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Introduction. The aim of this paper is to review some relevant results con-
cerning the geometry of nonassociative normed algebras, without assuming in
the first instance that such algebras satisfy any familiar identity, like associa-
tivity, commutativity, or Jordan axiom. In the opinion of the author, the most
impressive fact in this direction is that most of the celebrated natural geometric
conditions that can be required for associative normed algebras, when imposed
on a general nonassociative normed algebra, imply that the algebra is actually
“nearly associative”. We shall explain this idea by selecting four favourite topics,
namely:

e Nonassociative Vidav—Palmer theorem,

e Nonassociative Gelfand—Naimark theorem,

e Nonassociative smooth normed algebras, and
e One-sided division absolute valued algebras.

Although there are classical nice forerunners in this circle of ideas, as for
example the Albert—Urbanik—Wright determination of (nonassociative) absolute
valued algebras with a unit ([2], [3], [42], and [41]), a systematic treatment of
questions of this type has been made only recently, more precisely since 1980 [34].

1. Nonassociative Vidav—Palmer theorem. Recall that a normed algebra
is called unital if it has a unit element 1 such that ||1]| = 1, and that an element
h in a complex unital normed algebra A is called hermitian if ¢(h) € R for every
continuous linear form ¢ on A with ||¢|| = ¢(1) = 1. For such an algebra A, we
shall denote by H(A) the closed real subspace of A of all hermitian elements
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in A. The original associative Vidav—Palmer theorem (see [11; Theorem 6.9])
characterizes the unital associative C*-algebras as those unital complete normed
associative complex algebras A satisfying A = H(A) + iH(A) (associative Vidav
algebras). Even in this case we have H(A) NiH(A) = 0, and the C*-algebra
involution is nothing but the mapping h + ik — h — ik (h,k € H(A)). Now it is
tempting to consider general nonassociative Vidav algebras as the nonassociative
counterparts of unital associative C*-algebras, expecting the appearance of many
exotic C*-models. Unexpectedly such nonassociative C'*-models are very close to
their associative precursors. This will be explained in what follows, beginning
with the so-called “nonassociative Vidav—Palmer theorem”. This result attains
its definitive form in [35] after a wide collection of papers, namely [10], [45], [46],
[28], [34] and [26], and reads as follows.

THEOREM 1.1. Let A be a unital complete normed nonassociative complex al-
gebra satisfying A = H(A)+iH(A). Then A is a noncommutative Jordan algebra,
H(A)NiH(A) =0, the mapping * given by (h +ik)* := h —ik (h,k € H(A)) is
an algebra involution on A, and the equality ||U,(a*)|| = ||al|® holds for every a
in A (where, for a and b in A, Uy(b) := (ab)a + (ba)a — ba?).

Noncommutative Jordan algebras are defined as those nonassociative algebras
satisfying the identities (ab)a = a(ba) and a?(ba) = (a*b)a. Complete normed
noncommutative Jordan complex algebras with an algebra involution * satisfying
|Us(a*)|| = |la]|® for every a in the algebra are called noncommutative JB*-
algebras. Since it is easy to show that unital noncommutative JB*-algebras are
Vidav algebras, the nonassociative Vidav—Palmer theorem asserts that general
nonassociative Vidav algebras are nothing but noncommutative JB*-algebras.

