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Introduction. The topological structure of certain subsets of operator alge-
bras has been studied since the beginning of spectral theory. However, the view-
point of differential geometry has only recently been adopted. Several papers,
most of them included in the references, have appeared in the last years which
describe geometrical invariants of certain sets of operators: projections, selfad-
joint invertible operators, positive invertible operators, relatively regular opera-
tors, and so on. More generally, one can study the geometry of sets of spectral
measures, C∗-algebra and group representations, completely bounded maps be-
tween C∗-algebras, and so on. It turns out that some deep results, e.g. Haagerup’s
theorem on the similarity orbit of cyclic representations [32], find a natural setting
in this geometrical viewpoint (see [3]).

This paper surveys the results discussed in those works. We omit most proofs
but we present some simplifications of the original presentations. There is a rather
complete panorama of the work of E. Andruchow, A. Maestripieri, H. Porta,
L. Recht, D. Stojanoff and the author, but we also discuss contributions by
C. J. Atkin, B. Gramsch, K. Lorentz, M. Martin, S. Semmes and D. R. Wilkins.
Warning: even when we study differential geometry of certain subsets of non-
commutative C∗-algebras, this paper contains no results on Connes’ non-com-
mutative differential geometry.
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The contents of the paper are as follows: the first section describes the ge-
ometry of the space Gs of selfadjoint invertible elements of a C∗-algebra; the
second section contains a more precise description of the set G+ of positive in-
vertible elements of Gs, which is the connected component of the identity in
Gs; an interesting fact is that some well known operator inequalities (one of
them is known as Segal’s inequality) are equivalent to geometric properties of
G+; the third section discusses the curvature tensor of Gs; in Section 4, we re-
late the geometry of G+ to the operator means theory, due to Anderson, Trapp,
Pusz, Woronowicz, Kubo and Ando, among others; in Section 5 a brief descrip-
tion of the geometry of the space of projections of a C∗-algebra is given; in
Section 6 we show that the geometric study of G+ is closely related to the
quadratic and complex interpolation methods; finally, Section 7 contains a brief
survey on several spaces of operators which also have a rich geometrical struc-
ture.

Acknowledgements. We thank Prof. G. K. Pedersen for his permission to
include his proof of Proposition 1.5. We are also grateful to Prof. J. Zemánek who
has communicated to us several bibliographical comments.

Notations. In this paper A denotes a C∗-algebra with unit, G is the group of
invertible elements of A, U is the group of unitary elements and G+ is the set of
positive elements of G. For a differentiable map f : X → Y and a point x of X,
(Tf)x is the tangent map of f at x which maps the tangent space (TX)x into the
tangent space (TY )f(x). Because every manifold considered here is a submanifold
of some Banach space, one can realize a tangent vector as the velocity vector of
a differentiable curve in the manifold. In any case, tangent spaces are identified
with subspaces of the corresponding Banach space. For all geometric notions we
follow the book of Kobayashi and Nomizu [35].

1. The geometry of the set of selfadjoint invertible elements. Let
Gs = Gs(A) be the set of all selfadjoint invertible elements of a unital C∗-algebra
A and consider the action of G on Gs defined by

Lga = g.a = gag∗ (g ∈ G, a ∈ Gs) .

For a fixed a ∈ Gs, the orbit

Gs,a = {gag∗ : g ∈ G}

is open and closed in Gs and the map g 7→ gag∗ defines a principal fiber bundle
over Gs,a with structure group Ua = {u ∈ G : u−1 = a−1u∗a}. A smooth local
section near a can be defined by means of b 7→ (ba−1)1/2, where x1/2 is the usual
square root defined by the power series

∞∑
n=1

(
1/2
n

)
xn.
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Gs has a natural structure as a real-analytic submanifold of A. Since Gs is an
open subset of As = {x ∈ A : x∗ = x}, (TGs)a can be identified with As itself,
for every a ∈ Gs.

In the sequel we shall consider the submanifold P of Gs defined by

P = {% ∈ A : %∗ = % = %−1}.

Observe that, for each % ∈ P ,

(TP )% = {X ∈ As : %X = −X%}.

If we consider the restriction to P of the tangent bundle TGs, TP is a subbundle
of TGs|P with a natural complement N given by N% = {X ∈ As : %X = X%}.
We shall pursue this issue below.

