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Departamento de Análisis Matemático, Universidad de La Laguna
38271 La Laguna (Tenerife), Spain

Abstract. Several concepts of incomparability of Banach spaces have been considered in
the literature, which allow one to describe some of the properties of the product of two Banach
spaces as a juxtaposition of the corresponding properties of the factors. In this paper we study
the relations between these concepts of incomparability, survey the main results and applications,
and state some open problems.

Introduction. One topic in which the concepts and results of the theory of
Fredholm operators have been fruitfully applied in Banach space theory is the
study of incomparability relations for Banach spaces. In [40], Rosenthal says that
two Banach spaces X and Y are totally incomparable if no infinite-dimensional
(closed) subspace of X is isomorphic to a subspace of Y . Previously, Gurarĭı [21]
called such a pair of spaces essentially nonisomorphic. Rosenthal gave a charac-
terization of this concept that has been useful in many situations [2], [22], [24],
[41]. Edelstein and Wojtaszczyk [13] proved that given two totally incomparable
Banach spaces X and Y , any complemented subspace of the direct sum X ⊕Y is
isomorphic to the product of a complemented subspace of X and a complemented
subspace of Y . Later, Wojtaszczyk [44] extended the result to the case where all
operators from X into Y are strictly singular. These results were included in [28,
2.c]. Later on, other concepts of incomparability were introduced and applied.
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In this paper we survey the main concepts of incomparability of Banach spaces
and their applications. In the first section we give the definitions of the incompa-
rability concepts and show the relations between them. We distinguish two types
of incomparability: structural incomparability and operational incomparability.
We emphasize the importance of essential incomparability because it admits an
operational definition and some structural characterizations, and it is one of the
widest incomparability concepts.

In the second section we summarize the applications that incomparability have
found in several topics of the theory of Banach spaces: complemented subspaces,
unconditional bases of finite products, structure of tensor products, spaces whose
group of invertible operators is not connected, construction of space ideals with
the three-space property, and description of classes of operators defined in terms
of operational quantities.

Notations. The letters X and Y will denote real or complex Banach spaces;
by a subspace we shall always mean a closed subspace. Also, L(X,Y ) will be
the space of all (linear continuous) operators from X into Y . An operator will
be called an injection if it is one-to-one and has closed range (i.e., if it is an
isomorphism into), and it will be called a surjection if it is surjective. We will
denote by JM the canonical injection of a subspace M of X into X, and by QM
the quotient map from X onto X/M .

1. Incomparability concepts. In this section we define several notions of
incomparability. We distinguish two types: structural incomparability, defined in
terms of the structure of the spaces, and operational incomparability, defined
using classes of operators. We give the relations between the different concepts of
incomparability and study their duality properties.

Structural incomparability. Three concepts of structural incomparability are
considered: subspace incomparability, quotient incomparability and projection in-
comparability. The first one was introduced by Gurarĭı [21], in a paper published
in Russian, who uses the term essentially nonisomorphic spaces, and Rosenthal
[40], who uses the term totally incomparable spaces, but we prefer subspace in-
comparable spaces.

1.1. Definition [40]. The Banach spaces X and Y are said to be subspace
incomparable if there is no infinite-dimensional subspace of X isomorphic to a
subspace of Y .

The following theorem gives a necessary and sufficient condition for two Ba-
nach spaces to be subspace incomparable. The necessary condition was obtained
earlier in [21].

1.2. Theorem [40, Theorem 2]. The Banach spaces X and Y are subspace
incomparable if and only if for any Banach space Z, and subspaces X0 and Y0 of
Z isomorphic to X and Y respectively , the sum X0 + Y0 is closed.
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This result has been applied in [2], [3], [22], [24] and [41] in order to show that
certain sums of subspaces are closed.

