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This paper concerns inequalities like TrA ≤ TrB, where A and B are certain
Hermitian complex matrices and Tr stands for the trace. In most cases A and B
will be exponential or logarithmic expressions of some other matrices. Due to the
interest of the author in quantum statistical mechanics, the possible applications
of the trace inequalities will be commented from time to time. Several inequalities
treated below have been established in the context of Hilbert space operators or
operator algebras. Notwithstanding these extensions our discussion will be limited
to matrices.

1. The trace of matrices. Before discussing trace inequalities we consider
characterizations of the trace functional. Below Mn will denote the algebra of
n× n complex matrices and M sa

n will stand for the Hermitian part. We consider
Tr as a linear functional on Mn. It is well known that each of the following
properties characterizes the trace functional up to a constant factor among the
linear functionals on Mn.

(i) τ(AB −BA) = 0 for every A and B.
(ii) |τ(A)| ≤ cr(A) for every A, where c is a constant and r denotes the

spectral radius.
(iii) A2 = 0 implies τ(A) = 0.
(iv) |τ(Ak)| ≤ τ(A∗A)k/2 for some k ∈ N and for every A.

The selfadjoint idempotent matrices in Mn, called projections, correspond to
subspaces of the linear space Cn. So the join P ∨Q of the projections P and Q
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may be defined as the orthogonal projection onto the linear span of the subspaces
corresponding to P and Q. Similarly, the meet P∧Q projects onto the intersection
of these subspaces. With the operations ∨ and ∧ the set P of projections in Mn

becomes a lattice which plays an important role in quantum mechanics. A function
f : P → R+ is called subadditive if f(P ∨Q) ≤ f(P ) + f(Q) for every P,Q ∈ P.

(v) Up to a constant factor, Tr is the only linear functional which is subaddi-
tive when restricted to P.

The last two characterizations of the trace were found in [25] and treated there
in the more general context of C∗-algebras. The consequence

(1) |Tr(ABAB)| ≤ Tr(A∗ABB∗)

of (iv) will also be used below.

2. Inequalities to warm up. In this section we consider some trace inequal-
ities that are obtained by diagonalization of matrices or by simple considerations
about their eigenvalues. For example, the first proposition is based on the follow-
ing fact. If A and B are selfadjoint matrices with eigenvalues κ1 ≥ . . . ≥ κn and
λ1 ≥ . . . ≥ λn, then A ≤ B implies κi ≤ λi for every 1 ≤ i ≤ n. Recall that if∑
i λipi is the spectral decomposition of A and the real function f is defined on

the spectrum Spec(A) of A then f(A) is defined by f(A) =
∑
i f(λi)pi.

Proposition 1. Let A and B be selfadjoint matrices and let f : R → R be
increasing. Then A ≤ B implies

Tr f(A) ≤ Tr f(B) .

Proposition 2. Let f : [α, β]→ R be convex. Then the functional

F (A) = Tr f(A)

is convex on the set {A ∈M sa
n : Spec(A) ⊂ [α, β]}.

P r o o f. First we note that for a pairwise orthogonal family (pi) of minimal
projections with

∑
pi = I we have

(2) Tr f(B) ≥
∑
i

f(TrBpi) .

Indeed, using the convexity of f we deduce (2) as follows. Let
∑
j sjqj be the

spectral decomposition of B. Then

Tr f(B) =
∑
j

f(sj) Tr qj =
∑
i

∑
j

f(sj) Tr qjpi

≥
∑
i

f
(∑

j

sj Tr qjpi
)

=
∑
i

f(TrBpi) .

To prove the proposition we write
∑
i µipi for the spectral decomposition of the

convex combination A = λB1 + (1− λ)B2. Applying (2) twice we infer that
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λTr f(B1) + (1− λ) Tr f(B2)

≥ λ
∑
i

f(TrB1pi) + (1− λ)
∑
i

f(TrB2pi)

≥
∑
i

f(λTrB1pi + (1− λ) TrB2pi) =
∑
i

f(TrApi) = Tr f(A) ,

which is the convexity of the functional F .

Some particular cases of the next simple and useful observation are sometimes
called Klein inequalities.

Proposition 3. If fk, gk: [α, β]→ R are such that for some ck ∈ R,∑
k

ckfk(x)gk(y) ≥ 0 for every x, y ∈ [α, β] ,

then ∑
k

ck Tr fk(A)gk(B) ≥ 0

whenever A,B are selfadjoint matrices with Spec(A), Spec(B) ⊂ [α, β].