Given a differentiable curve γ : [u, v] → Gs,a, the fibration properties of π :
G → Gs,a show that there exist curves Γ : [u, v] → G such that π(Γ (t)) = γ(t)
(t ∈ [u, v]) (see [49] and [35]). A particular choice of such a Γ can be made by
solving the differential problem {

Γ̇ = 1
2 γ̇γ

−1Γ ,
Γ (u) = 1.

In fact, differentiating Γ−1γΓ ∗−1 gives

(Γ−1γΓ ∗−1)· = −Γ−1Γ̇ Γ−1γΓ ∗−1 + Γ−1γ̇Γ ∗−1 − Γ−1γΓ ∗−1Γ̇ ∗Γ ∗−1

= −Γ−1( 1
2 γ̇γ

−1γ − γ̇ + 1
2γγ

−1γ̇)Γ ∗−1 = 0

so that Γ−1γΓ ∗−1 ≡ (Γ−1γΓ ∗−1)(u) = a.

We shall see that Γ has a very precise geometrical meaning.
The differential equation appears naturally. In fact, given a partition Π of

the interval [u, t] one gets, using the local section mentioned above, an invertible
element g = gΠ such that g · γ(u) = γ(t). It turns out that the limit Γ (t) =
lim‖Π‖→0 gΠ exists, Γ (t) is invertible and the curve Γ is differentiable and satisfies
Γ̇ = 1

2 γ̇γ
−1Γ (see [16] for details).

There is a natural connection on the principal bundle πa : G→ Gs,a. In fact,
the Lie algebra of the group Ua = {u ∈ G : u−1 = a−1u∗a} is Ua = {X ∈ A :
a−1X∗a = −X}, which decomposes A = TG1 as

A = Ua ⊕ Sa ,

where Sa = {X ∈ A : a−1X∗a = X}. Then, if we identify A with the tangent
space of G at 1, (TG)1, the map g 7→ Hg = {gX : X ∈ Sa} defines a C∞

distribution of horizontal spaces for a connection on π : G → Gs,a: for this (see
[35]) it suffices to check that Hgu = Hgu for all u ∈ Ua and g ∈ G, which is
equivalent to proving that uSau−1 ⊂ Sa for all u ∈ Ua and this inclusion is easily
verified.

For every C1 curve γ : [0, 1] → Gs,a with origin a there is a unique curve Γ
in G such that Γ (t)aΓ (t)∗ = γ(t), Γ (0) = 1 and Γ̇ (t) ∈ HΓ (t) (this is called the
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horizontal lift of γ with origin 1). It turns out that Γ is precisely the solution of
the differential equation discussed above (see [16], 2.3).

If X is a tangent field along a curve γ in Gs,a, the covariant derivative of X
is

DX

dt
= Ẋ − 1

2
(Xγ−1γ̇ + γ̇γ−1X) .

This definition comes from the computation of the derivative of the tangent map
of LΓ−1(t) at the point γ(t) applied to X(t):

DX

dt

∣∣∣∣
t=t0

=
d

dt

∣∣∣∣
t=t0

(TLΓ−1(t))γ(t)X(t) ,

where Γ is the solution of Γ̇ = − 1
2γ
−1γ̇Γ with Γ (t0) = 1.

Recall that a field X is parallel if DX/dt = 0, and a curve γ is a geodesic if γ̇
is parallel, i.e. if γ satisfies

γ̈ = γ̇γ−1γ̇ .

The connection on the tangent bundle is G-invariant, in the sense that γ is
a geodesic if and only if gγg∗ is a geodesic for all g ∈ G. The unique geodesic γ
such that γ(0) = a and γ̇(0) = X ∈ (TGs)a is easily seen to be

γ(t) = e(t/2)Xa
−1
.a = e(t/2)Xa

−1
ae(t/2)a

−1X = etXa
−1
a = aeta

−1X

(recall that gezg−1 = egzg
−1

).
We do not know under what conditions Gs,a is geodesically complete. We shall

show, however, a large family of geodesically complete submanifolds of Gs.
The curvature tensor of TGs is given by

R(X,Y )Z = 1
4 (Z[a−1X, a−1Y ]− [Xa−1, Y a−1]Z)

where X,Y, Z ∈ (TGs)a and [V,W ] = VW −WV . We shall determine later some
spectral properties of R.