To understand in the first instance how close to associative C*-algebras are
noncommutative JB*-algebras, take into account the associativity of powers of
noncommutative Jordan algebras [38] to deduce easily that noncommutative JB*-
algebras are “locally” C*-algebras, i.e. the closed subalgebra generated by any
self-adjoint element is an associative and commutative C*-algebra. A much bet-
ter information can be derived from the structure theory developed in [32], [33],
[5], and [13]. We shall summarize this theory in Theorems 1.2-1.4 below, following
the lines of [32] and [33]. Given a family {A; }e; of noncommutative JB*-algebras,
any closed self-adjoint subalgebra B of the noncommutative J B*-algebra @i"gj A;
with the property that m;(B) = A; for all ¢ in I (where m; denotes the natural
projection onto the ith coordinate) will be called a subdirect l,-sum of the given
family {A;};er. Let us also say that a noncommutative JB*-algebra A is prim-
itive if there exists an extreme point in the closed unit ball of its dual space
whose kernel contains no nonzero ideals of A. An easy consequence of results by
C. A. Akemann and B. Russo [1], explicitly stated in [32; Lemma 6.5], is that
for associative C'*-algebras this concept of primitiveness agrees with the usual
one. To be in agreement with the terminology in [33], note also that, thanks to
[33; Corollary 1.13], primitive noncommutative J B*-algebras as defined above are
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exactly the noncommutative JB*-algebras having a faithful type I factor repre-
sentation.

THEOREM 1.2. Every noncommutative JB*-algebra is (totally isomorphic to)
a subdirect loo-sum of a suitable family of primitive noncommutative JB*-
algebras.

Because the noncommutative JB*-algebras which are commutative were con-
sidered in the literature before the introduction of our general concept, they are
simply called JB*-algebras. Recall also that an algebra A over a field K is called
quadratic if it has a unit element 1, A # K1, and, for every a in A, there are «, 8
in K such that a? + aa + 31 = 0.

THEOREM 1.3. The primitive noncommutative J B*-algebras are the following:

(i) the primitive (commutative) JB*-algebras,
(ii) the simple quadratic noncommutative JB*-algebras, and
(iii) the noncommutative JB*-algebras obtained from primitive associative
C*-algebras by changing the associative product “ab” to a ob:= Aab+ (1 — \)ba,
where X is a fived real number with 0 < A < 1.

The simple quadratic noncommutative JB*-algebras offer no problem because
of the next result.

THEOREM 1.4. Given a real Hilbert space E of dimension >1 with a bilinear
anticommutative product A satisfying (xAy | z) = (x| yAz) and ||z Ay| < ||z| ||y]]
for all x,y,z in E, consider the real algebra B whose vector space is R1 ® E and
whose product is defined by

(al+2)(Bl+y):=[af— (x| yl+ay+Pz+aiy.
Then the complexification of B, with the involution * defined by
[l +z+4+i(f1+y)]* :=al —z—i(f1 —y),
and norm given by
16+ ic))* == ([l + llell® + 20l [lel* — (b | )]/
(where, in the right hand side of the equality, the inner product and norms refer to
the natural hilbertian structure of B as la-sum of R1 and E), is a simple quadratic

noncommutative JB*-algebra. Moreover, all simple quadratic noncommutative
JB*-algebras can be constructed in this way.

It follows from Theorems 1.2—-1.4 that to have a complete structure theory for
noncommutative JB*-algebras, it only remains to describe the primitive JB*-
algebras. JB*-algebras were introduced by J. D. M. Wright [43] who proved
the existence of a natural one-to-one correspondence between the class of JB*-
algebras and the earlier studied class of JB-algebras (see [22] and references
therein). In particular, he showed that the only finite-dimensional exceptional
simple complex Jordan algebra M (C) can be structured as a JB*-algebra, and
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this in an essentially unique way. There is also a mutual dependence between
JB*-algebras and JB*-triples (see [40] and references therein), because JB*-
algebras can be naturally regarded as JB*-triples and, conversely, JB*-triples
can be seen as JB*-subtriples of JB*-algebras [20; Corollary 2|. Concerning our
interest in primitive JB*-algebras, the appropriate description theorem has been
obtained only very recently in [18] by mixing the classical JB- and .JB*-theory
with Zel’'manov’s techniques in the proof of his famous classification theorem for
prime nondegenerate Jordan algebras (see [47] and [30]), and reads as follows.