1.3. R e m a r k. In 1973, Diestel and Lohman [9, Theorem 4] extended Defini-
tion 1.1 to Hausdorff locally convex spaces, and proved that the direct implication
in Theorem 1.2 is valid in this situation. In the same year, Lohman [30] gave an
example of a nonmetrizable Hausdorff locally convex space Z such that Z =
X+Y , X∩Y = {0}, with X and Y Banach spaces. Drewnowski [12, Theorem 4.1]
proved a similar result for Fréchet spaces; in the same direction, see the paper of
Kalton [23].

In 1986, Dı́az [8] uses the fact that the Banach sequence spaces `p and `q are
subspace incomparable for p 6= q to show an example of a Fréchet non-Montel
space without infinite-dimensional normable subspaces.

A dual incomparability concept was introduced in [18], using quotients instead
of subspaces in Definition 1.1. In that paper the term totally coincomparable is
used, but we prefer quotient incomparable.

1.4. Definition [18, Definition]. The Banach spaces X and Y are said to be
quotient incomparable if there is no infinite-dimensional quotient of X isomorphic
to a quotient of Y .

In [18], a simpler proof of Theorem 1.2 and an analogous result for quotient
incomparable spaces are given.

1.5. Theorem [18, Theorem]. The Banach spaces X and Y are quotient in-
comparable if and only if for any Banach space Z, and subspaces X0 and Y0 of
Z such that Z/X0 and Z/Y0 are isomorphic to X and Y respectively , the sum
X0 + Y0 is closed.

The above characterizations of subspace incomparable (Theorem 1.2) and quo-
tient incomparable (Theorem 1.5) Banach spaces should be compared with the
following general result of Rudin.

1.6. Theorem [42, Theorem 1.2]. Suppose Y and Z are subspaces of a Banach
space X, and suppose that there is a bounded subset Φ ⊂ L(X) of operators
mapping X into Y and Z into Z, and such that to every y ∈ Y and to every
ε > 0 there corresponds A ∈ Φ so that ‖y −Ay‖ < ε. Then Y + Z is closed.

Note that in every infinite-dimensional Banach space there exist closed sub-
spaces with intersection {0} and nonclosed sum [42, Proposition 4.8].

It is useful to introduce the following notion of projection incomparability,
which is analogous to Definitions 1.1 and 1.4, but uses complemented subspaces.

1.7.Definition. The Banach spacesX andY are said to be projection incom-
parable if there is no infinite-dimensional complemented subspace of X isomorphic
to a complemented subspace of Y .
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Obviously, the three above-defined concepts of structural incomparability are
symmetric; that is, X and Y are subspace (quotient, projection) incomparable
if and only if so are Y and X. We emphasize this, because later we will find
nonsymmetric incomparability concepts.

Operational incomparability. Now we give the definitions of some incompara-
bility concepts defined in terms of the classes of compact, strictly singular, strictly
cosingular and inessential operators.

Let Co(X,Y ) denote the class of all compact operators acting from X into
Y . Several authors, for example [39] and [45], have studied the structure of the
product of X and Y when any operator from X to Y is compact. In this way,
they have implicitly considered the following relation of incomparability.

1.8. Definition. We say that (X,Y ) ∈ Co when L(X,Y ) = Co(X,Y ).

We observe that the relation Co is not symmetric: it is well known that, for
1 ≤ r < p <∞, we have (`p, `r) ∈ Co, but (`r, `p) 6∈ Co (see [28, p. 76]). This is
the reason for using ordered pairs in the notation.

Now we define two relations similar to Co. Recall that the class SS(X,Y ) of
strictly singular operators from X to Y is defined [37, 1.9.2] by

SS(X,Y ) := {T ∈ L(X,Y ) : TJM injection⇒ dim(M) <∞} .

Similarly, the class SC(X,Y ) of strictly cosingular operators from X into Y
is defined [37, 1.10.2] by

SC(X,Y ) := {T ∈ L(X,Y ) : QUT surjection⇒ dim(Y/U) <∞} .