P r o o f. Let A =
∑
λipi and B =

∑
µjqj be the spectral decompositions.

Then ∑
k

ck Tr fk(A)gk(B) =
∑
k

∑
i,j

ck Tr pifk(A)gk(B)qj

=
∑
i,j

Tr piqi
∑
k

ckfk(λi)gk(µj) ≥ 0

by the hypothesis.

In particular, if f is convex then

(3) f(x)− f(y)− (x− y)f ′(y) ≥ 0
and
(4) Tr f(A) ≥ Tr f(B) + Tr(A−B)f ′(B) .

For the choice f(t) = −η(t) = t log t we obtain

(5) S(A,B) ≡ TrA(logA− logB) ≥ Tr(A−B)

for B strictly positive and A nonnegative. The left-hand side is called relative
entropy. If A and B are density matrices, i.e. TrA = TrB = 1, then S(A,B) ≥ 0.
This is a classical application of the Klein inequality (cf. [27]). The stronger
estimate

−η(x) + η(y) + (x− y)η′(y) ≥ 1
2

(x− y)2

allows another use of the Klein inequality. Namely,

(6) S(A,B) ≥ 1
2

Tr(A−B)2 + Tr(A)− Tr(B) ,

which was obtained in [31].



290 D. PETZ

From the inequality 1 + log x ≤ x (x > 0) one obtains

t−1(a− a1−tbt) ≤ a(log a− log b) ≤ t−1(a1+tb−t − a)

for a, b, t > 0. If T and S are nonnegative invertible matrices then Proposition 3
gives

t−1 Tr(S − S1−tT t) ≤ TrS(logS − log T )(7)
≤ t−1 Tr(S1+tT−t − S) ,

which provides a lower as well as an upper estimate for the relative entropy [29].

3. The Golden–Thompson inequality and its extensions. In statistical
mechanics Golden [13] has proved that if A and B are Hermitian and nonnegative
definite matrices then

(8) Tr eAeB ≥ Tr eA+B .

He observed that this inequality may be used to obtain lower bounds for the
Helmholtz free-energy function by partitioning the hamiltonian. Independently,
C. J. Thompson proved (8) for Hermitian A and B without the requirement of
definiteness and applied the inequality to obtain an upper bound for the partition
function of an antiferromagnetic chain [32]. Nowadays (8) is termed the Golden–
Thompson inequality and it is a basic tool in quantum statistical mechanics.

The simplest proof of the Golden–Thompson inequality uses the following
exponential product formula for matrices.

Lemma 4. For any complex n× n matrices A and B,

lim
s→∞

(eA/seB/s)s = lim
s→∞

(eB/(2s)eA/seB/(2s))s = eA+B .

It is worthwhile to note that [10] contains interesting historical remarks con-
cerning the origin of the previous lemma (1).

We also need the inequality

(9) |TrX2k| ≤ Tr(XX∗)k ,

which appeared in characterization (iv) of the matrix trace. Note that if k = 1
and X = V H with selfadjoint V and H, then (9) reduces to

(10) TrV HV H ≤ TrV 2H2 ,

which is a particular case of the inequality

(11) TrY HY ∗g(H) ≤ TrY Y ∗Hg(H) ,

which holds provided that H is selfadjoint and g : R→ R is increasing [21]. The
next theorem together with its proof is taken from [10].

Theorem 5. For every A,B ∈Mn,

Tr e(A+A∗)/2e(B+B∗)/2 ≥ |Tr eA+B | .

(1) Editorial note: See also the application on p. 370 in this volume.
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P r o o f. Substituting X = AB into (9) we have

Tr((ABB∗A∗)s) ≥ |Tr((AB)2s)| ,

where the left-hand side is nothing else but Tr(BB∗A∗A)s. Setting s = 2k−1 with
a positive integer k and using (9) gives

|Tr(AB)2
k

| ≤ Tr(BB∗A∗A)2
k−1
≤ |Tr((BB∗A∗A)2)2

k−2
|

≤ Tr((BB∗A∗A)(BB∗A∗A)∗)2
k−2

= Tr((A∗A)2(BB∗)2)2
k−2

.

By a repeated application of this argument we easily infer that

Tr((A∗A)2
k−1

(BB∗)2
k−1

) ≥ |Tr((AB)2
k

)| .

Now replace A by exp(2−kA) and B by exp(2−kB):

Tr((e2
−kA∗e2

−kA)2
k/2(e2

−kBe2
−kB∗)2

k/2) ≥ |Tr((e2
−kAe2

−kB)2
k

)| .

