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1. Introduction. We consider the class of operator-valued functions T an-
alytic in C+ = {λ ∈ C : Imλ > 0}, whose values T (λ) are bounded operators
on a separable Hilbert space H, for each λ ∈ C+. Moreover, we suppose that
ImT (λ) := (T (λ)−T ∗(λ))/(2i) ≥ 0. By analogy with the scalar case (dimH = 1)
such functions are called operator-valued (o.-v.)R-functions [2]. It is easy to check
that the resolvent (A − λ)−1 of a selfadjoint operator on H is an example of an
o.-v. R-function:

((A− λ)−1 − [(A− λ)−1]∗)/(2i) = [(A− λ)−1]∗(Imλ)[(A− λ)−1] ≥ 0

if Imλ > 0. The same holds for the so-called “bordered” resolvent T (λ) ≡
V 1/2(A − λ)−1V 1/2 with V ≥ 0 selfadjoint (V ∈ B(H), the Banach space of
all linear bounded operators in H with the ordinary norm), which appears in a
natural way in perturbation theory for a pair {A,A+V } of selfadjoint operators.
Namely, by the Hilbert identity, the resolvent of the perturbed operator A + V
satisfies

(I + V 1/2(A− λ)−1V 1/2)V 1/2(A+ V − λ)−1 = V 1/2(A− λ)−1 .

So the “smoothed” resolvents V 1/2(A + V − λ)−1 and V 1/2(A − λ)−1 are
proportional with coefficient T (λ) := I + V 1/2(A − λ)−1V 1/2 which is an o.-v.
R-function in C+. It is clear that the boundary behaviour of T (λ) as λ tends to the
real axis R determines the singularities of the perturbed resolvent (A+V −λ)−1.
In the framework of perturbation theory this leads to a connection between the
spectral structure of A+ V and the boundary behaviour of T (λ) on the real axis
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[10, 14, 20, 22, 23]. For example, in scattering theory (the theory of perturbation of
the continuous spectrum [14]) the existence and completeness of the so-called wave
operators (establishing the unitary equivalence between the absolutely continuous
parts of A and A+V ) can be formulated in terms of the existence of the boundary
values of some o.-v. R-functions (see for example [17], [18]). Analogous problems
arise in the investigation of the structure of the singular spectrum of selfadjoint
operators under smooth perturbation [10, 20, 23].

In what follows we say that the operator-valued function T (λ), λ ∈ C+, has
boundary values T (k) on R if for almost all k ∈ R the limit limλ→k T (λ) =: T (k)
exists in some operator topology as λ tends to k staying in some angular sector in
C+ that is not tangent to the real axis (≡ nontangential boundary values). The
choice of the operator topology will essentially depend on the properties of the
operator function. For example, if

T (λ) = V 1/2(A− λ)−1V 1/2 , A = A∗ , V ≥ 0 , V ∈ B(H) ,

then the membership of V in the Schatten–von Neumann class Sp leads to the
investigation of boundary values in the Sq-operator topology, q ≥ p. Here the
class Sp, p > 0, consists of all compact operators T on the Hilbert space H
such that

∑∞
n=1 sn(T )p <∞, where the s-numbers of the operator T , sn(T ), are

the square roots of the eigenvalues λn(T ∗T ) of the positive selfadjoint compact
operator T ∗T , n = 1, 2, . . . [11]. For p ≥ 1 the class Sp is a Banach space with
the standard norm

‖T‖Sp :=
( ∞∑
n=1

sn(T )p
)1/p

.

We keep this notation for p < 1, when Sp is not a normed space but a
quasinormed one.

We consider the following general problem. Suppose that the value(s) of an
operator-valued R-function T (λ) belong(s) at some point (or at any point) of
C+ to a given operator class S. Can one then conclude that the nontangential
boundary values exist a.e. on R, and in what operator topology do the nontangen-
tial limits exist? We discuss various classes of operator-valued R-functions and
various representations for such functions.

Finally, we note that the problems under investigation are closely connected
with other domains of analysis such as perturbation theory for selfadjoint and non-
selfadjoint operators [10, 14, 17, 18, 20, 22, 23], scattering theory [3, 17, 18], trace
formulas, determinants of o.-v. functions and the so-called characteristic functions
of nonselfadjoint operators [28, 29], Volterra operators in Hilbert space [12], the
Hilbert transform on different classes of vector-valued functions on R and T [5,
6, 7, 9, 13, 24, 26], martingale theory [8] etc. Let us also mention a few earlier
papers including some results on the boundary behaviour of analytic Banach-
space-valued functions [1, 3, 25, 27, 28]. The proofs of the theorems of the present
paper can be found in [19, 21].
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2. Basic facts on classes of operator-valued R-functions. First we men-
tion the following formula for an arbitrary o.-v. function T (λ) analytic in C+ with
nonnegative imaginary part (T (λ) : H → H, Imλ > 0):

