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1. Brief introduction to multipliers. Multipliers are operators on Ba-
nach algebras with immediate appeal. Some of this appeal comes from the very
properties that define them, emulating, as they do, the basic operation of “mul-
tiplication” in an algebra. Some of it has to do with the structure results they
naturally give rise to. By explaining the situation in group algebras I can probably
make it clear what I mean:

The context in which we shall be working will be that of a commutative
Banach algebra A. Any element a ∈ A gives rise to a multiplication operator
Ta : A → A, defined by Tab := ab for all b ∈ A. Clearly each such Ta is a
continuous linear operator. It is also obvious that because A is commutative Ta
will commute with every other multiplication operator. Might this characterize
multiplication operators? In other words, if T is a linear operator on A for which
T (ab) = T (a)b for all a, b ∈ A, will T itself have to be a multiplication operator?
If A has a unit 1, the answer is easily yes, because Ta = T (1a) = T (1)a, so that
T = TT (1). However, as Wendel [W] and Helson [H] independently showed, around
1952, if we turn to the group algebra A := L1(G), where G is a locally compact
abelian group, the requirement on our sought-after operators, that of commuting
with all multiplication operators, leads to a much larger class of operators: these
operators turn out to coincide with the set of convolution operators Tµ, defined
by the formula Tµa := µ∗a for all a ∈ L1(G), as µ ranges over the set of complex
Borel measures on G.
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To specify what we take for granted as well as what notation to use, we begin
with a telegrammatic introduction to the theory of multipliers on commutative
Banach algebras [L]. Let A be a commutative Banach algebra. The basics of the
theory of multipliers is easily developed on assumptions weaker than the one we
shall generally make here (cf. [L]). To avoid cluttering the exposition, however, we
shall make the blanket assumption that A be semisimple: we assume the Gelfand
transform a→ a∧ to be an injection (i.e. one-to-one).

Let ΦA denote the space of multiplicative linear functionals on A. Usually
we shall equip ΦA with the topology of pointwise convergence: a net {φα} in ΦA
converges to φ ∈ ΦA if φα(a) converges to φ(a) for all a ∈ A; this way ΦA becomes
a locally compact Hausdorff space. The Gelfand transform a∧ of an element a ∈ A
is the continuous complex-valued function on ΦA, vanishing at infinity, which is
defined by a∧(φ) := φ(a) for every φ ∈ ΦA.

One common definition of the set of multipliers M(A) [L] specifies that M(A)
consists of all operators T : A → A for which a(Tb) = (Ta)b for all a, b ∈ A.
For a semisimple algebra this is immediately seen to be equivalent with the one
mentioned earlier, so examples of multipliers have already been given. An easy
argument [L], involving the closed graph theorem, the definition of multiplier
and the semisimplicity of A also ensures that all multipliers are necessarily both
continuous and linear, so M(A) becomes a closed commutative subalgebra of
L(A), the bounded linear operators on A, when M(A) and L(A) are normed by
the usual operator norm. As we have already pointed out, A can be viewed as a
subalgebra, in fact as an ideal, of M(A), but the given norm on A may well differ
from the operator norm [L].

Every T ∈ M(A) defines a bounded continuous complex-valued function T∧

on ΦA, which is given by taking Gelfand transforms: (Ta)∧ = T∧a∧, for any
a ∈ A. This means that for every φ ∈ ΦA there is a complex number T∧(φ) for
which T∧(φ)a∧(φ) = (Ta)∧(φ) for every a ∈ A. Since ΦA is a subset of the dual
space A′, we might note in passing that T∧ is simply the restriction of the dual
map T ′ : A′ → A′ to ΦA : (T ′|ΦA)(φ)(a) = T∧(φ)a∧(φ) for every φ ∈ ΦA and
a ∈ A.

Naturally, if T∧ is to provide us with much information about T , we must
have a close connection between them. This is achieved here by assuming A to
be semisimple: in that case the correspondence T ↔ T∧ is injective.

Note that since M(A) is a commutative Banach algebra with a maximal ideal
space ΦM(A) we may also talk about the Gelfand transform of T as an element
of M(A). We shall make occasional use of this and when we do the notation will
also be T∧, with the domain of definition specified as ΦM(A). There is no serious
abuse of notation in this because with the description of ΦA as a subset of ΦM(A)

that we now give, T∧, defined on ΦA, is simply the restriction of the “ordinary”
Gelfand transform T∧ on ΦM(A).