The obvious continuity of Tr together with the exponential product formula (that
is, Lemma 4) allows us to obtain the theorem.

Inequality (8) is an obvious consequence of the theorem coupled with the
following

Corollary 6. If A and B are selfadjoint then

|Tr eA+iB | ≤ Tr eA .

The relative entropy of nonnegative matrices defined by (5) is related to the
functional B 7→ log Tr eA+B by the Legendre transform. Namely, B 7→ log Tr eA+B

is the Legendre transform or the conjugate function ofX 7→ S(X,Y ) when Y = eB

and vice versa. This was proved in [24] in the general setup of von Neumann
algebras; here is an elementary proof from [16].

Proposition 7. If A is Hermitian and Y is strictly positive, then

(12) log Tr eA+log Y = max{TrXA− S(X,Y ) : X is positive, TrX = 1} .

On the other hand , if X is positive with TrX = 1 and B is Hermitian, then

(13) S(X, eB) = max{TrXA− log Tr eA+B : A is Hermitian} .

P r o o f. Define

F (X) = TrXA− S(X,Y )

for nonnegative X with TrX = 1. When P1, . . . , Pn are projections of rank one
with

∑n
i=1 Pi = 1, we write

F
( n∑
i=1

λiPi

)
=

n∑
i=1

(λi TrPiA+ λi TrPi log Y − λi log λi) ,
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where λi ≥ 0,
∑n
i=1 λi = 1. Since

∂

∂λi
F
( n∑
i=1

λiPi

)∣∣∣∣
λi=0

= +∞ ,

we see that F (X) attains its maximum at a positive matrix X0 with TrX0 = 1.
Then for any Hermitian S with TrS = 0, we have

0 =
d

dt
F (X0 + tS)

∣∣∣∣
t=0

= TrS(A+ log Y − logX0) ,

so that A+ log Y − logX0 = cI with c ∈ R. Therefore X0 = eA+log Y /Tr eA+log Y

and F (X0) = log Tr eA+log Y by simple computation.
We now prove (13). It follows from (12) that the functional A 7→ log Tr eA+B

defined on the Hermitian matrices is convex. Let A0 = logX −B and

G(A) = TrXA− log Tr eA+B ,

which is concave on the Hermitian matrices. Then for any Hermitian S we have

d

dt
G(A0 + tS)

∣∣∣∣
t=0

= 0,

because TrX = 1 and
d

dt
Tr elogX+tS

∣∣∣∣
t=0

= TrXS .

Therefore G has the maximum G(A0) = TrX(logX − B), which is the relative
entropy of X and eB .

Let us make the following definition:

(14) Sco(X, eB) = max{TrXA− log Tr eAeB : A is Hermitian} .

(The interested reader will find an explanation for the notation in [15].) It follows
from the Golden–Thompson inequality that

(15) Sco(X, eB) ≤ S(X, eB) .

This inequality may be proved within the theory of relative entropy. In fact, it
is a particular case of the monotonicity of the relative entropy. In [22, 23] it was
established that [X, eB ] = 0 is a necessary and sufficient condition for equality in
(15).

Conversely, the Golden–Thompson inequality can be recovered from (15).
Putting X = eA+B/Tr eA+B for Hermitian A and B we have

log Tr eAeB ≥ TrXA− Sco(X, eB)

≥ TrXA− S(X, eB) = log Tr eA+B

by (15), which further shows that Tr eA+B = Tr eAeB holds if and only if AB =
BA. This derivation of the Golden–Thompson inequality as well as characteriza-
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tion of equality were performed in [24, Corollary 5] in the general setup of von
Neumann algebras.

In the course of proving Theorem 5 the inequality

Tr(X1/2Y X1/2)q ≤ TrXq/2Y qXq/2

was obtained for q = 2k and positive matrices X and Y . According to Araki [5],

(16) Tr(X1/2Y X1/2)rp ≤ Tr(Xr/2Y rXr/2)p

for every r ≥ 1 and p > 0. This implies that the function

(17) p 7→ Tr(epB/2epAepB/2)1/p

is increasing for p > 0. Its limit at p = 0 is Tr eA+B . Hence the next theorem is a
strengthened variant of the Golden–Thompson inequality.

Theorem 8. The function Tr(epB/2epAepB/2)1/p is increasing in p ∈ (0,∞)
for Hermitian matrices A and B. Its limit at p = 0 is Tr eA+B. In particular , for
every p > 0,

(18) Tr eA+B ≤ Tr(epB/2epAepB/2)1/p .

It was proved by Friedland and So that the function (17) is either strictly
monotone or constant [11]. The latter case corresponds to the commutativity of
A and B.