Strictly singular operators were introduced by Kato [25] in order to extend
some perturbation results to semi-Fredholm operators, and strictly cosingular
operators were introduced by Pe lczyński in [35] and [36] in the study of C(K)-
spaces and L1(µ)-spaces.

We have Co(X,Y ) ⊂ SS(X,Y )∩SC(X,Y ), but SS(X,Y ) and SC(X,Y ) are
not comparable [37, 1.11.9].

1.9. Definition. (1) We say that (X,Y ) ∈ SS when L(X,Y ) = SS(X,Y ).
(2) We say that (X,Y ) ∈ SC when L(X,Y ) = SC(X,Y ).

Recall that a Banach space X has the Dunford–Pettis property if any weakly
compact operator from X into a space Y is completely continuous; i.e., it takes
weakly convergent sequences into convergent sequences. Moreover, X has the
reciprocal Dunford–Pettis property if any completely continuous operator from
X into a space Y is weakly compact; and X has the Schur property if weakly
convergent sequences in X are convergent.

Examples of Banach spaces with the Dunford–Pettis property are the spaces
C(K) of continuous functions in a compact set K, and the spaces L1(µ) of inte-
grable functions. Moreover, C(K) and Banach spaces containing no copies of `1
have the reciprocal Dunford–Pettis property, and for any set Γ , the space `1(Γ )
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has the Schur property. We refer to [5] for other examples of Banach spaces with
these properties.

1.10. R e m a r k. The relations SS and SC are not symmetric. Since `∞ con-
tains a copy of `2, we have (`2, `∞) 6∈ SS. On the other hand, as `2 is reflexive, any
operator of L(`∞, `2) is weakly compact. Then, since `∞ has the Dunford–Pettis
property, every operator of L(`∞, `2) is completely continuous [37, 1.6.1]. If there
exists a non-strictly singular operator T ∈ L(`∞, `2), then we can find a subspace
M ⊂ `∞ isomorphic to `2 in which T is an isomorphism. Since the canonical basis
(en) of `2 is weakly null and T is completely continuous, (Ten) is norm null, a
contradiction.

Also, `1 has a quotient isomorphic to `2; hence (`1, `2) 6∈ SC. However, any
operator from `2 into `1 is compact; thus (`2, `1) ∈ SC.

Finally, we consider the essential incomparability, introduced in [15]. Recall
that T ∈ L(X,Y ) is said to be inessential [38] (see also [37, 4.3.5, 26.7.2]), denoted
by T ∈ In(X,Y ), if I−ST is a Fredholm operator for all S ∈ L(Y,X), where I is
the identity operator on X. This means that I−ST has finite-dimensional kernel
and closed finite-codimensional range. Note that the classes of compact, strictly
singular and strictly cosingular operators are contained in the class of inessential
operators [37, 26.7.3].

1.11. Definition [15, Definition 1]. The Banach spaces X and Y are said to
be essentially incomparable, denoted by (X,Y ) ∈ In, if L(X,Y ) = In(X,Y ).

1.12. Proposition [15, Proposition 1]. The relation In is symmetric:

(X,Y ) ∈ In⇔ (Y,X) ∈ In .

One of the remarkable features of essential incomparability is the abundance
of pairs of spaces satisfying this relation, as shown in the next result, where H∞

denotes the space of bounded analytic functions on the disc.

1.13. Theorem ([15, Theorem 1] and [1, Theorem 2.4]). The Banach spaces
X and Y are essentially incomparable in the following cases:

(1) X is reflexive and Y has the Dunford–Pettis property.
(2) X has the reciprocal Dunford–Pettis property and Y has the Schur property.
(3) X contains no copies of `∞ and Y = `∞, H∞ or C(K) with K σ-stonian.
(4) X contains no copies of c0 and Y = C(K).
(5) X contains no complemented copies of c0 and Y = C[0, 1].
(6) X contains no complemented copies of `1 and Y = L1(µ).
(7) X contains no complemented copies of `p, 1 < p < ∞, and Y = Lp[0, 1],

or `p.

