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In this survey article we are going to present the effectiveness of the use of
unitary asymptotes in the study of Hilbert space operators.

1. Power bounded operators. In operator theory it is a generally used,
fruitful method that in order to explore the structure and properties of operators
belonging to a large, undetected class one relates these operators to those of a
special, well-understood class, and then exploiting this connection obtains theo-
rems on the operators in the large class. Unitary operators, the automorphisms
of Hilbert spaces form certainly the most thoroughly investigated and best un-
derstood class. It is sufficient to refer to the spectral theorem which is one of the
main tools in their study (see e.g. [29], [30] or [6]). On the other hand, power
bounded operators, that is, the operators with bounded sequence of iterates form
an extensive, broad class. The idea of using Banach limits to relate power bounded
operators to unitaries stems from the paper [33] by B. Sz.-Nagy. It was shown in
that paper that every invertible power bounded operator with a power bounded
inverse is similar to a unitary operator. It was observed in [22] that Sz.-Nagy’s
method works for every power bounded operator and that the unitary operator
associated with the power bounded operator has a useful property of universality.

To be more precise, let us give the exact definitions. Let H be a complex
Hilbert space and let B(H) denote the set of all bounded linear operators acting
on H. Consider a power bounded operator T ∈ B(H), that is, sup{‖Tn‖ : n =
0, 1, 2, . . .} is finite. Let L be a Banach limit on the sequence space `∞, that is,
let L be a positive linear functional with the properties L(1, 1, 1, . . .) = 1 and
L({cn}∞n=0) = L({cn+1}∞n=0). The existence of such an L, which is an extension
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of the concept of limit from convergent sequences to all bounded sequences, was
proved by S. Banach (see [1] and [6]). Denoting by 〈·, ·〉 the original inner product
on H we can introduce a new semi-inner product by the formula

〈x, y〉T := L({〈Tnx, Tny〉}∞n=0) for x, y ∈ H .

Factorization and completion yield a Hilbert space H(a)
+,T , and the operator T

induces an isometry T (a)
+ on H(a)

+,T . The natural embedding X+,T of H into H(a)
+,T

is a bounded linear transformation which intertwines the operators T and T
(a)
+ :

X+,TT = T
(a)
+ X+,T . Let T (a) be the minimal unitary extension of the isometry

T
(a)
+ acting on the space H(a)

T =
∨∞
n=0(T (a))−nH(a)

+,T . Then XTT = T (a)XT where

the transformation XT ∈ B(H,H(a)
T ) is defined by XTh := X+,Th (h ∈ H). We

shall also use the notation

XT ∈ I(T, T (a)) := {Q ∈ B(H,H(a)) : QT = T (a)Q} .

The operators T (a)
+ and T (a) are called, respectively, the isometric and unitary

asymptotes of the power bounded operator T .
It turns out that the unitary asymptote T (a) together with the canonical inter-

twining transformation XT are universal in a natural sense and that this property
determines the pair (XT , T

(a)). This is the content of the following theorem whose
proof can be found in [22].

Theorem 1. (a) Every bounded linear transformation A intertwining the
power bounded operator T with a unitary operator U can be uniquely factored as
A = BXT , where the bounded linear transformation B intertwines the operators
T (a) and U .

(b) Furthermore, if W is a unitary operator and Z ∈ I(T,W ) is a trans-
formation such that the pair (Z,W ) has the above property of universality , then
there exists an invertible mapping S ∈ I(T (a),W ) satisfying Z = SXT . We say
that the pair (Z,W ) is similar to (XT , T

(a)).

An analogous statement holds for the isometric asymptote T (a)
+ and the canoni-

cal intertwining transformation X+,T . We remark that, as an immediate conse-
quence of Theorem 1, up to similarity the pair (XT , T

(a)) does not depend on the
choice of the Banach limit L.