The formal generalization

Tr eA+B+C ≤ Tr eAeBeC

of the Golden–Thompson inequality is false. However, if two of the three matri-
ces commute then the inequality holds obviously. A nontrivial extension of the
Golden–Thompson inequality to three operators is due to Lieb [19]. Before stating
this extension we introduce some positive operators on the space Mn of matrices,
which becomes a Hilbert space when endowed with the Hilbert–Schmidt scalar
product:

〈A,B〉 = TrAB∗ .

For A ∈M sa
n let TexpA : Mn →Mn be defined by

(19) TexpA(K) =
∞∫
0

(t+ expA)−1K(t+ expA)−1 dt .

Since

〈TexpA(K),K〉 =
∞∫
0

Tr(t+ expA)−1K(t+ expA)−1K∗ dt

is nonnegative, the operator TexpA is positive (definite). In a basis in which A≡
Diag(a1, . . . , an) one can compute TexpA explicitly. Namely,

(20) (TexpA(K))ij = Kij/Lm(eai , eaj ) ,
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where Lm(x, y) stands for the so-called logarithmic mean defined by

Lm(x, y) =
{

(x− y)/(log x− log y) if x 6= y ,
x if x = y .

Note that if K = K∗ and AK = KA, then TexpA(K) = exp(−A)K.

Theorem 9. Let A, B and C be Hermitian matrices. Then

(21) Tr eA+B+C ≤ Tr Texp(−A)(eB)eC .

Extensions of the Golden–Thompson inequality to infinite dimensions have
extensive literature [8, 18, 4, 17, 28]. The review [33] contains several interesting
results on the exponential function of matrices.

The next theorem is due to Bernstein except of the case of equality which was
added by So [7, 30]. Although it contains an exponential trace inequality it does
not concern selfadjoint matrices and the direction of the inequality is opposite to
that of the Golden–Thompson inequality.

Theorem 10. Let K be an arbitrary n× n matrix. Then

(22) Tr eK+K∗
≥ Tr eKeK

∗

and equality holds if and only if K is normal.

4. Logarithmic inequalities. The Golden–Thompson inequality is remark-
able because it establishes a relation between Tr eA+B and Tr eAeB in the case
eA+B 6= eAeB . The logarithmic analogue would be a relation between Tr logXY
and Tr(logX+log Y ) for positive matrices X and Y . This relation is well known,
Tr logXY = Tr(logX + log Y ), due to the multiplicativity of the determinant.
However, a slight modification leads to a logarithmic trace inequality. Note that
for positive (invertible) matrices X and Y , one can define logXY by analytic
functional calculus or by power series and get the equality

(23) TrX logX1/2Y X1/2 = TrX logXY

because TrX(X1/2Y X1/2)n = TrX(XY )n for n ≥ 1.

Proposition 11. Let X and Y be positive matrices. Then

TrX log Y 1/2XY 1/2 ≤ TrX(logX + log Y ) ≤ TrX logXY .

P r o o f. The first inequality is a consequence of (13) in the case TrX = 1,
which it is sufficient to consider. Let B be Hermitian and A = log e−B/2Xe−B/2.
Then by (13) we have

TrX(logX −B) ≥ TrXA− log Tr eA+B

≥ TrXA− log Tr(eB/2eAeB/2)

= TrX log e−B/2Xe−B/2 − log TrX

= TrX log e−B/2Xe−B/2 .

Hence the first stated inequality follows by letting B = − log Y .
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The second inequality is deeper and its proof was given within relative entropy
theory. Setting

SBS(X,Y ) = TrX logX1/2Y −1X1/2

we see that the second inequality is the same as

(24) S(X,Y ) ≤ SBS(X,Y )

for positive matrices X and Y with TrX = TrY = 1. (The quantity SBS is related
to the works [6, 12].) The proof of (24) was given in [15, 16] and applies some
properties of the relative entropy quantities S and SBS. (Namely, monotonicity
and additivity under tensor products.) The crucial part of the proof is a relative
entropy estimate which is stated in the next lemma.

For each m ∈ N let Am be the m-fold tensor product
⊗m

1 Mn which is identi-
fied with the nm×nm matrix algebra Mnm . For a positive matrix Y in Mn we set
Ym =

⊗m
1 Y and write EYm

for the conditional expectation from Am onto {Ym}′
with respect to the trace. (When Z =

∑
i λiPi is the spectral decomposition of a

selfadjoint Z, then EZ(A) =
∑
i PiAPi.)

