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Introduction. Let T be a bounded operator in a Banach space X and let
x ∈ X. Denote by P the set of all complex polynomials. We are going to study
the following problem:

A. What can we say about the set {p(T )x : p ∈ P}?

A weaker version of this problem is:

B. What can we say about the set {T kx : k = 0, 1, . . .}?

The sets {T kx : k = 0, 1, . . .} for operators in Hilbert spaces were called
“orbits” by Rolewicz [15] and intensively studied by Beauzamy [2].

Questions of type A or B appear naturally in many problems of operator
theory.

Examples. 1. The local spectral radius r(T, x) of an operator T at a point
x ∈ X can be defined by r(T, x) = lim supk→∞ ‖T kx‖1/k, i.e. it is a quantity
defined in terms of B. The local spectral radius plays an important role in local
spectral theory.

2. The local capacity (see below) can be considered as an analogue to the local
spectral radius for the set of all polynomials.

3. The invariant subspace problem can also be easily reformulated by using the
sets {p(T )x : p ∈ P}: An operator T in X has no non-trivial invariant subspace
if and only if {p(T )x : p ∈ P} is dense for all x ∈ X. Many positive results (e.g.
results based on the Scott Brown technique) consist in finding x ∈ X such that
‖p(T )x‖ ≥ 1 for all polynomials p with p(0) = 1.
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The present paper is a survey of results obtained in [8]–[14]. The results show
that for every Banach space X and every bounded linear operator T on X there
exists x ∈ X such that ‖p(T )x‖ is big enough for all polynomials p.

I. Essential approximate point spectrum. Denote by B(X) the algebra
of all bounded operators in a Banach space X. Denote by C and N the set of all
complex numbers and positive integers, respectively.

Let T be a bounded operator in a Banach space X. If x is an eigenvalue of
T , Tx = λx for some complex λ, then p(T )x = p(λ)x for every polynomial p so
that we have a complete information about the set {p(T )x : p ∈ P}. Unfortu-
nately, operators in infinite-dimensional Banach spaces usually have no eigenval-
ues. The proper tool appears to be the notion of the essential approximate point
spectrum of T .

Denote by σe(T ) the essential spectrum of T ∈ B(X), i.e. the spectrum of
%(T ) in the Calkin algebra B(X)/K(X), where K(X) is the ideal of all compact
operators in X and % : B(X)→ B(X)/K(X) is the canonical projection. Denote
further by σπe(T ) the essential approximate point spectrum of T , i.e. σπe(T ) is
the set of all complex λ such that

inf{‖(T − λ)x‖ : x ∈M, ‖x‖ = 1} = 0

for every subspace M ⊂ X with codimM <∞.
It is easy to see that λ 6∈ σπe(T ) if and only if dim Ker (T −λ) <∞ and T −λ

has closed range, i.e. if T − λ is upper semi-Fredholm.
The terminology is not unified, the essential approximate point spectrum was

studied under various names (see e.g. [1], [3], [7]).
By [7], σπe(T ) contains the topological boundary of the essential spectrum, in

particular it is always a non-empty compact subset of σe(T ).
We start with studying the elements λ ∈ σπe(T ) for operators in Hilbert

spaces. We show that, for given k ∈ N, there always exists x such that the powers
T ix (0 ≤ i ≤ k) are smaller and smaller and almost orthogonal to each other.

Proposition 1. Let T be an operator in a Hilbert space H such that 0 ∈
σπe(T ) and codimTH <∞. Let k ∈ N and ε > 0. Then there exists x ∈ X with
‖x‖ = 1 such that

(1) ‖T i+1x‖ ≤ ε‖T ix‖ (i = 0, 1, . . . , k − 1),
(2) ‖p(T )x‖ ≥ (1− ε)|p(0)| (p ∈ P, deg p ≤ k),
(3) |〈T ix, T jx〉| ≤ ε‖T ix‖ · ‖T jx‖ (0 ≤ i, j ≤ k, i 6= j).

R e m a r k. The condition codimTH < ∞ is only technical and rather weak.
If this condition is not satisfied then 0 is an eigenvalue of T ∗. In particular, T has
a non-trivial invariant subspace, so that this case is not interesting (at least from
the point of view of the invariant subspace problem).