THEOREM 1.5. The primitive JB*-algebras are the following:

(i) M3(C),

(ii) the simple quadratic JB*-algebras (given by Theorem 1.4 by taking A = 0),

(iii) the closed *-invariant Jordan subalgebras of M(A) containing A, where
A is any primitive associative C*-algebra, and M(A) denotes the C*-algebra of
multipliers of A, and

(iv) the closed *-invariant Jordan subalgebras of M(A) contained in
H(M(A),7) and containing H(A,T), where A is any primitive associative C*-
algebra, T is a *-involution on A (linear algebra involution commuting with *),
and H(-,7) denotes the set of all T-invariant elements.

Remark 1.1. Following an earlier idea by E. Zel'manov in the case of the
existence of a unit, a purely algebraic concept of primitiveness for Jordan algebras
was introduced and studied by L. Hogben and K. McCrimmon [23], and later this
concept was extended to the setting of noncommutative Jordan algebras [19]. In
the original commutative context this notion has been successfully revisited in
two recent papers by J. A. Anquela, F. Montaner, and T. Cortés ([6] and [7])
from the point of view of Zel’'manov’s methods. It follows from Theorem 1.5 and
results in [6] that, for noncommutative JB*-algebras, the algebraic concept of
primitiveness agrees with that we have taken in this survey.

2. Nonassociative Gelfand—Naimark theorem. Another reasonable ap-
proach to nonassociative counterparts of associative C*-algebras may arise by
the consideration of complete normed nonassociative complex algebras with a
conjugate-linear algebra involution * satisfying the Gelfand—Naimark axiom ||a*al|
=||la||?. Tt is the aim of this section to review the results that are known in this di-
rection, showing that, in the case of the existence of a unit, these Gelfand—Naimark
nonassociative algebras are very particular cases of the above considered Vidav
nonassociative algebras. The fundamental result in this direction was obtained in
[34] using a “light” version of Theorem 1.1, earlier proved in [26], together with
a result in [44] on isometries of .J B-algebras.

THEOREM 2.1. Let A be a complete normed nonassociative complex algebra
with a unit 1 and a conjugate-linear vector space involution * satisfying 1* = 1



NONASSOCIATIVE ALGEBRAS 303

and ||a*al| = ||a||? for every a in A. Then A is an alternative algebra, and * is an
algebra involution on A.

We recall that an algebra A is said to be alternative if the equalities a?b =
a(ab) and ba? = (ba)a hold for all a,b in A, and that this requirement is equiva-
lent (via Artin’s theorem [38]) to the fact that the subalgebra of A generated by
two arbitrary elements in A is associative. Complete normed alternative complex
algebras with an algebra involution * satisfying ||a*a|| = ||a]|? for every a in the
algebra are called alternative C*-algebras. Alternative algebras are noncommu-
tative Jordan algebras (use Artin’s theorem), and it is easy to see that alternative
C*-algebras are in fact noncommutative J B*-algebras. More precisely, alternative
C*-algebras are exactly those noncommutative JB*-algebras which are alterna-
tive. Thus we may apply Theorem 1.2 to obtain the following corollary.

COROLLARY 2.1. Every alternative C*-algebra is the subdirect loo-sum of a
suitable family of primitive alternative C*-algebras.

The algebra of complex octonions can be structured in an essentially unique
way as an alternative C*-algebra ([26] and [14]), and this alternative C*-algebra
is primitive because it is actually simple. In fact we have the following theorem
(see [32] and [14]), which today can be easily derived from Theorem 1.3.

THEOREM 2.2. Every primitive alternative C*-algebra is either associative or
the C*-algebra of complex octonions.

Complete normed nonassociative complex algebras with a unit 1 and a
conjugate-linear algebra involution * satisfying ||a*a| = ||a*|| ||a| are nothing but
unital alternative C*-algebras [34]. In this “weak” Gelfand-Naimark situation it
is tempting to consider the question of the possibility of relaxing the requirement
(ab)* = b*a* to the weak one 1* = 1, without perturbing the characterization of
alternative C*-algebras (in the same way as this has been possible in the “strong”
Gelfand—Naimark situation studied in Theorem 2.1). Actually, the answer to this
question is “almost” affirmative, as follows from the next theorem, that has been
proved very recently in [16] using as main tools Theorems 1.1, 1.4, and 2.1.