(1) T (λ) = A+Bλ+ V 1/2(I + λL)(L − λ)−1V 1/2|H ,
where A = A∗, B ≥ 0, A,B ∈ B(H) [20]. Here the selfadjoint operators L and V
(V ≥ 0) act in an auxiliary Hilbert space H ⊃ H and V |H	H = 0. Moreover,
V ∈ B(H). The last formula is a generalization of both the well-known Riesz–
Herglotz theorem [2] on the representation of an arbitrary scalar R-function and
of the Sz.-Nagy theorem on dilation [28] of contractions (maximal dissipative
operators).

Let us give some motivation. Denoting the spectral measure of the operator
L by Et, t ∈ R, we have

T (λ) = A+Bλ+
∫
R

1 + λt

t− λ
d(V 1/2EtV

1/2) .

Assuming that dimH = 1 (H ≡ C) we can rewrite this in the form

(2) T (λ) = a+ bλ+
∫
R

1 + λt

t− λ
dµ(t)

with constants a ∈ R, b ≥ 0 and a scalar Borel measure dµ(t) because for dimH
= 1 the operator V has rank one. Of course, formula (2) coincides with the Riesz–
Herglotz representation for functions analytic in C+ with positive imaginary part.
On the other hand, let us consider a dissipative (for simplicity bounded) operator
T on an arbitrary Hilbert space H. Then it is easy to check that the operator-
valued function T (λ) = −(T + λ)−1 is an R-function. Indeed,

ImT (λ) = [−(T + λ)−1 + (T ∗ + λ)−1]/(2i)

= [(T + λ)−1]∗(ImT + ImλI)(T + λ)−1 ≥ 0 ,

and hence T (λ) has a representation of the form (1). The simple asymptotic
investigation of T (λ) as λ → +i∞ shows that B = 0, A = V 1/2LV 1/2 and
V 1/2(I + L2)V 1/2 = PH where PH is the orthogonal projector on H in H. So
we have −(T + λ)−1 = PH(L − λ)−1|H , which means that −L is the so-called
selfadjoint dilation [28] of the dissipative operator T in the Hilbert space H ⊃ H.
Note that in this case the spectrum of L is the whole of R [28].

Let us rewrite (1) as

T (λ) = A+ (B + V )λ+ (1 + λ2)V 1/2(L − λ)−1V 1/2 .

We see that instead of the general case it is enough to investigate operator-
valued R-functions of the special form

V 1/2(L − λ)−1V 1/2|H , with V ≥ 0 , V |H	H = 0 , L = L∗ .
The class of all such o.-v. R-functions will be denoted by R0(S). Here S is an
operator class to which V belongs. In any case we will assume that S is a linear
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space invariant under taking the adjoint and has the monotonicity property (i.e.
if T ∈ S, T ≥ 0, S ∈ B(H), 0 ≤ S ≤ T , then S ∈ S and ‖S‖S ≤ ‖T‖S).
Of course all the classes Sp, p > 0, have these properties. The class R0(S) is a
natural generalization of the class R0 of scalar functions [2]. It is possible to give
an equivalent description of R0(S) without leaving the initial Hilbert space H.
Namely, R0(S) coincides with the set of all S-valued R-functions T (λ) satisfying

1) w-limτ→∞ T (iτ) = 0,

together with one of the following equivalent conditions [20]:

2)1
∫

R ImT (k + iε) dk ∈ S, ε > 0;
2)2 supτ>0 τ‖ ImT (iτ)‖Sp <∞ for S = Sp, 0 < p <∞;
2)3 trT (λ) ∈ R0 for S = S1;
2)4 supτ>0 τ‖T (iτ)‖S <∞ for S = Sp, p > 0;
2)5 there exist a selfadjoint operator L on a Hilbert space H and a bounded

operator R : H → H such that R∗R ∈ S and

T (λ) = R∗(L − λ)−1R , Imλ > 0 .

In what follows we restrict our attention to this more special class R0(S).
This restriction is most convenient for formulating the theorems in terms of the
“perturbation” V (see §1). Naturally, all statements can be easily modified in the
general case of an arbitrary S-valued R-function. In Section 1 it was shown that
o.-v. R-functions are directly connected with perturbation theory for selfadjoint
and dissipative operators. It is very easy to extend the results about the boundary
behaviour of o.-v. R-functions to the more general class of o.-v. functions (not
necessarily R-functions) of the form R∗2(L − λ)−1R1, where R1,2 are bounded
operators from H into H such that R∗1R1, R

∗
2R2 ∈ S. We can reduce this case

to the preceding one by using the well-known connection between bilinear and
quadratic forms [21].