Given an invertible operator T on a Hilbert space H there exist the so-called
polar decompositions of T :

T = V P = P ′V ′

where V, V ′ are unitary and P, P ′ are positive operators; moreover, P is the
(unique) positive square root of T ∗T , P ′ is the square root of TT ∗ and V = V ′ =
T (T ∗T )−1/2 = (TT ∗)−1/2T . Observe that because V and P depend analytically
on T , they belong to the closed C∗-subalgebra generated by I and T . It follows
that, given a C∗-algebra A we can consider the analytic map π : G→ U defined
by π(g) = u if g = λu, λ ∈ G+, u ∈ U .

Observe that π(a)∗ = π(a) = π(a)−1 if a ∈ Gs: in fact, if a = λ%, λ ∈ G+,
% ∈ U then a = a∗ = %−1λ, but by the unicity argument discussed above, %−1 = %
and, in consequence, λ% = %λ. In particular, π(a) ∈ P if a ∈ Gs. Thus, we get the
map

π : Gs → P, π(λ%) = % .
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We shall study more carefully the fibers Gs
% = π−1(%).

Observe that, if %′ = {X ∈ A : X% = %X}, then

Gs
% = {λ% : λ% = %λ, λ > 0} = G+(%′)% .

Thus, in order to know the geometry of the fibers Gs
% it suffices to know the

geometry of G+(B) for any unital C∗-algebra B.
Observe that the group G(%′) = {g ∈ G : g% = %g} acts transitively on Gs

% :
in fact, if λ% = %λ and µ% = %µ with λ, µ ∈ G+ then g = µ1/2λ−1/2 belongs to
G(%′) and gλ%g∗ = µ%.

A Finsler structure can be defined onGs as follows: if a ∈ Gs andX ∈ (TGs)a,
the decomposition a = λ% provides a norm ‖ ‖a in (TGs)a by means of

‖X‖a = ‖λ−1/2Xλ−1/2‖ .
In particular, ‖X‖% = ‖X‖ if % ∈ P .

The meaning of this definition is the following. If A is represented in a Hilbert
spaceH, ‖X‖a is the norm of the symmetric sesquilinear form BX : Ha×Ha → C,
BX(ξ, η) = 〈Xξ, η〉 where Ha is the space H with the scalar product 〈ξ, η〉a =
〈λξ, η〉. Observe that if g commutes with % then the polar decomposition of gag∗,
where a = λ%, is (gλg∗)%. Then g : Hgag∗ → Ha is an isometry. This implies that
G(%′) acts isometrically on Gs

% , i.e. for every X ∈ (TGs)a and g ∈ G(%′) it follows
that

(1.1) ‖gXg∗‖gag∗ = ‖X‖a .
In fact, ‖gXg∗‖gag∗ is the norm of BgXg∗ : Hgag∗ × Hgag∗ → C and, because
g : Hgag∗ → Ha is an isometry, ‖BgXg∗‖ = ‖BX‖, which proves the assertion.

Observe that if a ∈ G+ then % = 1 so that %′ = A. Thus, if a ∈ G+ then
(1.1) holds for every X ∈ As and g ∈ G. In particular, G acts isometrically and
transitively on G+.

The next result contains a complete description of the geometry of the
fibers Gs

% .

Theorem 1.2. For every % ∈ P let N% = {X ∈ (TGs)% : X% = %X}. Then

(i) N = {(%,X) : X ∈ N%} is a subbundle of TGs|P such that TGs|P =
TP ⊕N .

(ii) The restriction to N of the exponential map

expaX = e(1/2)aXae(1/2)Xa (a ∈ Gs, X ∈ (TGs)a)

is a diffeomorphism θ : N → Gs such that θ(N%) = Gs
% = π−1(%) and θ−1(λ%) =

(%, % log λ).
(iii) Any two points in Gs

% are joined by a unique geodesic entirely contained
in Gs

% ; this geodesic is the shortest curve in Gs joining them.

The proof of this theorem and the main part of the results on Gs described
in this section are contained in the paper [16]. We shall indicate, however, a
short proof of (iii), the non-standard part of the theorem, in the next section.
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It is interesting to notice that the fact that the geodesics in Gs
% are short curves

strongly depends on the following contractive property of π: the tangent map of
π : Gs → P decreases norms, i.e.