Semisimplicity of A tells us that ΦA separates the points ofM(A)∧ (if T∧ = S∧

on ΦA then (Ta)∧ = (Sa)∧ for every a ∈ A, hence T = S, by semisimplicity),
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so we may view ΦA as a subset of ΦM(A): each φ ∈ ΦA determines an element of
ΦM(A) by the assignment φ(T ) := T∧(φ). To obtain the rest of ΦM(A) from ΦA
we throw in all elements of ΦM(A) that vanish on A, i.e. the hull of A ⊆ M(A).
This gives us a description of ΦM(A) as

ΦM(A) = ΦA ∪ hullΦM(A)(A) .

This description covers not just the set theoretic situation, but also the topolog-
ical one: the weak∗ topology of ΦA is the restriction of the weak∗ topology on
ΦM(A) [L].

The elements of A and of M(A) may be thought of as continuous functions
on ΦM(A), with the former vanishing at infinity as functions on ΦA and on all of
hullΦM(A)(A) as functions on ΦM(A). We shall have occasion to study two ideals
of M(A), namely

M0(A) := {T ∈M(A) | T∧ vanishes at infinity on ΦA} ,
and

M00(A) := {T ∈M(A) | T∧ vanishes on hullΦM(A)(A)} .
For these subsets of M(A) much more detailed results are known; this is hardly
surprising, since the asymptotic behavior of their elements is known. Right off,
this chain of inclusions is clear:

A ⊆M00(A) ⊆M0(A) ⊆M(A) .

These inclusions may well all be strict; indeed they all are, as it is exhibited
in [GMcG], whenever A := L1(G) for any non-discrete locally compact abelian
group G.

2. Brief introduction to local spectral theory. In 1968 Colojoară and
Foiaş published their pioneering study of local spectral theory [CF]. To appreciate
what they did, and some of what has happened since, it is reasonable first to
come to grips with what “decomposability” means: if for a given continuous linear
operator T on a Banach space X, one knows that it possesses some of the pleasant
properties that a normal operator on a Hilbert space has, one would seem to know
quite a bit about this operator. It is this admittedly vague guiding principle that
lies behind much of the development of local spectral theory. Specifically, let us
agree to call T ∈ L(X) decomposable if any open cover {U, V } of the complex
plane C allows a splitting of X into the algebraic sum (ordinarily not direct)
X = Y +Z of two closed T -invariant subspaces Y and Z on which the restriction
has “smaller” spectra: σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V .

It is not just the decomposition of spectra of decomposable operators that
justifies the term “local” spectral theory; the theory goes well beyond this level
of generality, based, as it is, on the notion of local spectrum.

Given T ∈ L(X) and x ∈ X, the resolvent function (T − λ)−1, defined for all
λ ∈ C \ σ(T ), i.e. for all complex λ outside the spectrum σ(T ) of T , provides us
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with an analytic solution of the equation

(T − λ)x(λ) = x ,

namely x(λ) := (T − λ)−1x, for every λ ∈ C \ σ(T ). This function may well have
analytic extensions, at least for certain x ∈ X. A normal operator N ∈ L(H) on
the Hilbert space H will exemplify how this may be: if the spectral projections
of N are denoted by E(∆), ∆ a Borel set, and if h ∈ E(∆)H for some such ∆,
then (N |E(∆)H)− λ is invertible for all λ ∈ C \ (σ(N) ∩∆), and so in this case
the equation (N − λ)h(λ) = h has an analytic solution on C \ (σ(N) ∩∆).

Returning to the general situation of T ∈ L(X) and x ∈ X, the union of all
open subsets of C on which (T −λ)x(λ) = x has an analytic solution is called the
local resolvent of T at x and is denoted by %T (x).

It should be noted right away that such analytic solutions are not necessar-
ily uniquely determined. That depends on whether or not the equation (T −
λ)x(λ)= 0 has non-trivial analytic solutions on any open subset of the plane.
If our T ∈ L(X) yields only the zero solution of this equation, we say that T
has the single-valued extension property (SVEP). Any decomposable operator
has SVEP [CF, Corollary 2.1.4]. The left shift L on `2(N), say, does not: (L −
λ)(λ, λ2, λ3, . . .) = 0 for all λ ∈ C, |λ| < 1, and the function λ→ (λ, λ2, λ3, . . .) is
an analytic function from the open unit disc into `2(N).