It is frequently important to know how the unitary asymptote T (a) can be
computed from the matrix of the operator T taken with respect to a (finite)
decomposition of the space H. By the following theorem of [22], if the matrix
is triangular then T (a) is the orthogonal sum of the unitary asymptotes of the
diagonal entries.

Theorem 2. Let M be an invariant subspace of the power bounded operator
T ∈ B(H). Let T1 denote the restriction of T toM and let T2 be the compression
of T to N =H	M, in notation T1 = T |M and T2 = PNT |N , where PN stands
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for the orthogonal projection onto N . Then the unitary asymptote T (a) is unitarily
equivalent to the orthogonal sum T

(a)
1 ⊕ T (a)

2 .

The closer the connection between the power bounded operator T and its
unitary asymptote T (a), the more information can be expected from the study of
T (a). The canonical intertwining operator XT is one-to-one (a good behaviour) if
and only if inf{‖Tnx‖ : n = 0, 1, 2, . . .} > 0 for every nonzero x ∈ H. In that case
we say that T is of class C1·. If, on the contrary, inf{‖Tnx‖ : n = 0, 1, 2, . . .} = 0
for every x ∈ H, then T is said to be of class C0·, the Hilbert space H(a)

T reduces
to the zero space and no information can be derived from T (a). If the adjoint T ∗

of T is of class Cβ· then we say that T is of class C·β (β = 0, 1), and for α, β = 0, 1
the class Cαβ is defined to be the intersection Cα· ∩ C·β .

Suppose now that the power bounded operator T belongs to the class C11,
which is the best case from our point of view. Since (X+,T )∗ ∈ I((T (a)

+ )∗, T ∗) is
one-to-one, the assumption T ∈ C·1 implies that (T (a)

+ )∗ is unitary. Thus XT is
a quasi-affinity, which means that XT is an injective transformation with dense
range. Since the system I(T, T (a)) of intertwining mappings contains a quasi-
affinity, T is a quasi-affine transform of its unitary asymptote T (a), in notation:
T ≺ T (a). Repeating the previous argument for T ∗, and using the assumption
T ∈ C1·, we infer that T (a)

∗ := ((T ∗)(a))∗ ≺ T , hence T (a)
∗ ≺ T (a). Since T (a)

∗ and
T (a) are unitary, a short technical manipulation with the polar decomposition of
the intertwining quasi-affinity shows that T (a)

∗ and T (a) are unitarily equivalent.
Therefore, both T ≺ T (a) and T (a) ≺ T , and in that case we say that T and
T (a) are quasi-similar, in notation T ∼ T (a). The concept of quasi-similarity was
introduced by B. Sz.-Nagy and C. Foiaş, and proved to be an effective tool in
creating canonical models in different classes of operators. (See e.g. [35] and [2].)

Exploiting the quasi-similarity of T and T (a) we can conclude that T has an
abundance of invariant subspaces, in fact, the invariant subspace lattice LatT of
T has a subsystem which is isomorphic to the lattice of spectral subspaces of T (a).

To be more precise, let {T}′ := I(T, T ) denote the commutant of T , and let
HyplatT stand for the lattice of hyperinvariant subspaces, that is,

HyplatT :=
⋂
{LatQ : Q ∈ {T}′} .

Let Hyplat1 T be the subset of HyplatT consisting of quasi-reducing subspaces,
that is,

Hyplat1 T := {M ∈ HyplatT : T |M is of class C11} .
It is clear that HyplatT (a) = Hyplat1 T (a) and if H is separable then HyplatT (a)

coincides with the set of spectral subspaces.
Consider an arbitrary operator A in the commutant {T}′ of T . Since XTA ∈

I(T, T (a)), by Theorem 1 there exists a unique operator B ∈ {T (a)}′ such that
XTA = BXT . It is easy to verify that the mapping

γT : {T}′ → {T (a)}′, A 7→ B ,
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is an algebra homomorphism such that γT (I) = I and γT (T ) = T (a). Applying
these considerations to the adjoint of T and introducing the notation YT :=
(XT∗)∗ we infer that for every operator C ∈ {T}′ there exists a uniqueD ∈ {T (a)