THEOREM 2.3. Let A be a complete normed complexr nonassociative algebra
with a unit 1 and a conjugate-linear vector space involution B satisfying 19 =1
and ||aPal| = ||aP|| ||a|| for every a in A. Then A is an alternative algebra, and
(except possibly in the case when A is isometrically isomorphic to the C*-algebra
C?) B is an algebra involution on A and the equality ||aPal| = ||a||? holds for every
a in A. For the exceptional case of the C*-algebra C2, the involutions = satisfying
the above requirements are exactly the mappings of the form a — a*+ f(a)1, where
* denotes the C*-algebra involution and f is any fized linear form on C? such that

f(1) =0 and f(a*) = —f(a) for all a in C2.

Remark 2.1. In the case of absence of a unit element, complete normed
nonassociative complex algebras with a conjugate-linear algebra involution * sat-
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isfying ||a*al| = ||a]|? need not satisfy identities. To see this consider a nonempty
set V, let B denote the free nonassociative complex algebra on V' [24; p. 23], and
let * be the unique conjugate-linear algebra involution on B fixing the elements
of V. Since the vector space of B is the free complex space on the set U of all
“nonassociative words” with entries in V', we may endow B with the norm || - ||

given by either
1/
|2 d = ()
ueU uelU

(p any real number with p > 1), or

|5

uclU
Then, for b and ¢ in B, we have ||bc|| = [|b]| ||c|| (see [15; Introduction] and [37;
Remarks 3(i) and 3(ii)]) and ||b*|| = ||b||. Now, denoting by A the completion
of (B,||-||), and extending * to A by continuity, A becomes a complete normed
nonassociative complex algebra with a conjugate-linear algebra involution * sat-
isfying |la*a|| = ||a||? for all a in A. Moreover, if the set V is infinite, clearly A
cannot satisfy any identity.

‘ :=sup{|Ay| :u e U}.

3. Nonassociative smooth normed algebras. Recall that a smooth
normed algebra is a unital normed algebra whose unit 1 is a smooth point of its
closed unit ball, i.e. there is a unique element ¢ in the dual space of the given
normed algebra with [|¢|| = ¢(1) = 1. It is well known that C is the only smooth
normed nonassociative complex algebra, as well as that R, C, and H (the divi-
sion algebra of real quaternions), with their usual absolute values as norms, are
the only smooth normed associative real algebras. J. I. Nieto [31] determined the
smooth normed alternative real algebras, showing that they are exactly R, C, H,
and O (the division algebra of real octonions). Nieto’s proof involves earlier results
by E. Strzelecki [39] on smooth normed power-associative real algebras. But ac-
tually general nonassociative smooth normed real algebras are noncommutative
Jordan algebras (hence power-associative), as shown by the following theorem
that was proved in [35] as a relatively easy consequence of Theorem 1.1 (see also
[36] for a more direct proof not involving Theorem 1.1).

THEOREM 3.1. Given a real pre-Hilbert space E with a bilinear anticommuta-
tive product A satisfying (x Ny | z) = (x | y A z) and ||z Ayl < ||| ||yl for all
z,y, 2z in E, consider the real normed space B = R1®" E with product defined by

(al+z)(fl+y):=[af—(z|y))l+ay+PBx+zAy.

Then B is a smooth normed algebra. Moreover, all smooth normed real algebras
are of this type.

An almost direct consequence of this theorem is the following characterization
of real pre-Hilbert spaces.
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COROLLARY 3.1. Let X be a nonzero real normed space. Then the following
assertions are equivalent:

(i) X is a pre-Hilbert space.

(ii) If u is any norm-one element in X, then X is smooth at u and the set of
continuous bilinear mappings f : X x X — X, satisfying ||f|| =1 and f(z,u) =
flu,z) = x for all x in X, is nonempty.

(iii) There is a norm-one element u in X such that X is smooth at u and the
set of continuous bilinear mappings f : X x X — X, satisfying || f|| = 1 and
f(z,u) = f(u,x) =z for all z in X, is nonempty.