Moreover, essential incomparability admits the following structural character-
izations:

1.14. Theorem [15, Theorem 2]. The following assertions are equivalent :
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(1) The Banach spaces X and Y are essentially incomparable.
(2) For any Banach space Z and complemented subspaces X0 and Y0 of Z,

isomorphic to X and Y respectively , X0 ∩ Y0 is finite-dimensional.
(3) For any Banach space Z and complemented subspaces X0 and Y0 of Z,

isomorphic to X and Y respectively , X0 + Y0 is complemented.
(4) For any Banach space Z and complemented subspaces X0 and Y0 of Z,

isomorphic to X and Y respectively , X0 + Y0 is closed.

Relations between the incomparability concepts. The above-defined seven con-
cepts of incomparability are related as we show in the following result, which can
be derived from the definitions and the inclusion relations between the classes of
operators implied.

1.15. Proposition. (1) If X and Y are subspace incomparable, then (X,Y ) ∈
SS and (Y,X) ∈ SS.

(2) If X and Y are quotient incomparable, then (X,Y ) ∈ SC and (Y,X) ∈
SC.

(3) If (X,Y ) ∈ Co, then (X,Y ) ∈ SS and (X,Y ) ∈ SC.
(4) If (X,Y ) ∈ SS or (X,Y ) ∈ SC, then X and Y are essentially incompa-

rable.
(5) If X and Y are essentially incomparable, then they are projection incom-

parable.

We summarize the above relations in the following diagram, where SI (QI, PI)
means subspace (quotient, projection) incomparable, and → means “implies”.

PI
↑
In

↗ ↖
SS SC
↗ ↖ ↗ ↖

SI Co QI

For the six concepts of incomparability SI, Co, QI, SS, SC and In there are
no additional implications to those showed in the above diagram, as shown by
the following examples.

1.16. Example. The sequence spaces `1 and `2 are subspace incomparable,
hence (`1, `2) ∈ SS . But (`1, `2) 6∈ SC, since `1 has a quotient isomorphic to `2;
hence (`1, `2) 6∈ Co also.

1.17. Example. The spaces c0 and `∞ are quotient incomparable [18], hence
(c0, `∞) ∈ SC. But (c0, `∞) 6∈ SS, since c0 is isomorphic to a subspace of `∞.
Hence they are not subspace incomparable and (c0, `∞) 6∈ Co.

1.18. Example. Since `1 is a separable Banach space, every operator of
L(`∞, `1) is weakly compact [28]. Moreover, `1 has the Schur property. Hence
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(`∞, `1) ∈ Co. However, `∞ contains a subspace isomorphic to `1, hence `∞ and
`1 are not subspace incomparable. Moreover, `2 is isomorphic to a quotient space
of `∞ [28, p. 111] and to a quotient space of `1; hence `1 and `∞ are not quotient
incomparable.

1.19. Example. The spaces `2(C[0, 1]) and L1[0, 1] are essentially incompara-
ble, since `2(C[0, 1]) contains no complemented copies of `1 (see [15, Theorem 1]).
However, `2 is isomorphic to a complemented subspace of `2(C[0, 1]) and to an
(uncomplemented) subspace of L1[0, 1]; thus the operator

T : `2(C[0, 1]) = `2 ⊕M → `2 ⊂ L1[0, 1] ,

defined by T (x + y) = x, x ∈ `2 and y ∈ M , is not strictly singular; hence
(`2(C[0, 1]), L1[0, 1]) 6∈ SS. Analogously, since `1 is isomorphic to an (uncomple-
mented) subspace of `2(C[0, 1]) and to a complemented subspace of L1[0, 1], we
have (L1[0, 1], `2(C[0, 1])) 6∈ SS. Moreover, `2(C[0, 1]) is isomorphic to a quotient
space of `1. Hence (L1[0, 1], `2(C[0, 1])) 6∈ SC.