∗ }′
such that CYT = YTD. Furthermore, the mapping

γ̃T : {T}′ → {T (a)
∗ }′, C 7→ D ,

is an algebra homomorphism, γ̃T (I) = I and γ̃T (T ) = T
(a)
∗ . Now, it is easy to

see that for every hyperinvariant subspace N for T (a)
∗ the subspace (YTN )− is

quasi-reducing and hyperinvariant for T . It can, furthermore, be proved (see [22])
that the mapping obtained in this way implements an isomorphism between the
lattices HyplatT (a)

∗ and Hyplat1 T .

Theorem 3. If T is a power bounded operator of class C11, then the mapping

qT : HyplatT (a)
∗ → Hyplat1 T, N 7→ (YTN )− ,

is the unique lattice isomorphism such that T (a)
∗ |N is quasi-similar to T |qT (N )

for every subspace N ∈ HyplatT (a)
∗ .

We note that these investigations have been extended in [3] by H. Bercovici to
n-tuples of commuting power bounded operators, and even more: to (uniformly)
bounded representations of an arbitrary commutative semigroup S. Here the role
of the Banach limit is taken over by an invariant mean φ on S, which is, by
definition, a translation invariant positive linear functional of norm 1 on the space
`∞(S). The existence of such a φ was proved by M. Day (see [7] and [13]).

2. Contractions. Let us now restrict our attention to Hilbert space contrac-
tions. So let T be a contraction acting on the Hilbert space H, that is, T ∈ B(H)
and ‖T‖ ≤ 1. Sz.-Nagy’s celebrated dilation theorem on the existence of a uni-
tary power dilation and the functional model elaborated by Sz.-Nagy and Foiaş
provide us with powerful tools in the study of T . (See [34], [27] and [35].) Let us
examine how the unitary asymptote T (a) can be fitted into this theory.

By the dilation theorem there exists an essentially unique unitary operator
UT on a larger space KT such that 〈UnT x, y〉 = 〈Tnx, y〉 for every x, y ∈ H and
n = 0, 1, 2, . . . , and the smallest reducing subspace of UT containing H is KT .
The operator UT is called the minimal unitary dilation of the contraction T .

It is easy to verify that the subspace LT = ((UT −T )H)− is wandering for UT ,
that is, UnTLT is orthogonal to LT , for every positive integer n. The orthogonal
sum M(LT ) :=

∑∞
n=−∞⊕UnTLT reduces UT to a bilateral shift of multiplicity

dim LT . Consider the orthogonal complementR∗,T := KT	M(LT ). The unitary
operator R∗,T := UT |R∗,T is called the ∗-residual part of UT .

It is plain that the subspace M+(LT ) :=
∑∞
n=0⊕UnTLT is orthogonal to H

and invariant for UT . Hence the subspace KT− := KT 	M+(LT ) contains H,
it is invariant for U∗T and KT− = R∗,T ⊕M−(LT ) provides the Wold decom-
position of the isometry U∗T |KT−, where M−(LT ) = M(LT ) 	M+(LT ). Since
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(U∗T |KT−)∗|H = T we infer that, for every h ∈ H, the sequence {U−nT Tnh}∞n=0

strongly converges to a vector X̂Th, which is the orthogonal projection of h
onto the subspace R∗,T . It readily follows that X̂T ∈ I(T,R∗,T ) and ‖X̂Th‖ =
limn→∞ ‖Tnh‖ for every h ∈ H. Applying Theorem 1 we conclude that the ∗-
residual part R∗,T of UT corresponds to the unitary asymptote T (a) of T in the
dilation space.

Theorem 4. For every Hilbert space contraction T , the pair (XT , T
(a)) is

equivalent to the pair (X̂T , R∗,T ), that is, there exists a unitary transformation
Z ∈ I(R∗,T , T (a)) such that XT = ZX̂T .