The complement σT (x) := C \ %T (x) is the local spectrum of T at x. This set
is, largely, the main technical object of study in local spectral theory. If F ⊆ C is
a given closed set then the set

XT (F ) := {x ∈ X | σT (x) ⊆ F}

is called the analytic spectral subspace (associated with T and F ). The word
“subspace” is clearly not misused here. A comprehensive development of these
concepts may also be found in [V2].

Much local spectral theory has been developed with the standing assumption
that the operator in question have SVEP. To illustrate that this is often not at
all relevant we include here some descriptions of XT (F ) for certain F ⊆ C. These
results will also establish a connection to Kato’s perturbation theory [K]. There
are related results in the work of Mbekhta, e.g. [M].

Consider the set that we shall call the Kato resolvent , a set containing the
ordinary resolvent, and defined for T ∈ L(X) by

%K(T ) :=
{
λ ∈ C

∣∣∣ (T − λ)X is closed and ker(T − λ) ⊆
⋂
n∈N

(T − λ)nX
}
.

The Kato resolvent is open [K, Theorem 3, p. 297] and may well contain points
of the spectrum σ(T ), as suggested, for instance, by the observation that if λ lies
outside the approximate point spectrum σap(T ), then T −λ is bounded below (cf.
e.g. [C, Proposition VII.6.4]), and hence C \ σap(T ) ⊆ %K(T ) (this containment
may be improved upon [LN2]).
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To make the connection to local spectral theory it is convenient to recall
that for a subset C ⊆ C the algebraic spectral subspace ET (C) is defined as the
algebraic sum of all subspaces of X on which all the restrictions of T−λ, λ ∈ C\C,
are surjective. Thus ET (C) is the largest subspace of X with this surjectivity
property. Clearly, from the definition, ET (C) ⊆

⋂
λ∈C\C

⋂
n∈N(T − λ)nX. Also,

it follows from elementary local spectral theory that XT (F ) ⊆ ET (F ), for any
closed F ⊆ C.

We then have the following description of situations in which these contain-
ments are equalities.

Theorem 1. Let T ∈ L(X) and λ ∈ C. If ker(T −λ) ⊆
⋂
n∈N(T −λ)nX then

ET (C\{λ}) =
⋂
n∈N(T − λ)nX. If , moreover , λ ∈ %K(T ), then ET (C \ {λ}) is

closed ; in particular , for every subset G ⊆ %K(T ), ET (σ(T )\G) is closed , hence,
if G is open, ET (σ(T ) \G) = XT (σ(T ) \G).

P r o o f. The inclusion ET (C \ {λ}) ⊆
⋂
n∈N(T − λ)nX always holds. For the

reverse inclusion it suffices to show that
⋂
n∈N(T−λ)nX ⊆ (T−λ)

⋂
n∈N(T−λ)nX

and this is an easy consequence of the assumption ker(T −λ) ⊆
⋂
n∈N(T −λ)nX.

Now, if λ ∈ %K(T ) then the closedness of
⋂
n∈N(T − λ)nX is shown in [S,

proof of Satz 4, p. 487]. The closedness of ET (σ(T ) \G) follows from this, since
ET (σ(T ) \G) =

⋂
λ∈GET (C \ {λ}) [PV]. So, as a consequence of [LV1, Proposi-

tion 10], ET (σ(T ) \G) = XT (σ(T ) \G) for every open subset G ⊆ %K(T ).

There is more: the spaces
⋂
n∈N(T − λ)nX are known to be constant as λ

ranges over a connected component G of %K(T ) [F], so we may of course draw
the same conclusion for XT (C \ {λ}). This constant value is also XT (σ(T ) \G),
because XT (σ(T ) \ G) =

⋂
µ∈GXT (C \ {µ}). Moreover, as we shall now see,⋂

µ∈G(T − µ)X =
⋂
n∈N(T − λ)nX, i.e. we only have to consider the first power

of T − µ as µ ranges over G. This leads to the following explicit formulas. For a
related result see Theorem 8.

Theorem 2. For λ ranging through a connected component G of %K(T ) the
spaces XT (C \ {λ}) are constant ; in fact , for any λ ∈ G,

XT (C \ {λ}) = XT (σ(T ) \G) =
⋂
µ∈G

(T − µ)X =
⋂
n∈N

(T − λ)nX .