It is not known, in the general case, if the converse of the remaining implication
is true.

1.20.Open problem [15]. Are the concepts of projection incomparability and
essential incomparability equivalent?

In [1] a partial answer to this problem is given, showing that the answer
is positive when one of the spaces has “enough” projections. In order to make
precise the result, recall that X is said to be subprojective if for each infinite-
dimensional subspace N of X there exists an infinite-dimensional subspace M ⊂
N which is complemented in X. Also, X is said to be superprojective if for any
infinite-codimensional subspace N of X, there exists an infinite-codimensional
subspace M ⊃ N which is complemented in X. The spaces `p are subprojective
and superprojective for 1 < p <∞, and the spaces Lp[0, 1] are subprojective for
2 < p < ∞ and superprojective for 1 < p < 2 [43]. For other examples we refer
to [1].

1.21. Theorem [1]. Assume X (or Y ) is subprojective or superprojective.
Then the following equivalence holds: X and Y are essentially incomparable if
and only if they are projection incomparable.

In the next result we collect the duality properties of the concepts of incom-
parability.

1.22. Theorem [15], [18]. (1) If X∗ and Y ∗ are subspace, quotient or projec-
tion incomparable, then X and Y are quotient , subspace or projection incompa-
rable, respectively.

(2) If (X∗, Y ∗) ∈ Co, SS, SC, In, then (Y,X) ∈ Co, SC, SS, In, respectively.

1.23. R e m a r k. The converse implications in the above result fail in a very
strong sense:
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Bourgain and Delbaen [6] constructed a hereditarily reflexive Banach space
Z whose dual Z∗ is isomorphic to `1. It is not difficult to see that c0 and Z
are subspace incomparable and (c0, Z) ∈ Co. However, the dual spaces are both
isomorphic to `1; hence (c∗0, Z

∗), (Z∗, c∗0) 6∈ In.
Also, as we have mentioned before, c0 and `∞ are quotient incomparable and

(c0, `∞) ∈ Co. However, c∗0 is isomorphic to a complemented subspace of `∗∞,
hence (c∗0, `

∗
∞), (`∗∞, c

∗
0) 6∈ In.

2. Applications to Banach space theory. Here we collect the main appli-
cations of the incomparability concepts introduced in the first section.

Complemented subspaces of a direct sum. The first application is the descrip-
tion of the complemented subspaces of a product of incomparable spaces.

2.1. Theorem [15, Theorem 2]. If X and Y are essentially incomparable, and
Z ⊂ X ⊕ Y is a complemented subspace, then Z is isomorphic to X0 ⊕ Y0, with
X0 and Y0 complemented subspaces of X and Y, respectively.

In 1976, Edelstein and Wojtaszczyk [13, Theorem 3.5] proved the above result
assuming X and Y to be totally incomparable, and in 1978 Wojtaszczyk [44,
Theorem 1.1] proved it under the weaker assumption (X,Y ) ∈ SS. Also Prada
[39, Theorem 3] proved this result in 1984 for X and Y Fréchet spaces such that
(X,Y ) ∈ Co.

2.2. Proposition [15, Lemma 1]. If P and Q are projections in a Banach
space X and PQ ∈ In (in particular , if the ranges R(P ) and R(Q) are essen-
tially incomparable), then R(P ) ∩ R(Q) is finite-dimensional , and R(P ) + R(Q)
is complemented in X.

This result was proved by Lavergne [27] for PQ strictly singular.
Other results about complemented subspaces of nonatomic Banach lattices

were proved by Casazza, Kalton and Tzafriri [7]. For the concepts of nonatomic
Banach lattice and type and cotype of a Banach space, we refer to the book of
Lindenstrauss and Tzafriri [29].

2.3. Theorem [7, Theorem 2.1]. Let Z be a nonatomic Banach lattice with
nontrivial cotype, and suppose Z ∼= X ⊕ Y , where X and Y are subspace incom-
parable. Then either X or Y is finite-dimensional.