3. Boundary behaviour of Sp-valued R-functions, p 6=1. Let us consider
the case S = Sp, p 6= 1. The more complicated case S = S1 will be examined
later. We first prove that for Sp-valued (p > 1) R-functions the boundary values
(even radial boundary values) in general do not exist, in the sense defined below.
Actually, we prove a sharper result than in [19].

Theorem 1. Let V ≥ 0 be an arbitrary selfadjoint compact operator on H
which does not belong to the nuclear class S1. Then there exists a selfadjoint
operator L on H such that for the operator-valued R-function T (λ) := V 1/2(L−
λ)−1V 1/2 its “weak boundary values” T (k+ i0) are unbounded operators in H for
a.e. k ∈ R. The “weak boundary values” are understood in the following sense.
For a fixed dense set of vectors ϕ ∈ H the limit

(T (k + i0)ϕ,ϕ) := lim
ε→+0

(T (k + iε)ϕ,ϕ)

exists.
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This theorem says that for every class S such that S\S1 6= ∅ we cannot assert
the existence of the boundary (radial) values for a.e. k ∈ R even in the weak sense.
Of course this theorem is closely connected with the Weyl–von Neumann theorem
on transformation of the spectrum under nonnuclear perturbation.

P r o o f o f T h e o r e m 1. Let {sn}∞n=1, sn ↓ 0,
∑
n sn =∞, be the sequence

of s-numbers of V (sn ≡ sn(V )). Then obviously there exists a decreasing se-
quence {γn}∞n=1 such that γn → 0 as n → ∞ (very slowly) but

∑
n γnsn = ∞.

Consider an infinite-to-one (at any point) covering of the real axis by intervals
∆n of length γnsn, n = 1, 2, . . . In view of the divergence of the series

∑
n γnsn

it is very easy to find such a covering. Define an o.-v. R-function by

T (λ) =
∞∑
n=1

sn
µn − λ

Pn ,

where µn is the midpoint of the interval ∆n and Pn is the spectral projector of
the nonnegative operator V corresponding to the eigenvalue sn, n = 1, 2, . . . We
have the representation (1) with H = H, and L ≡ L =

∑
n µnPn is a selfadjoint

operator with pure point spectrum. Choosing for the dense set of vectors ϕ the
set of all finite linear combinations of arbitrary vectors from the ranges of the
operators Pn we obtain

T (k + i0) =
∞∑
n=1

sn(µn − k)−1Pn

for every k ∈ R \ {µ1, µ2, . . .}. The linear operator T (k + i0) is densely defined at
least on the same set of vectors ϕ. Fix k ∈ R \ {µ1, µ2, . . .}. Then there exists a
sequence ni →∞ as i→∞ such that k ∈ ∆ni , i = 1, 2, . . . , because our covering
is infinite-to-one. Then

‖T (k + i0)‖ ≥ sni/|∆ni | = 1/γni →∞ as i→∞ ,

which finishes the proof.
On the other hand, if p < 1 then for every Sp-valued R-function the nontan-

gential boundary values in the Sp-“norm” exist a.e. on R. This fact is an operator
analogue of Kolmogorov’s theorem on the Hardy classes Hp for p < 1 [15]. We
give the precise formulation [19].

Theorem 2. Let T (λ) be an arbitrary Sp-valued R-function in C+, 0 < p < 1.
Then for almost all k ∈ R the nontangential boundary values T (k) (≡ T (k + i0))
exist in Sp, with the nontangential limit understood in the Sp-“norm”, and

Ap
∫
R

‖T (k)‖pSp

dk

k2 + 1
≤
∫
R

‖T p(k)‖S1

dk

k2 + 1

≤ Cp‖T (i)‖pSp
≡ Cp‖A+ (B + V )i‖pSp

for some constants Ap, Cp depending only on p, Cp = O(1/(1 − p)), 0 < p < 1,
and Ap = a1/p where a is an absolute constant.
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This theorem not only coincides with Kolmogorov’s theorem if dimH = 1 but
also, in the general case, its proof is essentially an operator analogue of Smirnov’s
well-known proof of Kolmogorov’s theorem. One just has to add a few elementary
facts concerning the s-numbers of a compact operator and the so-called Matsaev–
Palant inequality for powers of a dissipative operator [16].

4. S1-valued R-functions. Preliminary facts. In the preceding section we
saw that there is a “jump” when the parameter p goes through 1. It turns out
that this jump is very sharp. Namely, every S1-valued R-function has boundary
values a.e. on R.