The following lemma is an important tool for various constructions in Banach
spaces. It enables one to generalize constructions in Hilbert spaces which use
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the orthogonal complement of a finite-dimensional subspace to general Banach
spaces.

Lemma 2. Let E be a finite-dimensional subspace of a Banach space X and
let ε > 0. Then there exists a subspace Y ⊂ X with codimY <∞ such that

‖e+ y‖ ≥ (1− ε) max{‖e‖, 1
2‖y‖}

for every e ∈ E and y ∈ Y .

By using Lemma 2 we can get an analogue to Proposition 1 for operators in
Banach spaces.

Proposition 3. Let T be an operator in a Banach space X such that 0 ∈
σπe(T ) and codimTX <∞. Let k ∈ N and ε > 0. Then there exists x ∈ X with
‖x‖ = 1 such that

(1) ‖T i+1x‖ ≤ ε‖T ix‖ (i = 0, 1, . . . , k − 1),
(2) ‖p(T )x‖ ≥ 1

2 (1− ε)|p(0)| (p ∈ P, deg p ≤ k).

By an inductive construction which uses the previous proposition we can con-
struct a point x ∈ X (actually, a dense subset of X) such that ‖p(T )x‖ is big
enough for all polynomials p (see [11]).

Theorem 4. Let T ∈B(X), λ ∈ σπe(T ). Let {ak}∞k=0 be a sequence of positive
numbers with limk→∞ ak = 0. Then there exists x ∈ X such that

‖p(T )x‖ ≥ adeg p · |p(λ)|
for every polynomial p.

Theorem 5. Let T ∈ B(X), λ ∈ σπe(T ), x ∈ X, ε > 0. Let {ak}∞k=0 be a
sequence of positive numbers with limk→∞ ak = 0. Then there exists y ∈ X and
a positive constant C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ Cadeg p · |p(λ)|
for every polynomial p.

R e m a r k. Let T ∈ B(X), λ ∈ σπe(T ) and suppose that there exist y ∈ X and
a constant c > 0 such that ‖p(T )y‖ ≥ c|p(λ)| for every polynomial p. Then either
(T − λ)y = 0 or M = {(T − λ)p(T )y : p ∈ P} is a non-trivial invariant subspace.
Indeed, y 6∈M as ‖y − (T − λ)p(T )y‖ ≥ c for every polynomial p.

As there are examples of operators in Banach spaces without non-trivial in-
variant subspaces, in general it is not possible to replace the sequence {ak} by a
constant c > 0. Thus Theorems 4 and 5 are the best possible, at least for Banach
spaces.

Denote by r(T ) and re(T ) the spectral radius and the essential spectral radius
of an operator T ∈ B(X), respectively.

Theorems 4 and 5 easily imply the corresponding results for powers T ix
(cf. [9] or [2]).
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Corollary 6. Let T ∈ B(X) and let {ak}∞k=0 be a sequence of positive
numbers with limk→∞ ak = 0. Then there exists x ∈ X such that

‖T kx‖ ≥ akr(T )k (k = 0, 1, . . .) .

P r o o f. Let λ ∈ σπe(T ) with |λ| = max{|z| : z ∈ σ(T )} = r(T ). Then either
λ is an eigenvalue of T and ‖T kx‖ = r(T )k for the corresponding eigenvector x
or λ ∈ σπe(T ) and we can apply Theorem 4.
Corollary 7. Let T ∈ B(X), x ∈ X, ε > 0 and let {ak}∞k=0 be a sequence

of positive numbers with limk→∞ ak = 0. Then there exists y ∈ X and a positive
constant C = C(ε) such that ‖y − x‖ ≤ ε and

‖T ky‖ ≥ Cakr(T )k (k = 0, 1, . . .) .

Corollary 8 (see [17]). Let T ∈ B(X). Then the set {x ∈ X : r(T, x) =
r(T )} is dense in X.

As another corollary we deduce that the infimum and the supremum in the
spectral radius formula

r(T ) = inf
k∈N
‖T k‖1/k = inf

k∈N
sup
‖x‖=1

‖T kx‖1/k

can be interchanged.