2.4. Theorem [7, Theorem 2.2]. Let Z be a nonatomic Banach lattice with
nontrivial cotype, and suppose Z ∼= X ⊕ Y , with (X,Y ) ∈ SS. Then each of the
following conditions implies X is finite-dimensional :

(1) X contains no copies of `2.
(2) Z has nontrivial type and X contains no complemented copies of `2.
(3) Z has nontrivial type and Y has an infinite-dimensional complemented

subspace with an unconditional basis.
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Unconditional bases of a direct sum. Another application of incomparability is
the decomposition of an unconditional basis of the direct sum of two incomparable
Banach spaces into unconditional bases of the factors.

2.5. Theorem [44, Theorem 2.1]. If (X,Y ) ∈ Co, then every unconditional
basis of X ⊕ Y splits into two disjoint parts equivalent to (unconditional) bases
of X and Y, respectively.

In 1987, Casazza, Kalton and Tzafriri [7] gave another sufficient condition for
the result, and posed an open problem.

2.6. Theorem [7, Theorem 1.5]. If X and Y are subspace incomparable and
have each an unconditional basis, then every unconditional basis of X ⊕ Y splits
into two disjoint parts which are respectively equivalent to (unconditional) bases
of X and Y .

2.7.Open problem [7]. Assume (X,Y ) ∈ SS. Does every unconditional basis
of X ⊕ Y split into two disjoint parts equivalent to unconditional bases of X and
Y , respectively?

Structure of tensor products. The structure of the injective and surjective ten-
sor products of two Banach spaces, as well as the structure of spaces of operators,
is not well understood. Some results have been found describing the structure of
the product in terms of the structure of the factors, when the spaces satisfy a
suitable incomparability condition. As a sample, we give here a classical result
and a more recent one.

2.8. Theorem [10, Theorem VIII.4.4]. Assume X and Y are reflexive, and
one of them has the approximation property. Then L(X,Y ) is reflexive if and only
if (X,Y ) ∈ Co.

2.9. Theorem [14, Theorem 3]. Assume (X,Y ∗) ∈ Co. If X and Y contain
no copies of `1, then X ⊗π Y does not contain copies of `1.

Spaces whose group of invertible operators is not connected. Several authors
have studied the homotopy type of the group of invertible operators in some clas-
sical Banach spaces. For example, in 1965 Kuiper [26] proved the contractibility
of the group of invertible operators in a Hilbert space, and in 1967 Neubauer
[34] obtained the same result for the spaces `p, 1 < p < ∞, and c0. The first
example of a Banach space with disconnected group of invertible operators is
due to Douady [11], in 1965. The survey paper of Mityagin [33] gives additional
information up to 1970.

Using essentially incomparable spaces, it is possible to construct examples of
Banach spaces whose group of invertible operators is not connected. Note that a
hyperplane is a 1-codimensional (closed) subspace, and it was shown by Gowers
and Maurey [20], in 1992, that there exist infinite-dimensional Banach spaces not
isomorphic to their hyperplanes, solving a long standing open problem.
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2.10. Theorem [15, Theorem 3]. If X and Y are essentially incomparable, and
both isomorphic to their respective hyperplanes, then the group of all invertible
operators in X ⊕ Y is not connected.

Classes of incomparability. The concepts of subspace incomparability and quo-
tient incomparability have allowed giving procedures of construction of space ide-
als with the three-space property.

2.11.Definition [3, Definition 2.4]. For a nonempty classG of Banach spaces,
we define

(1) Gs := {X : ∀Y ∈ G,X and Y are subspace incomparable},
(2) Gq := {X : ∀Y ∈ G,X and Y are quotient incomparable}.

Simple properties of the classes Gs and Gq are the following:

G ⊂ Gss ∩Gqq, Gs = Gsss and Gq = Gqqq .