(1.3) ‖(Tπ)aX‖ ≤ ‖X‖a
for all a ∈ Gs and X ∈ (TGs)a. The inequality (1.3) is equivalent to

(1.4) ‖STS−1 + S−1TS‖ ≥ 2‖T‖ ,
for any selfadjoint operator S and any bounded operator T . The original proof of
this inequality, published in [17], reduces to the finite-dimensional case, where a
Schur product result due to Davis [23] and Walter [51], together with an elemen-
tary equality for determinants from Pólya and Szegö [43], do the job.

More recently G. K. Pedersen proved the following result, which generalizes
the inequality and has a shorter proof.

Proposition 1.5. For every bounded operator S, T on a Hilbert space H with
S invertible,

‖STS−1 + (S∗)−1TS∗‖ ≥ 2‖T‖ .
P r o o f. First, suppose that T ∗ = T . Recall that Re(A) = 1

2 (A+ A∗). Then,
if r(T ) = sup{|λ| : λ ∈ σ(T )}, we have

‖T‖ = r(T ) = r(STS−1) ≤ sup
|ξ|≤1

|Re〈STS−1ξ, ξ〉| = sup
|ξ|≤1

|〈Re(STS−1)ξ, ξ〉|

= ‖Re(STS−1)‖ = 1
2‖STS−1 + S∗−1TS∗‖ .

In the general case, put

S̃ =
(
S 0
0 S

)
and T̃ =

(
0 T ∗

T 0

)
on H⊕H and A = STS−1 + S∗−1TS∗ on H. Then

S̃T̃ S̃−1 + S̃∗−1T̃ S̃∗ =
(

0 A∗

A 0

)
and the result follows from the first case.

Added in proof. In [26], the authors prove that inequality (1.4) is equivalent to the fol-
lowing:

‖STR−1 + S−1TR‖ ≥ 2‖T‖
for every selfadjoint invertible S and R. Indeed, by combining this fact with the proof of 1.5, it
can easily be seen that the inequalities are also equivalent to

‖STR + S∗−1TR∗−1‖ ≥ 2‖T‖

for any invertible operators S and R.

2. The geometry of the positive invertible elements. We now consider
the set G+. There are, at least, two natural ways of thinking of G+ with respect
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to Gs: 1) as the connected component of the identity; 2) as the fiber π−1(1). The
first way allows us to study the fiber bundles

G→ G+, g 7→ gag∗

(for any a ∈ G+). Thus we can lift any differentiable curve γ in G+ by means of
the differential equation

Γ̇ = 1
2 γ̇γ

−1Γ.

The second way gives us some geometric information on G+. Observe that G+ is
an open convex subset of As, but the geometry we have introduced above is quite
different from that induced by As. For this, we first determine the geodesics of
G+. Given a, b in G+ the (unique) geodesic γ such that γ(0) = a and γ(1) = b is
γ(t) = a1/2(a−1/2ba1/2)ta1/2: indeed, γ satisfies γ̈ = γ̇γ−1γ̇ and it has the right
values at 0 and at 1. If we want to present γ in the form etXa

−1
a, it suffices to

take X = a1/2 log(a−1/2ba1/2)a−1/2.
The geodesic distance between a and b is, by definition, the number

d(a, b) = inf{length γ : γ is a C1 curve that γ(0) = a and γ(1) = b} ;

by Theorem 1.1, d(a, b) is exactly the length of

γ(t) = a1/2(a−1/2ba−1/2)ta1/2 .

Now, length γ =
∫ 1

0
‖γ̇(t)‖γ(t) dt = ‖log(a−1/2ba−1/2)‖; the last equality is proved

in the next lines (see [19], Proposition 2 for a discussion of the last formula).
Now we can determine the geodesics in the fibers Gs

% ⊂ Gs. Given a, b
in π−1(%), we write their polar decompositions a = λ%, b = µ% and observe
that λ = |a| = (a2)1/2 and µ = |b| = (b2)1/2 commute with %. Then γ(t) =
λ1/2(λ−1/2µλ−1/2)tλ1/2% is a geodesic entirely contained in Gs

% which satisfies
γ(0) = a, γ(1) = b so that d(a, b) = length γ =

∫ 1

0
‖γ̇(t)‖γ(t) dt. In order to cal-

culate the integral, let us abbreviate ν = λ−1/2µλ−1/2. Then γ(t) = λ1/2νtλ1/2%,
γ̇(t) = λ1/2(log ν)νtλ1/2% and

‖γ̇(t)‖γ(t) = ‖λ1/2(log ν)νtλ1/2‖λ1/2νtλ1/2 = ‖(log ν)νt‖νt

= ‖νt/2(log ν)νt/2‖νt = ‖log ν‖ .
(We have repeatedly used the fact that G acts isometrically on G+.)