A more detailed examination of the geometric structure of the dilation space
led to the construction of the functional model for T . (See [35] and [25].) First of
all, suppose that the contraction T is completely nonunitary (c.n.u.), that is, T
has no nontrivial unitary summand. The defect operator of T is, by definition, the
positive operator DT := (I − T ∗T )1/2. It is clear that ‖Th‖2 = ‖h‖2 − ‖DTh‖2
for every h ∈ H, and that kerDT is the subspace consisting of those vectors
whose norms do not alter under T . The defect space DT of T is the orthogonal
complement DT :=(ran DT )−. The contractive operator-valued, analytic function
ΘT defined on the open unit disc D of the complex plane C by the formula

ΘT : D→ B(DT ,DT∗), ΘT (z) := (−T + zDT∗(I − zT ∗)−1DT )|DT ,
is called the characteristic function of the contraction T .

The characteristic function ΘT is purely contractive, that is, ‖Θ(0)x‖ < ‖x‖
for every non-zero vector x ∈ DT , and has nontangential limit in the strong
operator topology almost everywhere (a.e. on the unit circle ∂D. This contractive,
measurable limit function defined a.e. on ∂D will also be denoted by ΘT . Let
∆T : ∂D→ B(DT ) denote the defect function of ΘT defined by

∆T (z) = (I −ΘT (z)∗ΘT (z))1/2 for a.e. z ∈ ∂D .
Consider the Hilbert space L2(DT∗ ⊕DT ) ' L2(DT∗)⊕ L2(DT ) of vector-valued
functions, where the underlying measure is the normalized Lebesgue measure m
on the unit circle ∂D. Therefore a function f : ∂D → DT∗ ⊕ DT belongs to
L2(DT∗ ⊕ DT ) exactly if 〈f(z)x, y〉 is a Lebesgue measurable function of z, for
every x, y ∈ DT∗ ⊕ DT , and the norm ‖f‖ := (

∫
∂D ‖f(z)‖2 dm(z))1/2 is finite.

(See [35], [12] or [14].) Let M denote the unitary operator of multiplication by
the identity function χ(z) = z in the Hilbert space L2(DT∗ ⊕DT ). Furthermore,
let H2(DT∗) stand for the Hardy subspace of L2(DT∗), that is, H2(DT∗) consists
of those functions whose Fourier coefficients of negative indices are zero. Now the
model space for T is defined as

H(ΘT ) := [H2(DT∗)⊕ (∆TL
2(DT ))−]	 {ΘTw ⊕∆Tw : w ∈ H2(DT )} ,

and the model operator S(ΘT ) is the compression of M to this space:

S(ΘT ) := PH(ΘT )M |H(ΘT ) .
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One of the main achievements of the Sz.-Nagy–Foiaş theory of contractions
is the central theorem claiming that the operator S(ΘT ) is unitarily equivalent
to the c.n.u. contraction T . Conversely, starting out from an arbitrary analytic,
purely contractive operator-valued function Θ : D→ B(E , E∗), the model operator
S(Θ) constructed as above is a c.n.u. contraction. Therefore, dealing with c.n.u.
contractions we can suppose in the sequel that T is a model operator of the form
S(Θ).

The minimal unitary dilation UT of T = S(Θ) coincides with the restriction
of the operator M of multiplication by the identity function χ to the subspace
KT = L2(E∗)⊕ (∆L2(E))−. Since the wandering subspace LT is now of the form
LT = {Θw⊕∆w : w ∈ E}, the spaceR∗,T of the ∗-residual part of UT has no good
representation in the functional model. Hence we introduce the operator-valued
function

W : ∂D→ B(E∗ ⊕ E) ,

W (z) :=
[
−∆∗(z) Θ(z)
Θ(z)∗ ∆(z)