P r o o f. With no loss of generality take λ = 0, so that G is a neighborhood
of 0. Theorem 1 shows that the extremes in the above string of spaces are equal. It
remains to establish that

⋂
n∈N T

nX ⊇
⋂
µ∈G(T−µ)X. An argument as employed

in proving [SW, Proposition 2.7] will do this: because 0 ∈ %K(T ) the map

S : TX → X
/ ⋂
n∈N

TnX, Tx→ x
/ ⋂
n∈N

TnX ,

is well defined; as in [SW], S is continuous and kerS =
⋂
n∈N T

nX. Let y ∈⋂
µ∈G(T − µ)X. Then y = (T − µ)xµ, i.e. Txµ = y + µxµ for every µ ∈ G, and
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hence

xµ

/ ⋂
n∈N

TnX = STxµ = S(y + µ(xµ + z)) ,

for any choice of z ∈
⋂
n∈N T

nX, from which we obtain the estimate∥∥∥xµ/ ⋂
n∈N

TnX
∥∥∥ ≤ ‖S‖(‖y‖+ |µ|

∥∥∥xµ/ ⋂
n∈N

TnX
∥∥∥) .

For sufficiently small µ we conclude that∥∥∥xµ/ ⋂
n∈N

TnX
∥∥∥ ≤ 2‖S‖ · ‖y‖ .

It follows from Txµ = y + µxµ that∥∥∥(Txµ − y)
/ ⋂
n∈N

TnX
∥∥∥ = |µ|

∥∥∥xµ/ ⋂
n∈N

TnX
∥∥∥→ 0 as µ→ 0 .

As
⋂
n∈N T

nX ⊆ TX we conclude that y ∈ TX. The equation Txµ = y+µxµ then
shows that xµ ∈ TX. Repetition of the last two lines yields the conclusion that
y ∈ T 2X, which is closed by [S, Satz 4]. By induction we see that y ∈

⋂
n∈N T

nX.

Example. Let T be an isometry on the Banach space X. If T is non-invertible
then σ(T ) = D, the closed unit disc. It is easy to see that %K(T )∩σ(T ) = D◦, the
open unit disc. Thus, from Theorems 1 and 2 we conclude that for every λ ∈ D◦,

ET (C \ {λ}) = XT (T) = ET (T) =
⋂
µ∈D◦

(T − µ)X =
⋂
n∈N

TnX .

Here T is the unit circle. Of course, if T is an invertible isometry, the above string
of equalities also holds because then σ(T ) ⊆ T, and so the spaces all equal X.
Some related remarks may be found in [LV2].

3. The two shall meet. The spectral theorem for normal operators on a
Hilbert space tells us that normal operators are decomposable. Of course there
are many other interesting classes of examples. Here, as announced, we shall
concentrate on the decomposability properties that multipliers might possess.

Colojoară and Foiaş looked into this: their monograph contains the beginning
of a study of decomposability properties of multipliers on regular algebras. Recall
that a commutative semisimple Banach algebra A is regular if, as an algebra of
functions on its maximal ideal space ΦA, the algebra A∧ is large enough that any
point φ of ΦA and any closed set F ⊆ ΦA not containing φ may be separated
by an element of A∧; “separated” means that there is a∧ ∈ A∧ which vanishes
everywhere on F , but not at φ. They showed that if the commutative Banach
algebra A is semisimple and regular then any multiplication operator Ta on A
will be decomposable.
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This immediately brings to mind the following two natural questions:

1) This result is proved for a multiplication operator, not an arbitrary multi-
plier. Might multipliers all be decomposable? And in the same spirit:

2) How significant is the assumption that A be regular?

Take the second question first. Frunză [Fr] showed that the assumption is very
reasonable, indeed: he proved that decomposability of all of the multiplication
operators on a commutative semisimple Banach algebra is equivalent to regularity.

Thus, whenever our algebra A is non-regular there will be non-decomposable
multiplication operators on it. So what distinguishes the decomposable multipli-
cation operators from the others? Neumann [N] found the answer. To appreciate
it we need the following.

The maximal ideal space ΦA carries two naturally defined topologies, the
Gelfand topology and another coarser one, the hull-kernel topology. The latter
topology is specified by its closed sets: a subset F ⊆ ΦA is hk-closed if

F = {φ ∈ ΦA | φ(a) = 0 for every a ∈ A for which a∧(F ) = {0}} .