This shows that

(2.1) dGs(a, b) = dG+(|a|, |b|) = ‖log(λ−1/2µλ−1/2)‖ .
Let us discuss more carefully some properties of G+.
Let a ∈ G+ and consider the exponential map expa : (TG+)a → G+ defined

by

expa(X) = eXa
−1
· a = e(1/2)Xa

−1
ae(1/2)a

−1X = a1/2ea
−1/2Xa−1/2

a1/2 .

It is easy to see that expa is a diffeomorphism whose inverse loga is given by

loga : G+ → (TG+)a, loga b = a1/2 log(a−1/2ba−1/2)a1/2 .
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These maps lead us to compare the distances in (TG+)a with the distances in
G+, i.e. ‖X − Y ‖a with d(expaX, expa Y ) for any X,Y ∈ (TG+)a. It turns out
that

(2.2) d(expaX, expa Y ) ≥ ‖X − Y ‖a .
(This is a property that G+ shares with Riemannian manifolds of non-positive
curvature.) Observe that (2.2) shows that expa increases lengths of curves. An
interesting fact proved in [18] is that the inequality above is equivalent to the
operator inequality

‖eX+Y ‖ ≤ ‖eX/2eY eX/2‖
(valid for all selfadjoint operatorsX, Y on a Hilbert space), which has been proven
by I. Segal in [46] using the fact that, for positive operators, taking the positive
square root is a monotone operation: 0 ≤ A ≤ B implies A1/2 ≤ B1/2. Segal’s
proof holds for not necessarily bounded operators but in our context bounded
operators suffice.

There is a beautiful theory which studies the so-called Pick functions: these
are real functions f : [a, b] → R which admit an analytic continuation f̃ to the
upper semiplane C+ such that f̃(C+) ⊂ C+. K. Löwner [38] (see also [24] for a
modern treatment of the subject) found an integral representation of them and
proved that they are exactly those functions which are operator-monotone, i.e.
f(A) ≤ f(B), for any selfadjoint bounded operators A ≤ B on a Hilbert space. In
particular, f(t) = ts (0 ≤ s ≤ 1) is operator-monotone. It turns out that this fact
implies the following property that G+ shares, again, with Riemannian manifolds
of non-positive curvature:

(2.3) d(expa(s exp−1
a (x)), expa(s exp−1

a (y))) ≤ sd(x, y)

for all s ∈ [0, 1], x, y ∈ G+ (see [19]).
In fact, the inequality can be written as

(2.4) ‖log(x−s/2ysx−s/2)‖ ≤ s‖log(x−1/2yx−1/2)‖ ,
which can be proved using the inequality ‖xsys‖ ≤ ‖xy‖s, valid for all s ∈ [0, 1]
and x, y ∈ G+ (see [30] for a proof that the last inequality is equivalent to Löwner’s
result that 0 ≤ x ≤ y implies xs ≤ ys; the reader is also referred to [29] and [26]
for more information on this type of inequalities).

We now show that Segal’s inequality can be deduced from the inequality

(2.5) d(xs, ys) ≤ sd(x, y), s ∈ [0, 1], x, y ∈ A+

(which is (2.3) for a = 1).
Abbreviating X = log x, Y = log y we get

x−s/2 = e−(s/2)X = 1− (s/2)X + o(s2) ,

ys = esY = 1 + sY + o(s2) ,

x−s/2ysx−s/2 = 1 + s(Y −X) + o(s2)
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and
log(x−s/2ysx−s/2) = s(Y −X) + o(s2) .

Then

lim
s→0

d(xs, ys)
s

= lim
s→0

‖log(x−s/2ysx−s/2)‖
s

= ‖X − Y ‖

so that ‖X − Y ‖ ≤ d(x, y), which is an equivalent form of Segal’s inequality.
Finally, we mention without proof another “non-positive curvature” property

of G+: given two geodesics γ and δ on G+, the function t 7→ d(γ(t), δ(t)) is convex
[20] (see also [47] and [48]).

3. On the curvature tensor. Recall that, for a∈G+ and X,Y, Z∈(TG+)a,
the curvature tensor is given by

R(X,Y )Z = 1
4 (Z[a−1X, a−1Y ]− [Xa−1, Y a−1]Z) .