]
(z ∈ ∂D)

of Julia type and the selfadjoint, unitary operator Ŵ ∈ B(L2(E∗ ⊕ E)) of mul-
tiplication by W . Here ∆ and ∆∗ are the defect functions of Θ and Θ∗, respec-
tively. It is easy to see that ŴLT = E , and it can be verified (see [19]) that
ŴR∗,T = (∆∗L2(E∗))− =: R̃∗,T . Denoting by R̃∗,T the restriction of M to R̃∗,T
it is clear that the unitary transformation W∗ = Ŵ |R∗,T : R∗,T → R̃∗,T inter-
twinesR∗,T and R̃∗,T . Thus, if X̃T stands for the compositionW∗X̂T ∈ I(T, R̃∗,T )
then, in view of Theorem 4, we obtain the following representation of the unitary
asymptote of the model operator T = S(Θ).

Theorem 5. Let T = S(Θ) be a model operator corresponding to the purely
contractive analytic function Θ : D→ B(E , E∗). Then the pair (XT , T

(a)) is equiv-
alent to (X̃T , R̃∗,T ) where the transformations have the following simple forms:

X̃T (u⊕ v) = −∆∗u+Θv for u⊕ v ∈ H(Θ) ,

and
R̃∗,T = M |(∆∗L2(E∗))− .

We know that X̃T is one-to-one if and only if the contraction T = S(Θ) is of
class C1·. Moreover, in terms of Θ the condition T ∈ C1· means that the function
Θ is ∗-outer, that is, (Θ∼H2(E∗))− = H2(E), where Θ∼(z) = Θ(z)∗ (see [35]).
On the other hand, it is not hard to check (see [19]) that

ker X̃∗T = kerΘ∗ ∩ (L2(E∗)	H2(E∗)) ,

hence X̃T has dense range if and only if

kerΘ∗ ∩ (L2(E∗)	H2(E∗)) = {0} .
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3. Reflexivity. The nice representations of the unitary asymptote and the
canonical intertwining operator given in Theorem 5 enable us to show the exis-
tence of functions in the range of X̃T which are separated from zero. Namely, the
following lemma was proved in [23]. (For its predecessors see [20] and [36].)

Lemma 1. Let Θ : D→ B(E , E∗) be a purely contractive analytic function, let
Γ∗ := {z ∈ ∂D : ∆∗(z) 6= 0} denote the support of the defect function ∆∗ of Θ∗,
and let χΓ∗ be the characteristic function of Γ∗. Given any number 0<%<

√
2/2,

there exist functions u ∈ H2(E∗) and v ∈ (∆L2(E))− such that

|‖(u⊕ v)(z)‖E∗⊕E − χΓ∗(z)| < % for a.e. z ∈ ∂D
and √

2
2
− % < ‖(−∆∗u+Θv)(z)‖E∗ < 1 + % for a.e. z ∈ Γ∗ .

Observe that, because of the relation −∆∗Θ + Θ∆ = 0, we have X̃Th =
−∆∗u+Θv for h = PH(Θ)(u⊕ v).

Suppose that the unitary asymptote T (a) of T = S(Θ) is nonreductive, that
is, T (a) has a nonreducing invariant subspace. In terms of Θ this means that
∆∗(z) 6= 0 for a.e. z ∈ ∂D. (See [9], [12] or [28].) The preceding lemma tells
us that there exists h∈H(Θ) whose transform k= X̃Th is separated from zero:
‖k(z)‖E∗ > 1/2 for a.e. z∈∂D. LetMh :=

∨∞
n=0 T

nh andNk :=
∨∞
n=0 χ

nk be the
cyclic invariant subspaces induced by h and k, respectively. It is easy to see that
R̃∗,T |Nk = M |Nk is a simple unilateral shift and that the non-zero transformation
X̃T |Mh belongs to the intertwining class I(T |Mh, R̃∗,T |Nk). Applying a result
of H. Bercovici and K. Takahashi in [5] we conclude that the set

Alg Lat(T |Mh) := {Q ∈ B(Mh) : LatQ ⊃ Lat(T |Mh)}
of operators leaving invariant every invariant subspace of T |Mh coincides with
the set

H∞(T |Mh) := {f(T |Mh) = f(T )|Mh : f ∈ H∞}
of functions of T |Mh provided by the Sz.-Nagy–Foiaş functional calculus (see
[35]).