Moreover, Gs and Gq are well-behaved space ideals. Recall that a space ideal A
is a class of Banach spaces which includes the finite-dimensional Banach spaces,
and is stable under isomorphisms, finite products and complemented subspaces.
A space ideal A is injective if every subspace of X ∈ A belongs to A, it is surjective
if every quotient of X ∈ A belongs to A, and it has the three-space property when
given a subspace M of X such that M , X/M ∈ A, we have X ∈ A. We refer to
the book of Pietsch [37] for an account of the general theory of space ideals, and
to [19] for a survey about space ideals with the three-space property.

2.12. Theorem [3, Theorem 2.5]. If G is a nonempty class of Banach spaces,
then

(1) Gs is a three-space injective ideal ,
(2) Gq is a three-space surjective ideal.

In this way, we have a procedure that applied, for example, to the class R of
all reflexive Banach spaces, gives four space ideals with the three-space property:
Rs (spaces with no reflexive subspaces), Rss (somewhat reflexive spaces), Rq and
Rqq.

A family of concrete examples obtained by means of this procedure can be
shown, using the concepts of minimal and cominimal space. Recall that a Banach
space X is said to be minimal if every infinite-dimensional subspace of X contains
a copy of X, and it is said to be cominimal if every infinite-dimensional quotient
of X has a quotient isomorphic to X. The spaces c0, `p (1 ≤ p < ∞) and T ∗

(Tsirelson space) are minimal; c0 and the dual spaces of reflexive minimal spaces
are cominimal.

2.13. Example [3]. If X is minimal, then

{X}s = {Y : Y contains no copies of X} .
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If X is cominimal, then

{X}q = {Y : Y has no quotient isomorphic to X} .
2.14. Open problem. Is it possible to obtain procedures for construction of

space ideals with the three-space property, using other incomparability concepts?

Operational quantities. Space ideals A satisfying the conditions A = Ass and
A = Aqq have been applied to define and study operator ideals. Note that these
conditions are satisfied by the space ideal F of finite-dimensional Banach spaces.
Using certain operational quantities associated with a space ideal A, it is possible
to define classes of operators which generalize the classes SS and SC of strictly
singular and strictly cosingular operators, and the classes SF+ and SF− of semi-
Fredholm operators. We refer to [32] for a complete account of this subject.

Let A denote a space ideal different from the class of all Banach spaces. We
shall need the auxiliary classes As and Aq given by

As = {X : M subspace of X ⇒M ∈ A} ,
Aq = {X : U subspace of X ⇒ X/U ∈ A} .

Using these classes it is possible to derive some quantities from the norm, which
we denote by n(T ) := ‖T‖.

2.15. Definition [16, Definition 5]. Let A be a space ideal different from the
class of all Banach spaces, and T ∈ L(X,Y ). We define the following operational
quantities:

1. If X 6∈ As, then
(a) inA(T ) := inf{n(TJM ) : M 6∈ A},
(b) sinA(T ) := sup{inA(TJM ) : M 6∈ A}.

2. If Y 6∈ Aq, then
(a) in′A(T ) := inf{n(QUT ) : Y/U 6∈ A},
(b) sin′A(T ) := sup{in′A(QUT ) : Y/U 6∈ A}.

Now we introduce the classes of operators defined in terms of these operational
quantities.

2.16. Definition [16, Definition 8 and Definition 13]. For any Banach spaces
X and Y , we define the following classes of operators:

SA+(X,Y ) :=
{
L(X,Y ) if X ∈ As ,
{T ∈ L(X,Y ) : inA(T ) > 0} if X 6∈ As ,

(1)

ASS(X,Y ) :=
{
L(X,Y ) if X ∈ As ,
{T ∈ L(X,Y ) : sinA(T ) = 0} if X 6∈ As ,

(2)

SA−(X,Y ) :=
{
L(X,Y ) if Y ∈ Aq ,
{T ∈ L(X,Y ) : in′A(T ) > 0} if Y 6∈ Aq ,

(3)

ASC(X,Y ) :=
{
L(X,Y ) if Y ∈ Aq ,
{T ∈ L(X,Y ) : sin′A(T ) = 0} if Y 6∈ Aq .