We can easily determine the spectrum σ(R(X,Y )) in the algebra L(A). In
fact, by a known result of Lumer and Rosenblum [39],

σ(R(X,Y )) = σ([a−1X, a−1Y ])− σ([Xa−1, Y a−1]) .

Now,
a[a−1X, a−1Y ]a−1 = [Xa−1, Y a−1] ,

so that
σ(R(X,Y )) = σ([a−1X, a−1Y ])− σ([a−1X, a−1Y ]) .

Consider a faithful representation of A on the Hilbert space H and consider
on H the scalar product 〈 , 〉a defined by

〈ξ, η〉a = 〈aξ, η〉 (ξ, η ∈ H) .

Then a−1X is a-selfadjoint (in the sense that 〈a−1Xξ, η〉a = 〈ξ, a−1Xη〉a);
analogously, a−1Y is a-selfadjoint.

As a consequence, [a−1X, a−1Y ] is a-skewsymmetric as an operator over Ha.
In particular,

σ([a−1X, a−1Y ]) ⊂ iR .
(Observe that the spectrum depends neither on the representation nor on the
scalar product on H.) Finally, we get

σ(R(X,Y )) ⊂ iR .
Given Y = Y ∗ the transformer CY : X 7→ 4R(X,Y )Y can be written as

CY = −(LY a−1 −Ra−1Y )2 ,

where LZ (resp. RZ) denotes left (resp. right) multiplication by Z. Then σ(CY )=
−σ(LY a−1 − Ra−1Y )2. Now, σ(LY a−1) = σ(Y a−1) = σ(a−1/2Y a−1/2) ⊂ R (see,
for instance, [22]) and, analogously, σ(Ra−1Y ) ⊂ R. Because LY a−1 commutes
with Ra−1Y , we get

σ(LY a−1 −Ra−1Y ) ⊂ σ(LY a−1)− σ(Ra−1Y ) ⊂ R .
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In general, we obtain:

Proposition. If Y ∗ = Y , then σ(CY ) ≤ 0. If Y ∗ = −Y , then σ(CY ) ≥ 0.

4. Operator means. An operator mean is a binary operation m defined on
G+ (or, more generally, on the closure of G+) which satisfies

(i) m(1, 1) = 1,
(ii) m(a, b) ≤ m(c, d) if a ≤ c and b ≤ d,

(iii) cm(a, b)c ≤ m(cac, cbc),
(iv) if an ↓ a and bn ↓ b then m(an, bn) ↓ m(a, b).

The first non-trivial examples of these operations were, historically, the paral-
lel sum m(a, b) = 2(a−1 + b−1)−1 (see [1]) and the geometric mean m(a, b) =
a1/2(a−1/2ba−1/2)ta1/2 (see [45]). By a result of Ando and Kubo [36], there
is a bijective correspondence between operator means and operator-monotone
functions f : R+ → R+, given by m 7→ fm, fm(t) = m(1, t) and f 7→ mf ,
mf (a, b)=a1/2f(a−1/2ba−1/2)a1/2. Thus, the geodesic γ of G+ joining a to b can
be thought of as a parametrization between the left trivial mean ml(a, b) = a
and the right trivial mean mr(a, b) = b, the middle point corresponding to the
geometrical mean of Pusz and Woronowicz. The velocity vector

γ̇(0) = a1/2 log(a−1/2ba−1/2)a1/2

coincides with the so-called relative entropy s(a, b) [28]. Observe that s(a, b) =
exp−1

a (b) (see Section 2). Segal’s inequality shows that

‖log a− log b‖ ≤ ‖log(a−1/2ba−1/2)‖ = ‖a−1/2s(a, b)a−1/2‖ ≤ ‖a−1‖‖s(a, b)‖ .

5. The geometry of the projections. Let Q be the set of all idempotent
elements of A. Q has a rich topological and geometrical structure which has
been studied in [53], [25], [50], [41], [13], [14], [52] (see also [34] for a semigroup
approach). We shall identify Q with the set

{ε ∈ A : ε2 = 1}
by means of the affine transformation x 7→ 2x − 1. With this identification in
mind one can easily prove that Q is an analytic submanifold of A and that