It is a classical result, due to Shilov (cf. [BD]), that a commutative semisimple
Banach algebra A is regular precisely when the Gelfand topology and the hull-
kernel topology coincide.

Neumann showed that decomposability of Ta is equivalent with a∧ being hull-
kernel continuous.

Theorem 3 [N, Theorem 1.2]. If A is a commutative semisimple Banach
algebra with maximal ideal space ΦA and if a ∈ A is given then the multiplication
operator Ta : A→ A is decomposable if and only if a∧ : ΦA → C is continuous in
the hull-kernel topology.

Note how Frunză’s result follows immediately from this: if all the functions
a∧ are hull-kernel continuous on ΦA then the hull-kernel topology on ΦA must
be a Hausdorff topology, hence it must coincide with the Gelfand topology. This
means that A is regular [BD, Theorem II.23.8].

To what extent the hull-kernel continuity of T∧ is a way of characterizing
decomposability (on A) is not yet fully understood, because there are several
spaces on which T may be decomposable: A or M(A), and there are several
different maximal ideal spaces. The hull-kernel continuity of T∧|ΦA is necessary,
as we shall now see. It is not sufficient (cf. below).

Theorem 4 [LN1, Theorem 2.3]. Let A be a commutative semisimple Banach
algebra and T ∈ M(A) be any multiplier. Then (a) implies (b) and (b) implies
(c), where

(a) T∧ is hull-kernel continuous on ΦM(A).
(b) T : A→ A is decomposable.
(c) T∧|ΦA is hull-kernel continuous on ΦA.
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If T ∈M0(A) then (a) and (b) are equivalent ; these conditions are fulfilled by
T ∈M0(A) if and only if T ∈M00(A) and satisfies (c).

If A is regular then hull-kernel continuity of T∧|ΦA is automatic. As will
be seen later, when we have discussed the concept of natural spectrum (cf. the
comments after Theorem 8), there are indeed non-decomposable multipliers, even
on regular algebras, and hence (c) is strictly weaker than the other two conditions.

The last claim of Theorem 4 tells us that a multiplier T ∈ M0(A) is decom-
posable precisely when it lies in M00(A) and is hull-kernel continuous on ΦA. One
might wonder whether these latter two conditions are independent, i.e. whether it
is possible for a multiplier T ∈M0(A) to be hull-kernel continuous on ΦA without
being an element of M00(A)? The answer is yes. Again an example is more readily
found if we tie this question in with the issue of natural spectrum [LN1], [Z] (cf.
Section 4 below).

Sets of continuous functions, such as those referred to in Theorem 4(a) or (c),
have very pleasant algebraic properties, being algebras, i.e. stable under addi-
tion and multiplication. On the other hand, the set of decomposable operators
is in general a rather unstructured set: not every operator on Hilbert space can
be decomposable (take a non-invertible isometry, for instance: an isometry will
necessarily have complex numbers of unit modulus in its spectrum. This makes
it impossible to split off subsets of the interior of the unit disc in C); but every
operator, as the sum of its real and its imaginary part, will be the sum of two nor-
mal, hence decomposable operators. This shows that the decomposable operators
do not form an additive set. However, in the case of decomposable commuting
operators there is considerable evidence that the sum and product of two such
will again be decomposable (cf. e.g. [Ap], [E]), but the issue is still not completely
settled . For multipliers, however, results such as Theorem 4 indicate that the set
DM(A) of multipliers which are decomposable operators on A may well be rather
well-behaved, algebraically: for instance, Theorem 4 says that M0(A) ∩DM(A)
is an algebra. Theorem 6 will tell us more about this set, but probably the best
general result along these lines is due to Albrecht; in [A1, Theorem 2.6] he proves
the following, for any Banach algebra. We formulate at our level of generality.

Theorem 5. If A has a bounded approximate identity then DM(A) is a closed
subalgebra of M(A).

Albrecht’s proof is based on the theory of functions of several complex vari-
ables. It is quite involved and it seems plausible that in the commutative case an
easier argument might be found, based, for instance, on considerations of hull-
kernel continuity. There is a very nice discussion of related matters in Section 3
of [MN].

