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Žitná 25, 115 67 Praha 1, Czech Republic

The notions of nil, nilpotent or PI-rings (= rings satisfying a polynomial iden-
tity) play an important role in ring theory (see e.g. [8], [11], [20]). Banach algebras
with these properties have been studied considerably less and the existing results
are scattered in the literature. The only exception is the work of Krupnik [13],
where the Gelfand theory of Banach PI-algebras is presented. However, even this
work has not get so much attention as it deserves.

The present paper is an attempt to give a survey of results concerning Banach
nil, nilpotent and PI-algebras.

The author would like to thank to J. Zemánek for essential completion of the
bibliography.

I. Nil and nilpotent Banach algebras. All algebras are complex; we do
not assume the existence of the unit element.

The set of all positive integers will be denoted by N. For n ∈ N we denote by
Pn the set of all complex polynomials in n non-commuting variables.

Definition 1. Let A be a Banach algebra. We say that

(1) A is nil ⇔ every element of A is nilpotent, i.e. for every x ∈ A there is
n ∈ N such that xn = 0,

(2) A is nilpotent ⇔ there exists m ∈ N such that x1 . . . xm = 0 for all
x1, . . . , xm ∈ A,

(3) A is algebraic ⇔ for every x ∈ A there is a polynomial p ∈ P1, p 6= 0,
such that p(x) = 0,

(4) A is locally finite ⇔ every finite subset of A generates a finite-dimensional
subalgebra,
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(5) A is a PI-algebra ⇔ there exist n ∈ N and a polynomial p ∈ Pn, p 6= 0,
such that p(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ A,

(6) A is locally PI ⇔ for every sequence {xi}∞i=1 ⊂ A there exist n ∈ N and
p ∈ Pn, p 6= 0, such that p(x1, . . . , xn) = 0.

There are a number of relations among these notions:

Theorem 2 [15]. A Banach algebra is PI if and only if it is locally PI.

Theorem 3 ([1], cf. also [12], [5] and [10]). Let A be a Banach algebra. The
following properties are equivalent :

(a) A is algebraic,
(b) A is locally finite,
(c) RadA is nilpotent and codim RadA <∞.

Theorem 4 [7]. A Banach algebra is nil if and only if it is nilpotent.

Thus we have
(1)⇔ (2)⇒ (3)⇔ (4)⇒ (5)⇔ (6) .

The algebra of all n×n matrices is an example of an algebraic Banach algebra
which is not nilpotent.

Any infinite-dimensional commutative semisimple Banach algebra is an exam-
ple of a PI-algebra which is not algebraic (by Theorem 3).

The proof of Theorem 4 consists of two steps:

1. If every element of a Banach algebra A is nilpotent then there exists n ∈ N
such that xn = 0 for every x ∈ A. This (as well as many other results in this
paper) is a consequence of the Baire category theorem.

2. If xn = 0 for every x ∈ A then there exists m ∈ N such that x1 . . . xm = 0
for all x1, . . . , xm ∈ A. This is the so-called Nagata–Higman theorem (see [16],
[9] or [11], Appendix C), which is purely algebraic (actually, it has recently been
discovered that this theorem was already proved by Dubnov and Ivanov [4]).

Denote by d(n) the least integer such that x1 . . . xd(n) = 0 for all x1, . . . , xd(n)

∈ A provided that xn = 0 (x ∈ A). An interesting open problem is to determine
the exact value of d(n). The best known bounds are ([14], [18])

n(n+ 1)
2

≤ d(n) ≤ n2 .

For a survey of results about the Nagata–Higman theorem, see [6].

II.Approximate properties. A natural approximate analogue to the notion
of a nilpotent element x of a Banach algebra A is the concept of quasinilpotent
elements:

x ∈ A is quasinilpotent ⇔ r(x) = lim
n→∞

‖xn‖1/n = 0 .
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There are several possibilities to define approximative versions of nil or nilpotent
algebras (cf. [2]).

Definition 5. Let A be a Banach algebra. Then

(1) A is radical (= topologically nil) ⇔ every element of A is quasinil-
potent, i.e.

lim
n→∞

‖xn‖1/n = 0

for every x ∈ A,
(2) A is uniformly topologically nil ⇔ limn→∞ SA(n) = 0 where

SA(n) = sup
{
‖xn‖1/n : x ∈ A, ‖x‖ = 1

}
,

(3) A is topologically nilpotent ⇔ limn→∞ ‖x1 . . . xn‖1/n = 0 for every se-
quence x1, x2, . . . ∈ A with ‖xi‖ = 1 (i = 1, 2, . . .),

(4) A is uniformly topologically nilpotent ⇔ limn→∞NA(n) = 0 where

NA(n) = sup{‖x1 . . . xn‖1/n : x1, . . . , xn ∈ A, ‖xi‖ = 1 (i = 1, . . . , n)
}
.