Corollary 9. Let T ∈ B(X). Then

r(T ) = inf
k∈N

sup
‖x‖=1

‖T kx‖1/k = sup
‖x‖=1

inf
k∈N
‖T kx‖1/k .

II. Capacity. In the previous section we estimated ‖p(T )x‖ by means of
|p(λ)| where λ was a fixed element of σπe(T ). In this section we are looking for
an estimate in terms of max{|p(λ)| : λ ∈ σπe(T )}. As δσe(T ) ⊃ σπe(T ), by the
spectral mapping theorem for σe we have

max
λ∈σπe(T )

|p(λ)| = max
λ∈σe(T )

|p(λ)| = max{|z| : z ∈ σe(p(T ))} = re(p(T )) .

An important tool for the results in this section is the following classical lemma
of Fekete [4]:

Lemma 10. Let K be a non-empty compact subset of the complex plane and
let k ≥ 1. Then there exist points u0, u1, . . . , uk ∈ K such that

max{|p(z)| : z ∈ K} ≤ (k + 1) · max
0≤i≤k

|p(ui)|

for every polynomial p with deg p ≤ k.

By using the previous lemma and the results of the previous section we can
get (see [10])
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Proposition 11. Let T ∈ B(X), ε ≥ 0 and k ≥ 1. Then there exists x ∈ X
with ‖x‖ = 1 and

‖p(T )x‖ ≥ 1− ε
2(k + 1)2

re(p(T ))

for every polynomial p with deg p ≤ k.

Theorem 12. Let T ∈ B(X), x ∈ X and ε > 0. Then there exists y ∈ X and
a positive constant C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ C(1 + deg p)−(2+ε)re(p(T ))

for every polynomial p.

R e m a r k. In case of a Hilbert space operator one can get a better estimate

‖p(T )y‖ ≥ C(1 + deg p)−(1+ε)re(p(T )) .

The notion of capacity of an operator was defined by Halmos in [5]. If T ∈
B(X) then

capT = lim
k→∞

(capkT )1/k = inf
k

(capkT )1/k

where
capkT = inf{‖p(T )‖ : p ∈ P1

k}
and P1

k is the set of all monic (i.e. with leading coefficient equal to 1) polynomials
of degree k.

This is a generalization of the classical notion of capacity of a compact subset
K of the complex plane:

capK = lim
k→∞

(capkK)1/k = inf
k

(capkK)1/k

where

capkK = inf{‖p‖K : p ∈ P1
k} and ‖p‖K = sup{|p(z)| : z ∈ K} .

By the main result of [5], capT = capσ(T ).
The local capacity of T at x can be defined analogously:

capk(T, x) = inf{‖p(T )x‖ : p ∈ P1
k}

and
cap(T, x) = lim sup

k→∞
capk(T, x)1/k

(in general the limit does not exist).
It is easy to see that cap(T, x) ≤ capT for every x ∈ X.

Corollary 13. Let T ∈ B(X). Then the set {x ∈ X : cap(T, x) = capT} is
dense in X.

P r o o f. By Theorem 12 there exists a dense subset Y ⊂ X such that

‖p(T )y‖ ≥ C

(deg p+ 1)3
re(p(T ))
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for every polynomial p. Then

capk(T, y) = inf{‖p(T )y‖ : p ∈ P1
k} ≥ inf

p∈P1
k

C

(k + 1)3
re(p(T ))

= inf
p∈P1

k

C

(n+ 1)3
sup{|p(λ)| : λ ∈ σe(T )} =

C

(n+ 1)3
capkσe(T ) .

Thus

cap(T, y) = lim sup
k→∞

capk(T, y)1/k

≥ lim sup
k→∞

(
C

(k + 1)3

)1/k

(capkσe(T ))1/k = capσe(T ) .

Further capσe(T ) = capσ(T ) as σ(T ) − σe(T ) contains only countably many
isolated points in the unbounded component of the complement of σe(T ) and
capσ(T ) = capT by [5]. Hence cap(T, x) = capT for every y ∈ Y .

An operator T ∈ B(X) is called quasialgebraic if and only if capT = 0.
Similarly T is called locally quasialgebraic if cap(T, x) = 0 for every x ∈ X.