Theorem 3. Let T (λ) be an arbitrary operator-valued function in R0(S1).
Then T (λ) has nontangential boundary values a.e. on R in the Sp-norm for all
p > 1, and the boundary values T (k) satisfy the estimate∫

R

‖T (k)‖pSp
|η(k)|p dk ≤ Cp‖V ‖S1 ,

where T (λ) = V 1/2(L − λ)−1V 1/2|H , V ∈ S1 and the a.e. nonzero weight fun-
ction η is the boundary value of the scalar analytic contractive function η(λ) :=
det((I + S(λ))/2). Here

S(λ) := (I + iV 1/2(L − iV/2− λ)−1V 1/2)|H
is the so-called characteristic function [28] of the maximal dissipative operator
L+ iV/2 in H.

On the other hand, the boundary values of a S1-valued R-function in general
do not belong to S1. Moreover, the boundary values belong to no class better
than SΩ , the so-called adjoint Matsaev class [11]. The symmetrically normed ideal
SΩ consists of all compact operators T whose s-numbers satisfy the condition

‖T‖SΩ
:= sup

n≥1

( n∑
k=1

sk(T )
)/( n∑

k=1

1/k
)
<∞ .

Namely, for every sequence of {cn}∞n=1 of positive numbers with cn → 0 as
n→∞, it is possible [19] to construct an example of an operator function T (λ) ∈
R0(S1) such that for a.e. k ∈ R we have

lim sup
n→∞

n∑
k=1

sk(T (k))/(cn lnn) =∞ .

In particular, T (k) does not belong to the class S1 for almost all k ∈ R. The
construction of the example uses similar ideas to the construction of T (λ) in
the proof of Theorem 1. The assertion of Theorem 3 is closely connected with
scattering theory (perturbation theory for continuous spectrum). See [3] where
the proof of the existence (in S2) of the boundary values for an arbitrary o.-v.
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function from R0(S1) leads to the construction of a trace class version of abstract
scattering theory.

5. Trace class valued R-functions: more details about the boundary
behaviour. It was mentioned earlier that the boundary values of a S1-valued
R-function T (λ) in general do not belong to S1. But for almost all k ∈ R the
boundary values T (k) are in

⋂
p>1 Sp. Here we consider some results making this

fact more precise. In what follows we mainly consider the nontangential boundary
limits, but all results are valid (in appropriate sense) for the boundary values.

Theorem 4. If T (λ) is an arbitrary S1-valued R-function in C+, then the
series ∑

n

sn(T (λ))β(|ln sn(T (λ))|)

is nontangentially bounded a.e. on R for every decreasing positive function β ∈
L1(R+), β(0) <∞.

This result leads to a complete solution of our problem in the so-called
“Lorentz classes” Sπ. Here Sπ [11] is the Banach space of all compact opera-
tors T (in the Hilbert space H) whose s-numbers satisfy

‖T‖Sπ
:=

∞∑
k=1

sk(T )πk <∞

(π ≡ {πn}∞n=1 is a sequence decreasing to 0).

Theorem 5. The condition
∑
n πn/n < ∞ is necessary and sufficient for an

arbitrary S1-valued R-function to have nontangential boundary limits a.e. on R
in the class Sπ.

Finally, we state an assertion concerning the existence of the boundary limits
in the “Marcinkiewicz classes” SΠ . The Banach space SΠ is the class of all
compact operators T whose s-numbers satisfy

‖T‖SΠ
:= sup

n

( n∑
k=1

sk(T )
)/( n∑

k=1

πk

)
<∞ .

As a Banach space, SΠ is dual to the Banach space Sπ with the same sequence
π [11].

Theorem 6. Let T (λ) be an arbitrary S1-valued R-function, and Bn an in-
creasing sequence such that Bn →∞ as n→∞ and

∑
n 1/(nBn) <∞. Then

1) the nontangential boundary limits of T (λ) exist for a.e. k ∈ R in the norm
supn(

∑n
k=1 sk(T ))/Bn;

2) for every nonnegative sequence an with
∑
n an <∞,∑

n≥2

an

( n∑
k=1

sk(T (k))
)
/ lnn <∞ for a.e. k ∈ R ;
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3) for a.e. k ∈ R,

lim inf
n→∞

nsn(T (k)) = lim inf
n→∞

∑n
k=1 sk(T (k))

lnn
= 0 .

This theorem should be compared with the results in Section 3 concerning the
construction of examples of S1-valued R-functions whose boundary values do not
belong to the class SΠ , where πn = cn/n and cn ↓ 0 arbitrarily slowly as n→∞.
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