(4)
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If A = F , we obtain SA+ = SF+, the class of upper semi-Fredholm op-
erators (operators that have finite-dimensional kernel and closed range), and
SA− = SF−, the class of lower semi-Fredholm operators (operators that have
finite-codimensional range). Moreover, SF+ ⊂ SA+ and SF− ⊂ SA−, and the
classes SA+(X,Y ) and SA−(X,Y ) are open in L(X,Y ). Also, the classes SA+

and SA− are empty in some cases.

2.17. Proposition [16, Proposition 9]. (1) If A = Ass, X 6∈ As and Y ∈ As,
then SA+(X,Y ) = ∅.

(2) If A = Aqq, X ∈ Aq and Y 6∈ Aq, then SA−(X,Y ) = ∅.

If A = F , we have FSS = SS and FSC = SC. Also, for any A, the classes
ASS and ASC are closed in L(X,Y ).

There are some unsolved questions about the above classes. Recall that an
operator ideal is a class of linear continuous operators which contains the finite
rank operators, is closed under addition and is stable under composition with
continuous operators.

2.18. Open problem. Are ASS and ASC operator ideals?

A partial answer to this problem has been obtained using the notions of sub-
space incomparability and quotient incomparability.

2.19. Theorem [16, Theorem 14]. (1) If A = Ass, then ASS is an operator
ideal and

ASS(X,Y ) = {T ∈ L(X,Y ) : TJM injection⇒M ∈ A} .

(2) If A = Aqq, then ASC is an operator ideal and

ASC(X,Y ) = {T ∈ L(X,Y ) : QUT surjection ⇒ Y/U ∈ A} .

Taking the equalities of the above theorem as definitions, the classes ASS and
ASC have been studied in [4]. We do not know if SS ⊂ ASS and SC ⊂ ASC for
every space ideal A, although the class of compact operators Co is contained in
both classes ASS and ASC [16, Remark 16].

2.20. Open problem. Is it true that SS ⊂ ASS and SC ⊂ ASC?

In the case T ∈ L(X,X), it would be interesting to study the asymptotic
behaviour of the quantities sinA(Tn)1/n, and analogously for sin′A(T ), inA(T )
and in′A(T ). In the classical case (A the finite-dimensional spaces) these limits
exist, and coincide with the essential spectral radius for the first two quantities,
and with the upper semi-Fredholm radius and the lower semi-Fredholm radius for
the remaining two. We refer to [46] for details.

2.21. Open problem. Given T ∈ L(X,X), what is the limit of q(Tn)1/n, for
q one of the quantities sinA(T ) and sin′A(T ), inA(T ) or in′A(T )?
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Finally, we show that ASS, ASC, SA+ and SA− behave like the classes of
Fredholm theory, in the sense that SA+ and SA− are stable under perturbation
by elements of ASS and ASC, respectively.

2.22. Theorem [16, Theorem 17]. (1) If T ∈ SA+ and K ∈ ASS, then T +K
∈ SA+.

(2) If T ∈ SA− and K ∈ ASC, then T +K ∈ SA−.

In [17] other classes of operators, associated with operational quantities de-
fined using the injection modulus and the surjection modulus instead of the norm,
are studied.
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[35] A. Pe  l czy ń sk i, On strictly singular and strictly cosingular operators. I. Strictly singular

and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys. 13 (1965), 31–36.

[36] —, On strictly singular and strictly cosingular operators. II. Strictly singular and strictly
cosingular operators in L(ν)-spaces, ibid., 37–41.

[37] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
[38] —, Inessential operators in Banach spaces, Integral Equations Operator Theory 1 (1978),

589–591.
[39] J. Prada, On idempotent operators on Fréchet spaces, Arch. Math. (Basel) 43 (1984),
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