It is easy to see that small perturbations of h preserve the above property
of h. More precisely, if x ∈ H2(E∗) and y ∈ (∆L2(E))− are functions such that

ess sup{‖x(z)‖E∗ + ‖y(z)‖E : z ∈ ∂D} < 1
4
,

then ‖(X̃Th
′)(z)‖E∗ > 1/4 a.e. on ∂D for h′ = h + PH(Θ)(x ⊕ y). Since the

vectors h′ form a total set in H(Θ), it can be shown that the global equation
Alg LatT = H∞(T ) is true. Since the continuity properties of the Sz.-Nagy–Foiaş
calculus immediately imply that H∞(T ) is contained in the closure Alg T of all
polynomials of T in the weak operator topology, we infer that Alg LatT = Alg T ,
that is, T is reflexive (see [32]).
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Thus we have obtained the following theorem, first proved in [20] under the
additional assumption T ∈ C11 and then in the present form in [36].

Theorem 6. If the unitary asymptote T (a) of the c.n.u. contraction T is
nonreductive, then

Alg LatT = H∞(T ) ,
in particular , T is reflexive.

Though the unitary asymptote in the nonreductive case has proved to be a
useful tool, its applicability in the reductive case is not so transparent. Indeed,
answering in the negative a question posed by R. Teodorescu and V. I. Vasyunin
it was shown in [21] that there exists a contraction T of class C11 such that XTh
is a cyclic vector of the unitary asymptote T (a), for every nonzero h. Of course,
T (a) is reductive in that case. So the following questions are still open.

Question 1. Does every contraction T with a nonvanishing unitary asymptote
T (a) have a nontrivial invariant subspace?

By considering the
[
C0· ∗
0 C1·

]
-type triangulations of T and T ∗, and applying

Theorem 3, Question 1 can be reduced to the following special form.

Question 1′. Does every contraction T of class C10 with a reductive unitary
asymptote T (a) have a nontrivial invariant subspace?

It is not true that every c.n.u. contraction with a nonvanishing unitary asymp-
tote is reflexive. Indeed, let T1 ∈ B(H1) be a c.n.u. contraction which is similar
to the unitary operator U1 = M |χαL2(m), where α = {z ∈ ∂D : Im z ≥ 0}, let
T2 ∈ B(H2) be a nonreflexive operator with ‖T2‖ < 1 (see e.g. [8]), and consider
the orthogonal sum T = T1⊕T2 ∈ B(H = H1⊕H2). The Riesz–Dunford calculus
and Runge’s theorem yield that the orthogonal projections PH1 and PH2 belong to
Alg T . Thus LatT = Lat T1⊕LatT2, whence Alg LatT = Alg LatT1⊕Alg LatT2.
Since Alg T ⊂ Alg T1 ⊕ Alg T2, Alg T1 = Alg LatT1 and Alg T2  Alg LatT2, we
infer that T is not reflexive.

Unitary operators are known to be reflexive (see [32]). On the other hand,
every contraction of class C11 is quasi-similar to its unitary asymptote. Hence we
can expect a positive answer to the following question.

Question 2. Is every contraction T of class C11 reflexive?

We remark that reflexivity is not a quasi-similarity invariant in general;
a counterexample can be given following a construction in [15]. Furthermore,
W. R. Wogen has given an example of a (noncontractive) operator which is quasi-
similar to a unitary operator but is not reflexive (see [37]).