These notions are related in the following manner:

Theorem 6 [3]. A Banach algebra is topologically nilpotent if and only if it is
uniformly topologically nilpotent.

Theorem 7 [2]. If A is a topologically nilpotent Banach algebra then A is
uniformly topologically nil. If A is commutative then these two notions are equiv-
alent.

Thus we have

(4)⇔ (3)⇒ (2)⇒ (1)

and for commutative Banach algebras

(4)⇔ (3)⇔ (2)⇒ (1) .

An example of a uniformly topologically nil algebra which is not topologically
nilpotent can be found in [3] (clearly such an example is non-commutative).

If A is a uniformly topologically nil then A is clearly radical and it is not
difficult to find an example of an (even commutative) radical Banach algebra
which is not uniformly topologically nil: consider the `1-algebra A generated by
elements x1, x2, . . . which satisfy ‖xi‖ = 1, xixj = 0 (i 6= j), and ‖xii‖ = 1,
xi+1
i = 0.

Another interesting notion is the following (see [19], [22]; for a related concept
see also [17]):

For a bounded subset M of a Banach algebra A define ‖M‖ = sup{‖x‖ : x
∈M} and r(M) = limn→∞ ‖Mn‖1/n (the spectral radius of M), where

Mn = {x1 . . . xn : xi ∈M, i = 1, . . . , n} .
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Note that in this notation NA(n) = ‖BnA‖1/n, where BA is the closed unit ball of
A, and A is topologically nilpotent if and only if r(BA) = 0. An interesting open
problem (see [22]) is the following

Problem (1). Let A be a radical Banach algebra. Is then A finitely quasinilpo-
tent, i.e. r(F ) = 0 for every finite subset F ⊂ A?

It is easy to see that this is true for commutative Banach algebras. A positive
answer is known also if the algebra A consists of compact operators in a Banach
space (see [21]).

The example mentioned above is an example of a commutative finitely quasi-
nilpotent algebra which is not uniformly topologically nil.

A countable version of this problem has a negative answer. As an example,
take the set M = {x1, x2, . . .} in the `1-algebra with generators x1, x2, . . . which
satisfy the relation xixj = 0 for j 6= i + 1. In other words, the elements of the
algebra are of the form

y =
∑
i<j

αi,jxixi+1 . . . xj−1

where the complex coefficients αi,j satisfy ‖y‖ =
∑
i<j |αi,j | <∞.

III. Gelfand theory of Banach PI-algebras. In this section we give a
survey of the Gelfand theory for Banach PI-algebras (see [13]).

To avoid technical difficulties we formulate the results only for algebras with
unit.

If A is a Banach PI-algebra without unit, then its unification is also a PI-
algebra (by Theorem 2), so that the results can be modified for algebras without
unit in the obvious way.

Among all polynomial identities, the standard identities play an important
role. Define

en(x1, . . . , xn) =
∑
σ∈Sn

sign(σ)xσ(1) . . . xσ(n) ,

where Sn is the set of all permutations of {1, . . . , n} and sign(σ) = ±1 for σ even
(odd). Clearly e2(x1, x2) = x1x2 − x2x1.

Examples (of Banach PI-algebras). 1. Any commutative Banach algebra A
satisfies the standard identity e2(x, y) = 0 for all x, y ∈ A.

2. Let A be a finite-dimensional Banach algebra, dimA = n. Then it is easy
to show that

en+1(x1, . . . , xn+1) = 0 (x1, . . . , xn+1 ∈ A) .
3. An important particular case is the algebra Mn of all n×n (complex) ma-

trices. By 2, the algebra Mn satisfies the polynomial identity en2+1(x1, . . . , xn2+1)
= 0. Actually, a better result is true:

(1) Editorial note: See also Question 15 in the article of V. S. Shul’man in this volume.
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Theorem 8 (Amitzur, Levitzky). The algebra Mn satisfies the standard iden-
tity

e2n(x1, . . . , x2n) = 0 (x1, . . . , x2n ∈Mn).

It can be shown that Mn satisfies no polynomial identity of degree ≤ 2n.
Denote by Fn the class of all unital Banach algebras A which satisfy the

standard identity en(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ A.
Clearly F2 is the class of all commutative unital Banach algebras so that the

classes Fn can be considered as a generalization of commutative Banach algebras.
Further, Mn ∈ F2n by Theorem 8.

