
‖pε‖2 + c4‖f − fε‖2−1 .

This estimate implies the convergences vε → 0 and qε → 0 as ε→ 0. Moreover,
if the fε converge to f so that the estimate ‖fε − f‖−1 ≤ cε is satisfied then the
convergence will be of first order in ε. Thus the estimate (4) is true.

So we have proved the following theorem:

Theorem 1. Let the domain Ω, the functions f and fε and the coefficient α
be such that the generalised solutions of the problems (2) and (3) exist and are
unique and fε − f → 0. Then the solution (uε, pε) of the problem (3) converges
to (u, p) with ε → 0 where (u, p) is the solution of the problem (2). Moreover , if
‖fε−f‖−1 ≤ cε then we can estimate the rate of convergence of (uε, pε) to (u, p).
Namely , in this case

‖uε − u‖1 + ‖pε − p‖ ≤ cε .
R e m a r k 1. The convergence of (uε, pε) to (u, p) holds true not only in the

continuous case but also in the discrete case when the boundary value prob-
lems (2) and (3) are approximated by a finite element method or by a finite
difference one. Here it is necessary that the discrete analogue of the Babuška–
Brezzi inequality is valid while the operators ∇ and div are approximated so that
(∇h)∗ = −divh.
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