It is not surprising that we get much stronger conclusions if we assume that
T is an element of M0(A), or even of M00(A). Theorem 4 was one such example.
Here are two more. Another one will follow later (Theorem 11).
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Theorem 6 [LN1, Theorem 2.10(c)]. The algebra M0(A)∩DM(A) coincides
with the set of elements of M0(A) that are decomposable multiplication operators
on M0(A). This set is always a subset of M00(A) and coincides with it when A is
regular.

Even more definitive information becomes available to us if we make additional
topological assumptions on the maximal ideal space ΦA. A topological space is
scattered if every non-empty compact subset of it contains an isolated point.
Obvious examples are discrete spaces. For commutative group algebras A :=
L1(G), where ΦA may be identified with the dual group Γ , any compact abelian
group G will give us an example of a Banach algebra A with scattered ΦA.

Theorem 7 [LN1, Theorem 3.1]. If A is a commutative semisimple Banach
algebra with scattered maximal ideal space ΦA and if T ∈ M0(A) then these
statements are all equivalent :

(a) T∧ is hull-kernel continuous on ΦM(A).
(b) T : A→ A is decomposable.
(c) LT : M0(A)→M0(A) is decomposable.
(d) T has countable spectrum.
(e) T ∈M00(A).

Any multiplier, decomposable or not, will have SVEP, if the algebra A is
semisimple. This is clear because the equation (T − λ)x(λ) = 0, with λ ranging
through some open set G ⊆ C, will Gelfand-transform to (T∧(φ)− λ)x(λ)∧(φ) =
0 for each φ ∈ ΦA. For each φ ∈ ΦA x(λ)∧(φ) = 0 on G \ {T∧(φ)}, hence
by continuity x(λ)∧(φ) = 0 for all λ ∈ G. The semisimplicity then shows that
x(λ) = 0 on G. Knowing now that the equation (T − λ)x(λ) = x will have a
unique analytic solution on the set %T (x), we may turn our attention to the task
of describing the analytic spectral subspaces AT (F ) for any multiplier T . It is
quite straightforward to see that for every closed set F ⊆ C,

AT (F ) ⊆ ZT (F ) := {a ∈ A | suppx∧ ⊆ T−1(F )} ,

where suppx∧ := {φ ∈ ΦA | x∧(φ) 6= 0}−, the closure taken in the Gelfand topol-
ogy. This is just another way of saying that for every a ∈ A, the set T∧(supp a∧)−

is a subset of the local spectrum σT (a).
Colojoară and Foiaş [CF, Chapter 6.2] showed that if A is regular and if

T := Tb is a multiplication operator then there is equality σT (a) = T∧(supp a∧)−

for every a ∈ A. It would be entirely natural to repeat the above two questions
1) and 2) in this context. To use a descriptive phrase, if a multiplier T has the
property that σT (a) = T∧(supp a∧)− for every a ∈ A, then we shall say that T
has natural local spectra.

It is interesting to note that the inclusion AT (F ) ⊆ ZT (F ) can be augmented
to include a middle term, namely

⋂
λ∈C\F (T − λ)A, which resembles what we
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have seen in connection with Theorem 2. Thus there is this nest of spaces:

AT (F ) ⊆
⋂

λ∈C\F

(T − λ)A ⊆ ZT (F ) ;

this means, in particular, that when the outer terms coincide, we get a description
of AT (F ) like what was obtained for the Kato resolvent. We cite but a special case:

Theorem 8 [LN1, Theorem 2.4]. If T ∈M(A) and T∧ is hull-kernel contin-
uous on ΦM(A) then for every closed subset F ⊆ C,

AT (F ) =
⋂

λ∈C\F

(T − λ)A = ZT (F ) .

Somewhat different descriptions, but still rather closely related to the one
given here, of the spectral subspaces of a decomposable multiplier may be found
in [A2, Theorem 4.5] and [E, Lemma 2.1].

4. Natural spectrum and natural local spectrum. One of the pleasant
basic facts for any commutative Banach algebra A is that the spectrum σ(Ta)
for any element a ∈ A is computable as the closure of the range a∧(ΦA)− of the
Gelfand transform. As a replay of our theme we might wonder whether this is
true for all multipliers, and not just for multiplication operators. It is clear that
for any T ∈ M(A) the inclusion σ(T ) ⊇ T∧(ΦA)− always holds. If T has the
property that σ(T ) = T∧(ΦA)− then we shall say that T has natural spectrum.
Thus, every multiplication operator Ta, a ∈ A, has natural spectrum. Moreover,
since σ(T ) = T∧(ΦM(A)), it follows directly from the definition of M00(A) that
also all elements of M00(A) have natural spectra.