(TQ)ε = {X ∈ A : Xε+ εX = 0}.
We can consider the polar decompositions of ε∈Q: ε = λ2%, ε = %µ2, where λ, µ
are positive and % is unitary (recall that the unitary part % is the same for both
decompositions). It is easy to see that %∈P = {x∈G : x∗ = x = x−1} and that
λ% = %λ−1. Thus, as in the case of Gs, we get a map π : Q → P whose fibers
can be studied from a geometric viewpoint with rather complete results. In fact,
define a Finsler structure on Q as follows: if ε ∈ Q and X ∈ (TQ)ε, we decompose
ε = λ2% and define

‖X‖ε = ‖λXλ−1‖ .
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It turns out that the fibers Q% = π−1(%) are geodesically complete: if ε0 and ε1
belong to Q%, they have polar decompositions of the form ε0 = λ0%, ε1 = λ1%
with λ0, λ1 ∈ G+, and λ0% = %λ−1

0 and λ1% = %λ−1
1 ; then the curve γ(t) =

λ
1/2
0 (λ−1/2

0 λ1λ
−1/2
0 )tλ0% is a geodesic lying in Q% and joining ε0 and ε1. For

ε, ε′ ∈ Q% the geodesic from ε to ε′ is the shortest curve in Q joining them and it
lies entirely in Q% (see [14]; see also (5.4) for a remark leading to a simplification
of the proof). As in the case of the selfadjoint invertible elements, the last result
depends on a certain operator inequality. In fact, we need to prove that

(Tπ)ε : (TQ)ε → (TP )%
decreases norms:

(5.1) ‖(Tπ)εX‖ ≤ ‖X‖ε
for all ε ∈ Q, X ∈ (TQ)ε.

The original proof of (5.1) was quite complicated (see [15]) but A. Maestripieri
[40] showed that (5.1) follows easily from (1.4). By a straightforward computation,
inequality (5.1) can be transformed into

(5.2) ‖STS + S−1TS−1‖ ≥ 2‖T‖
for every T and a certain selfadjoint operator S. Using Pedersen’s proof of (1.5),
D. Stojanoff showed that (5.2) holds for every T and every selfadjoint invertible
S; moreover, he proved that (5.2) is equivalent to (1.4).

Proposition 5.3. Let S and T be bounded operators on a Hilbert space H and
suppose that S is invertible. Then

‖STS + S∗−1TS∗−1‖ ≥ 2‖T‖ .
P r o o f. Let

T1 =
(

0 T
T ∗ 0

)
and S1 =

(
S 0
0 S−1

)
.

Then

S1T1S
−1
1 + S∗−1

1 T1S
∗−1
1 =

(
0 A
A∗ 0

)
, where A = STS + S∗−1TS∗−1 .

Thus, ‖S1T1S
−1
1 + S∗−1

1 T1S
∗
1‖ = ‖STS + S∗−1TS∗−1‖; combining this with

(1.5) we get the result.

R e m a r k 5.4. As in the case of Gs, we can prove that

(5.5) dQ(ε0, ε1) = dG+(λ0, λ1) ,

where ε0 = λ0% and ε1 = λ1%. The metric results on G+ produce, as before,
analogous results on the fiber Q%; in particular, the geodesic

γ(t) = λ
1/2
0 (λ−1/2

0 λ1λ
−1/2
0 )tλ1/2

0

is the shortest curve joining ε0 and ε1.
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6. Quadratic interpolation and geometry. (This section follows closely
the paper [2].) Let H be a Hilbert space with scalar product 〈 , 〉. For every
positive invertible operator a on H the scalar product 〈 , 〉a defined by

〈ξ, η〉a = 〈aξ, η〉 (ξ, η ∈ H)

is equivalent to 〈 , 〉; moreover, by the Riesz representation theorem, every equiv-
alent scalar product is one of these 〈 , 〉a.

Together with the scalar product 〈 , 〉a we consider the norm ‖ ‖a on H given
by ‖ξ‖a = 〈ξ, ξ〉1/2a (ξ ∈ H); the corresponding norm on L(Na) is given by

‖X‖a = sup
‖ξ‖a≤1

‖Xξ‖a = ‖a1/2Xa−1/2‖ .

(Observe that this norm is different from that defining the Finsler structure in
Section 1, where ‖X‖a is the norm of the sesquilinear form on Ha defined by X.)

We can consider the Banach–Mazur distance between two quadratic norms
‖ ‖a, ‖ ‖b on H:

d(‖ ‖a, ‖ ‖b) = max
{

log sup
ξ 6=0

‖ξ‖a
‖ξ‖b

, log sup
ξ 6=0

‖ξ‖b
‖ξ‖a

}
.