We can get nice structure theorems if we suppose that the characteristic func-
tion has a scalar multiple. Indeed, let T = S(Θ) be a model operator of class
C11 and assume that the purely contractive analytic function Θ : D → B(E , E∗)
has a scalar multiple (0 6=)δ ∈ H∞. This means that there exists a contractive
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analytic function Ω : D → B(E∗, E) such that ΩΘ = δIE and ΘΩ = δIE∗ . It
can be shown in that case that there exists a quasi-affinity Z ∈ I(T (a), T ) which
nicely suits XT , namely ZXT = δ(T ) and XTZ = δ(T (a)). Exploiting this strong
relation between T and T (a) it can be proved that T is reflexive and the invariant
subspace lattices LatT and LatT (a) are isomorphic (see [16] and [17]).

4. Spectrum. Let T ∈ B(H) be again an arbitrary power bounded operator.
Let us examine how the spectrum σ(T (a)) of the unitary asymptote T (a) relates
to the spectrum σ(T ) of T .

The existence of the algebra homomorphism γT between the commutants {T}′
and {T (a)}′, defined in Section 1, immediately implies that σ(T (a)) is contained
in σ(T ). Furthermore, if T is of class C1·, then considering Riesz subspaces and
applying Theorem 2 it can be easily verified that σ(T (a)) intersects every closed-
and-open (clopen) subset σ′ of σ(T ). Therefore the spectra of power bounded
operators of class C1· are attached to the unit circle. We remark that if the unitary
operator T (a) is absolutely continuous with respect to the Lebesgue measure m,
then m(σ(T (a)) ∩ σ′) > 0 for every clopen subset σ′ of σ(T ).

By the main results of [4] and [18] this is the only constraint on the connection
between the spectra of T and T (a) even in special classes of contractions.

Theorem 7. Let α be a nonempty compact subset of the unit circle ∂D such
that α coincides with the closed support of the measure χαdm, and let σ be a
compact subset of the closed unit disc D− such that σ ⊃ α and m(σ′ ∩ α) > 0
for every nonempty clopen subset σ′ of σ. Then there exist c.n.u. contractions
T1 and T2 of class C10 and C11, respectively , such that σ(T1) = σ(T2) = σ and
σ(T (a)

1 ) = σ(T (a)
2 ) = α.

The main ingredient in the proof of this theorem is the following lemma.

Lemma 2. Let α be a compact set as in Theorem 7. Then, for every positive
number K, there exist c.n.u. contractions A1 and A2 of class C10 and C11,
respectively , such that σ(Aj) = σ(A(a)

j ) = α and ‖A−1
j ‖ > K for j = 1, 2.

While the proof of this lemma is fairly easy in the C11-case, it is much more
difficult in the C10-case when A1 is carefully selected as a restriction of a weighted
bilateral shift.

Having this lemma, topological considerations and an extensive use of the Sz.-
Nagy–Foiaş functional calculus (the spectral mapping theorem, the von Neumann
inequality) yield the theorem.

Interestingly enough, as was shown in [24], the reducing essential spectrum
Re(T ) of a C11-contraction T is no more attached to the unit circle. This type of
spectrum was introduced by N. Salinas in [31]; among other things, it determines
the normal operators which are essentially contained in the operator T as a direct
summand. Namely, if N is a normal operator then T ⊕N is unitarily equivalent
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to T +K, for some compact K, precisely if the essential spectrum σe(N) of N is
contained in Re(T ).

We can see from Theorem 7 that the spectra of power bounded operators of
class C1· are the same as the spectra of contractions in the special classes C10

and C11. This observation leads to the following natural question.

Question 3. Is every power bounded operator T of class C1· (or , in particular ,
of class C10 or C11) similar to a contraction?

This question, without the constraint T ∈ C1·, was posed by B. Sz.-Nagy
and was answered in the negative by S. R. Foguel. However, the counterexamples
known to the author are not of class C1· (see [10], [11] and [26]). An affirmative
answer to Question 3 would immediately extend the validity of Theorem 6 to
power bounded operators.
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