Zafran [Z] was the first to investigate this concept. He worked in the con-
text of group algebras A = L1(G) for locally compact abelian groups. Among
other things, he observed that whenever G is non-discrete there are multipliers
in M0(L1(G)) whose spectra are not natural. This, incidentally, tells us that the
inclusion M00(A) ⊂ M0(A) is indeed strict. In [LN1, Theorem 2.5(f)] it is then
observed that whenever this inclusion is strict for a regular algebra A, then the
two algebras M00(A) and M0(A) are very different: the former is regular and the
latter is not.

Let us begin our discussion of natural local spectra by clarifying the relation-
ship between this property and that of T having natural spectrum. Since any
operator T with SVEP has the property that σ(T ) =

⋃
x∈X σT (x) [V1], the spec-

trum of any multiplier T on a commutative semisimple Banach algebra A may
be expressed as such a union. Clearly then, if T has natural local spectra, T will
have natural spectrum. The converse is not true; more about this shortly, after
we have recorded the following fact.

Theorem 9 [LN1, Proposition 2.1, ELN, Proposition 7]. If T ∈ M(A) is
decomposable then T has natural spectrum. Moreover , if A has approximate units
then T has natural local spectra.
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To what extent the last part of Theorem 9 holds without the added assumption
on A is not known.

Theorem 9 can of course be used to identify non-decomposable multipliers,
and so we are in contact with the claim made after Theorem 4. A whole class of
non-decomposable multipliers is identified this way in [ELN, Proposition 12]: for
a compact abelian group G consider any probability measure µ with independent
powers. Assume that µ is symmetric, i.e. that µ(E) equals the complex conjugate
of µ(−E) for every Borel set E ∈ G. Then it follows that Tµ does not have
natural spectrum, hence is not decomposable. One way to see that Tµ does not
have natural spectrum is via [GMcG, Theorem 6.1.1]: the spectrum of such Tµ
is the entire closed unit disc, but the range of T∧|ΦL1(G) will be real, by the
symmetry of µ.

The converses of the implications in Theorem 9 are both false. Concerning the
first one, Zafran [Z] has an example of a multiplier which has natural spectrum
without being decomposable: he specifies two multipliers T1 and T2 with natural
spectra for which the sum T1 + T2 does not have natural spectrum. We know,
however, from Theorem 5 that if A has a bounded approximate identity then the
decomposable multipliers form an algebra. If both T1 and T2 were decomposable
then so would be their sum, and since this is excluded by Theorem 9, at least one
of them must be non-decomposable. Some of the examples mentioned in the last
paragraph exhibit these same features; they are explained in [ELN, Theorem 13].
Concerning the reversal of the second implication in Theorem 9 we want to say
a little more.

Most work on natural local spectra has been done in the case when A is
assumed to be regular [ELN]. With this assumption and, additionally, that of
assuming A to be Tauberian, i.e. that the elements a of A for which supp a∧ is a
compact subset of ΦA form a dense ideal of A, some rather pleasing information is
available. Indeed, if A has these properties and also possesses approximate units
(which do not have to form a bounded set) then it will always be the case for any
T ∈ M(A) that ZT (F ) = AT (F )−, for any closed F ⊆ C [ELN, Proposition 4].
Consequently, the minute we know that the AT (F )-spaces are closed, we know
that T will have natural local spectra. The converse is clearly true, since the
ZT (F )-spaces are closed, so we have the following.

Theorem 10 [ELN, Theorem 6]. If A is a regular , Tauberian commutative
semisimple Banach algebra with approximate units then T ∈ M(A) has natural
local spectra if and only if AT (F ) is closed for every closed F ⊆ C.

As usual, if we consider T ∈M0(A), more is known.

Theorem 11 [ELN, Corollary 10]. If A is a regular , Tauberian commutative
semisimple Banach algebra with approximate units, and if T ∈ M0(A) then T
has natural local spectra if and only if T is decomposable. These properties hold
precisely when T ∈M00(A).
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Colin Graham has given examples (cf. [ELN]) of measures in M0(L1(G)) \
M00(L1(G)) with natural spectrum, for certain non-compact groups G, thus en-
abling us to distinguish the concept of natural spectrum from that of natural local
spectra.