It follows from Corollary 13 that these two notions are equivalent (see [8]).
This gives a positive answer to a problem of Halmos [5].

Theorem 14. An operator is quasialgebraic if and only if it is locally quasial-
gebraic.

Theorem 14 is an analogue to the well-known result of Kaplansky: an operator
is algebraic (i.e. p(T ) = 0 for some non-zero polynomial p) if and only if it is
locally algebraic (i.e. for every x ∈ X there exists a polynomial px 6= 0 such that
px(T )x = 0).

III. n-tuples of commuting operators. The results of the previous section
admit a generalization for n-tuples of commuting operators.

Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators in a
Banach space X. We denote by σ(T ) ⊂ Cn the Harte spectrum [6] of T , i.e.
λ = (λ1, . . . , λn) ∈ Cn does not belong to σ(T ) if and only if there exist operators
L1, . . . , Ln, R1, . . . , Rn ∈ B(X) such that

n∑
i=1

Li(Ti − λi) = I =
n∑
i=1

(Ti − λi)Ri .

Denote further by σπe(T ) the essential approximate point spectrum of the n-tuple
T , i.e. λ = (λ1, . . . , λn) ∈ σπe(T ) if and only if

inf
{ n∑
i=1

‖(Ti − λi)x‖ : x ∈M, ‖x‖ = 1
}

= 0

for every subspace M of finite codimension.
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The following result is a generalization of Theorem 12 for n-tuples of com-
muting operators (see [14]):

Theorem 15. Let T = (T1, . . . , Tn) ∈ B(X)n be a mutually commuting n-
tuple of operators. Let x ∈ X and ε > 0. Then there exists y ∈ X and a positive
constant C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ C

(1 + deg p)2n+ε
re(p(T ))

for every polynomial p with n variables.

Every polynomial p in n complex variables with deg p ≤ k can be written in
the form

p(z) =
∑
|α|≤k

cα(p)zα

where α = (α1, . . . , αn) is an n-tuple of non-negative integers, |α| = α1 + . . .+αn,
the coefficients cα(p) are complex, z = (z1, . . . , zn) ∈ Cn and zα = zα1

1 . . . zαnn .
The notion of capacity of commuting n-tuples of operators was introduced by

Stirling [16]:
Denote by P1

k(n) the set of all “monic” polynomials p(z) =
∑
|µ|≤k cµ(p)zµ of

degree k in n variables with
∑
|µ|=k |cµ(p)| = 1.

Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators in a
Banach space X. The joint capacity of T was defined in [16] by

capT = lim inf
k→∞

capk(T )1/k where capk(T ) = inf{‖p(T )‖ : p ∈ P1
k(n)}

(in fact the lim inf in the definition of capT can be replaced by limit, see [12]).
For a compact subset K ⊂ Cn define the corresponding capacity by

capK = lim
k→∞

capk(K)1/k where capk(K) = inf{‖p‖K : p ∈ P1
k(n)} .

This capacity was studied in [16] and called the “homogeneous Chebyshev con-
stant” of K.

By [16], capσ(T ) ≤ capT ≤ 2ncapσ(T ). Actually, equality holds here (see
[12]).

Theorem 16. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting
operators in a Banach space X. Then capT = capσ(T ).

Theorem 17 (see [13]). Let T be an n-tuple of mutually commuting operators
in a Banach space X. Then σ(T ) − σ̂πe(T ) consist of at most countably many
isolated joint eigenvalues, where σ̂πe(T ) denotes the polynomially convex hull of
σπe(T ). In particular , capσ(T ) = capσπe(T ) (actually all reasonable joint spec-
tra have the same capacity).
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Let T = (T1, . . . , Tn) be a commuting n-tuple of operators in a Banach space
X and let x ∈ X. We define the local capacity cap(T, x) by

cap(T, x) = lim sup
k→∞

capk(T, x)1/k

where
capk(T, x) = inf{‖p(T )x‖ : p ∈ P1

k(n)} .
Clearly cap(T, x) ≤ capT for every x ∈ X.

Theorem 18 (see [14]). Let T be an n-tuple of mutually commuting operators
in a Banach space X. Then the set of all y ∈ X with cap(T, y) = capT is
dense in X.
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