Denote by M(A) the set of all maximal two-sided ideals in a Banach algebra
A. For M ∈M(A) denote by πA the canonical homomorphism πM : A→ A/M .

It is well-known that if A is a commutative Banach algebra, then maximal
ideals are of codimension 1,

⋂
{M : M ∈M(A)} = RadA, and x ∈ A is invertible

⇔ πM (x) 6= 0 (M ∈M(A)).
The following theorem is a generalization of these facts:

Theorem 9 ([13], Theorem 21.1). Let A be a Banach algebra of class F2n.
Then

(a) For every M ∈ M(A) the algebra A/M is isomorphic to Ml for some
l ≤ n,

(b)
⋂
{M : M ∈M(A)} = RadA,

(c) x ∈ A is invertible ⇔ πM (x) is invertible for every M ∈M(A).

If A is a Banach PI-algebra then it can be shown that A satisfies a homo-
geneous multilinear identity, i.e. there exist n ∈ N and complex coefficients ασ
(σ ∈ Sn), not all zero such that∑

σ∈Sn

ασxσ(1) . . . xσ(n) = 0 (x1, . . . , xn ∈ A) .

However, not every Banach PI-algebra satisfies a standard identity. Consider the
exterior algebra A (with unit) generated by elements e1, e2, . . . with multiplication
eiej = −ejei (i, j ∈ N). This algebra is PI as (xy − yx)z − z(xy − yx) = 0
(x, y, z ∈ A) and it can be easily seen that A does not satisfy any standard
identity.

The situation changes when we consider semisimple Banach algebras or, equiv-
alently, Banach PI-algebras modulo radical.

Theorem 10. Let A be a unital Banach algebra. The following statements are
equivalent :

(1) A/RadA is a PI-algebra.
(2) A/RadA ∈ F2n for some n ∈ N.
(3) There exists m ∈ N such that x ∈ A is invertible ⇔ π(x) is invertible for

all representations (i.e. unit-preserving homomorphisms) π : A→Mm.
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(4) There exists m ∈ N such that x ∈ A is invertible ⇔ π(x) is invertible for
all representations π : A→Mm with the property

|(π(y))i,j | ≤ ‖y‖ (y ∈ A, i, j = 1, . . . ,m) .

P r o o f. The equivalence (1)⇔ (2)⇔ (x ∈ A is invertible⇔ π(x) is invertible
for all representations π : A → Ml (l ≤ n)) can be found in [13], Theorems 22.1
and 22.2.

To show the equivalence with (3), take m = n! (in fact m = n2 is sufficient),
so that for any representation π : A → Ml with l ≤ n there is a representation
π̃ : A→Mm, π̃ =

⊕m/l
i=1 π.

For the equivalence with (4), see [13], Lemma 25.1.

For commutative Banach algebras there is a 1-1 correspondence between max-
imal ideals and multiplicative functionals. For PI-algebras the role of multi-
plicative functionals is played by finite-dimensional representations, but a finite-
dimensional representation is not uniquely determined by its kernel. Property (4)
of the previous theorem shows that it is sufficient to consider a compact set of
representations.

Let A be a unital Banach algebra such that A/RadA is a PI-algebra. Let
m ∈ N be the integer from the previous theorem. Denote by K the set of all
representations π : A→Mm with the property

|(π(y))i,j | ≤ ‖y‖ (y ∈ A, i, j = 1, . . . ,m) .

We define a topology on K in the following way: the basis of neighborhoods of an
element π ∈ K is formed by the sets

Ux1,...,xk,ε = {π′ ∈ K : ‖π′(xi)− π(xi)‖ < ε, i = 1, . . . , k}
where x1, . . . , xk ∈ A, ε > 0.

Clearly K is a compact set. Denote by C(K,Mm) the algebra of all continuous
functions from K to Mm and define a mapping G : A→ C(K,Mm) by

G(a)(π) = π(a) (a ∈ A, π ∈ K) .

Theorem 11. Let A be a unital Banach algebra such that A/RadA is a
PI-algebra. Then the mapping G : A→ C(K,Mm) has the following properties:

(1) G is a continuous homomorphism,
(2) a ∈ A is invertible ⇔ G(a) is invertible in C(K,Mm),
(3) G(a) = 0⇔ a ∈ RadA,
(4) σ(a) =

⋃
π∈K σ(G(a)(π)) so that r(a) = maxπ∈K r(G(a)(π)).
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