With the additional machinery available for group algebras, even more is
known. Recall that a subset K of a group G is independent if for any choice of
finitely many points xi from K and integers ni the equation n1x1 + . . .+nkxk = 0
implies that nixi = 0 for each i = 1, . . . , k.

Theorem 12 [ELN, Theorem 13]. Let K be a compact independent subset of
a non-discrete locally compact abelian group G. Take any measure µ concentrated
on K. Then Tµ : L1(G) → L1(G) is decomposable precisely when µ is a discrete
measure.

5. Multipliers with closed range. We conclude this survey with a brief
description of an application of the characterization of spectral subspaces that we
gave in Theorem 2. This application addresses itself to questions that arise from
a spectacular result of abstract harmonic analysis, due to Host and Parreau [HP].
This result finally completed the answer to a question, originally asked by Hewitt,
to which partial answers had been given by Glicksberg [G] and Ramsey and
Wells [RW], among others. The Host–Parreau result says that a multiplier T on
the group algebra L1(G), where G is a locally compact abelian group, will have
closed range if and only if T is the product of an idempotent multiplier and an
invertible multiplier.

A similar factorization result for more general algebras, say any regular com-
mutative semisimple Banach algebra, is not yet known. There are some conclu-
sions available if the assumption of closed range for T is replaced by that of closed
range for T 2; loosely, the reason why the factorization result is known to hold in
this case is that with information on T 2, the factorization is, so to speak, built
into the situation from the outset [AL]. To avoid straying too far from local spec-
tral theory only one result will be mentioned here, along with its technical basis.
As the phrasing of Theorem 13 shows, we can make T 2 appear to “go away” in
Theorem 14 only by imposing another restriction, that of injectivity.

Theorem 13 [AL, Theorem 4.1]. Let A be a commutative regular semisimple
Banach algebra. If T ∈ M(A), and if T 2 has closed range, then T∧ is bounded
away from zero on {φ ∈ ΦA | T∧(φ) 6= 0}.

S k e t c h o f p r o o f. If S := T |(TA)− then S is a multiplier on B := (TA)−

with closed range T 2(A). Let Dδ denote the open disc of radius δ, centered at 0 in
the complex plane. As a consequence of the constancy result Theorem 2, there is a
δ0 > 0 for which, for every 0 < δ < δ0, the analytic spectral subspaces BS(C\Dδ)
are all equal. Since BS(C \ Dδ) is an ideal with hull equal to S∧

−1
(Dδ)−, it

is not hard to see that the equality of the spectral spaces forces S∧
−1

(Dδ) =



MULTIPLIERS AND LOCAL SPECTRAL THEORY 235

S∧
−1

({0}) = ∅, the voidness resulting from regularity of A and injectivity of S.
But S∧

−1
(Dδ) = ∅ says that S∧, and hence T∧, is bounded away from zero on

ΦB = {φ ∈ ΦA | T∧(φ) 6= 0}.

Some standard facts about operators with closed range and about regular
algebras then yield the following result which has been known for some time (see
e.g. [DT, Theorem 2], also with another proof based on local spectral theory
[ELN, Proposition 8]).

Theorem 14 [AL, Theorem 4.3]. Let T be a multiplier with closed range on a
commutative Tauberian regular semisimple Banach algebra A. Then T is injective
if and only if T is surjective.

So for multipliers with closed range on a regular commutative semisimple
Tauberian Banach algebra there is a sort of Fredholm alternative: surjectivity of
a multiplier is the same as invertibility. Thus, for instance, it is beyond the reach
of multipliers in M0(A) to be surjective. And not just that: for any multiplier
T on a commutative regular semisimple Tauberian Banach algebra A all points
of the spectrum σ(T ) will be in the approximate point spectrum σap(T ). This
follows since if λ ∈ C \ σap(T ) then T − λ will be injective and have closed range.
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fini de M(G), Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 143–164.
[K] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear

operators, J. Analyse Math. 6 (1958), 261–322.
[L] R. Larsen, An Introduction to the Theory of Multipliers, Springer, New York, 1971.

[LN1] K. B. Laursen and M. M. Neumann, Decomposable multipliers and applications to
harmonic analysis, Studia Math. 101 (1992), 193–214.

[LN2] —, —, Local spectral theory and spectral inclusions, Glasgow Math. J., to appear.
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