Lemma 12. For every positive Z in Am with TrZ = 1,

S(Z,EYm(Z)) ≤ n log(m+ 1) .

Having the lemma at our disposal we obtain (24) from the chain

mSBS(X,Y ) = SBS(Xm, Ym) ≥ SBS(EYm
(Xm), Ym)

= S(EYm
(Xm), Ym) = S(Xm, Ym)− S(Xm, EYm

(Xm))
≥ S(Xm, Ym)− n log(m+ 1) = mS(X,Y )− n log(m+ 1)

after dividing by m and letting m → ∞. (For details we refer to the original
papers.)

We note that inequality (24) is extended to infinite dimensions in [14].
For 0 ≤ α ≤ 1 the α-power mean of positive matrices X and Y is defined by

X#αY = X1/2(X−1/2Y X−1/2)αX1/2 .

This is the operator mean corresponding to an operator monotone function xα,
x ≥ 0. In particular, X#1/2Y = X#Y is the geometric mean of X and Y which
was introduced in [26].

In the rest of this section we review some further results from [16]. For each
p > 0 the following statements (i) and (ii) are proved to be equivalent:

(i) If A and B are Hermitian, then

(25) Tr (epA#αe
pB)1/p ≤ Tr e(1−α)A+αB

for 0 ≤ α ≤ 1.
(ii) If X and Y are positive, then

(26) TrX(logX + log Y ) ≤ 1
p

TrX logXp/2Y pXp/2 .
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Observe that the logarithmic inequality (26) extends the second inequality of
Proposition 11. The equivalent exponential inequality (25) is opposite to that of
Golden–Thompson. (25) and (26) are related by differentiation:

d

dα
Tr (epA#αe

pB)1/p
∣∣∣∣
α=0

=
1
p

Tr eA log e−pA/2epBe−pA/2 .

Theorem 13. Let A and B be Hermitian and 0 ≤ α ≤ 1. Then the inequality
(25) holds for every p>0. Moreover , the left-hand side converges to the right-hand
side as p→ 0.

This theorem shows some analogy with Theorem 8. While the convergence in
Theorem 8 is based on Lemma 4 (called the Lie exponential formula), there is a
somewhat similar formula with power means. We state it in the form of a lemma.
Its proof does not differ essentially from the standard proof of the exponential
product formula.

Lemma 14. If A and B are Hermitian and 0 ≤ α ≤ 1, then

lim
s→∞

(eA/s#αe
B/s)s = e(1−α)A+αB .

Theorem 15. Let X and Y be nonnegative. Then the inequality (26) holds
for every p > 0. Moreover , the right-hand side converges to the left-hand side as
p→ 0.

It was conjectured in [16] that the limit appearing in the previous theorem is
monotone. This follows from Theorem 17 below.

5. Majorization. Several inequalities for the trace can be strengthened in
the form of submajorization. It turns out that in the case of trace inequalities
discussed in Sections 3 and 4 the formulation by submajorization is very appro-
priate.

Let A and B be selfadjoint matrices with eigenvalues κA1 ≥ . . . ≥ κAn and
κB1 ≥ . . . ≥ κBn ; then A is said to be submajorized by B, in notation A ≺w B, if

k∑
i=1

κAi ≤
k∑
i=1

κBi

for every 1 ≤ k ≤ n. If in addition TrA = TrB then A is said to be majorized
by B, in notation A ≺ B. Majorization and submajorization have an extensive
literature; we only mention the main sources [2, 20]. In mathematical physics
the same concept appears with different terminology and opposite notation [1].
(When D1 ≺ D2 holds for some density matrices then D1 is called more mixed
than D2.)

It is well known that the relation A ≺w B implies that Tr f(A) ≤ Tr f(B)
for every increasing convex function [20]. Therefore the following result is an
extension of Theorem 8 as well as of the Golden–Thompson inequality [5, 11].
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Theorem 16. For Hermitian matrices A and B the submajorization relation

log(etA/2etBetA/2)1/t ≺w log(euA/2euBeuA/2)1/u

holds whenever 0 ≤ t ≤ u.
Ando [3] deduced the next theorem from a norm inequality using the method

of anti-symmetric tensor product.

Theorem 17. For Hermitian matrices A and B and for 0 < α < 1 the
majorization relation

log(epA#αe
pB)1/p ≺ log(erA#αe

rB)1/r

holds whenever 0 ≤ r ≤ p.
Finally, here is the submajorization version of the Bernstein inequality [9].

Theorem 18. For an arbitrary n× n matrix K,

eKeK
∗
≺w eK+K∗

.
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