Surprisingly, this number is closely related to the geodesic distance d(a, b).

Proposition 6.1. For every a, b in G+,

2d(‖ ‖a, ‖ ‖b) = dG+(a, b) .

P r o o f. First, observe that

log sup
ξ 6=0

‖ξ‖a
‖ξ‖b

= log sup
ξ 6=0

‖a1/2ξ‖
‖b1/2ξ‖

= log sup
ξ 6=0

‖a1/2b−1/2ξ‖
‖ξ‖

= log ‖a1/2b−1/2‖ ;

analogously log supξ 6=0 ‖ξ‖b/‖ξ‖a = log ‖b1/2a−1/2‖.
On the other hand, ‖log c‖ = max{log ‖c‖, log ‖c−1‖} for all c ∈ G+ and

‖a−1/2ba−1/2‖ = ‖b1/2a−1/2‖2 for all a, b ∈ G+. Thus,

dG+(a, b) = ‖log(a−1/2ba−1/2)‖ = max{log ‖a−1/2ba−1/2‖, log ‖a1/2b−1a1/2‖}
= 2 max{log ‖a−1/2b1/2‖, log ‖a1/2b−1/2‖} = 2d(‖ ‖a, ‖ ‖b) .

Given norms ‖ ‖a and ‖ ‖b, every interpolation method provides a curve
of norms ‖ ‖γ(t) (0 ≤ t ≤ 1) with some continuity properties and such that
γ(0) = a and γ(1) = b. It turns out that the so-called real and complex methods
both produce the same curve of norms ‖ ‖γ(t), where γ is exactly the geodesic
from a to b, γ(t) = a1/2(a−1/2ba−1/2)ta1/2. There is a nice proof by Semmes
([47], [48], [12]) of the convexity of the function f(t) = d(‖ ‖γ(t), ‖ ‖δ(t)), which
is essentially different from that of [20]. Unfortunately, Semmes’ methods are
only valid for finite-dimensional spaces: using the notion of superharmonicity and
subharmonicity of norm-valued functions z 7→ ‖ ‖z, he shows that the distance
d(| |z, ‖ ‖z) is subharmonic, which means, when z is restricted to the real line,
that d(| |z, ‖ ‖z) is convex.
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R e m a r k. The geodesics on the fibersGs
% can be thought of as an interpolation

method of Krein structures (see [2] for details).

7. Other spaces. Although the main results described in this paper are
concerned with the spaces Gs and Q, there are several other spaces having a
geometrical structure which have been extensively studied. Historically, the first
systematic account of Banach–Lie groups of operators has been given by Pierre
de la Harpe (see [33], which also contains a complete bibliography up to 1972).
Later on, the papers of Atkin developed a study of Finsler structures on classical
groups [9], [10].

In [13] there is a geometric study of the space Qn of n-tuples (q1, . . . , qn)
of idempotents of A such that qiqj = δijqi and

∑n
i=0 qi = 1. This space can

be identified with the set of solutions of the equation p(X) = 0, where p is a
complex polynomial of degree n with only simple zeros. The space Qn can be
seen in a number of ways. For instance, Martin [42] considers Qn as the space of
representations of Zn in A; he studies the geometry of the space of representations
of a compact group on a C∗-algebra A; on the other hand, Andruchow, Recht
and Stojanoff [5] study the space of spectral measures of a Boolean algebra on
A. Under their viewpoint, Qn can be seen as the set of spectral measures of
the Boolean algebra generated by n atoms with values in A. Other papers by
Andruchow and Stojanoff (see [6]–[8]) study the geometry of orbits of operators
under the action of the whole group G or under the action of the unitary group U
(see also Lorentz’ paper [37]). The study of the geometry of the space of relatively
regular operators has been initiated by B. Gramsch [31] and continued in [21].
Finally, we mention the work of A. Maestripieri [40], who extended the results of
[14] and [16] in the following sense: instead of considering the spaces {ε : ε2 = 1}
and {a ∈ G : a∗ = a} she studies the spaces {ε : ε2 = σ} and {a ∈ G : a∗a−1 = σ},
where σ is an arbitrary element of G. The results in this context are similar to
those obtained in [14] and [16] for the case σ = 1. The study of metric results for
the spaces mentioned in this section remains an open problem: apparently, the
main point seems to be to find the right Finsler structure.
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