In fact, the above characterization of real pre-Hilbert spaces can be improved
in such a way that it only involves “numerical” conditions. This is a previously
unpublished result of the author, whose statement and proof are included in what
follows.

Given a normed space X and a norm-one element u in X, let us define the
multiplicative index m(X,u) of X at u as the infimum of the norms of the con-
tinuous bilinear mappings f : X x X — X satisfying f(z,u) = f(u,x) = z for all
x in X.

THEOREM 3.2. Let X be a nonzero real normed space. Then the following
assertions are equivalent:

(i) X is a pre-Hilbert space.
(ii) If u is any norm-one element in X, then X is smooth at u and m(X,u)=1.

(iii) There is a norm-one element u in X such that X is smooth at u and
m(X,u) = 1.

Proof. In view of Corollary 3.1, it is enough to show that (iii) implies (i).
Therefore let us assume that (iii) holds, so that there is a sequence {f,} of
continuous bilinear mappings from X x X into X satisfying {||f.||} — 1 and
fu(z,u) = fr(u,x) =z for all  in X and n in N. By passing to third Arens ad-
joints, we obtain a sequence {gy, } of continuous bilinear mappings from X** x X**
into X** satisfying {||gn||} — 1 and g,(z,u) = gn(u,2) = z for all z in X** and
n in N.

Now denote by Y the Banach space of all continuous bilinear mappings from
X** x X** into X**, and endow Y with the topology 7 of pointwise convergence
in the w*-topology of X**. It is well known and easy to see that closed balls
in Y are T-compact, hence there exists a 7-point-limit g for the sequence {g,},
and clearly |lg|| < 1 and g(z,u) = g(u,z) = z for all z in X**. In this way
X**, with the product g, becomes a unital (complete) normed algebra with unit
u, so, by [29; Proposition 4.5], the duality mapping of X** is (norm) X (norm)
upper semicontinuous at u in the sense of [21]. Now, since X is smooth at u, it is
enough to apply [8; Theorems 5.1 and 3.4] to conclude that X** is smooth at u.
(Alternatively, we may use the fact that (norm) x (norm) upper semicontinuity
of the duality mapping is inherited by subspaces, and implies (norm) x (weak)
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upper semicontinuity, to derive that the duality mapping of the completion of
X is (norm) X (weak) upper semicontinuous at u, and then we may apply [21;
Theorem 3.1] to deduce as well that X** is smooth at u). By the implication
(iii)=-(i) in Corollary 3.1, X** is a Hilbert space, hence X is a pre-Hilbert space. =

Recall that an absolute valued algebra is a nonzero algebra A with a norm
| - || satisfying ||ab|| = ||a|| ||b]| for all a,b in A. In Remark 2.1 we have seen
examples of infinite-dimensional absolute valued complex algebras. It is easy to
show that absolute valued algebras with a unit are smooth normed algebras. Then
we may use Theorem 3.1 to derive that absolute valued real algebras with a unit
are precisely those smooth normed real algebras that are alternative. Since also
from Theorem 3.1 it follows that these alternative algebras are quadratic division
algebras, it is enough to apply the extended Frobenius theorem (see for example
[22; Theorem 2.26]), to obtain the following corollary, in which we collect the
Albert—Urbanik—Wright theorem, already quoted in the introduction, as well as
the above mentioned result by J. I. Nieto.

COROLLARY 3.2. For a real algebra A, the following assertions are equivalent:

(i) A is an absolute valued algebra with a unit.
(ii) A is a smooth normed alternative algebra.
(iii) A equals R,C,H, or O, with its usual absolute value as norm.

4. One-sided division absolute valued algebras. By a left division algebra
we mean a nonzero algebra (say A) with the property that, whenever a and b are
in A with a # 0, there exists a unique = in A satisfying ax = b. Of course we
can consider the analogous concept of a right division algebra, and we say that
A is a division algebra if it is at the same time a left division and a right division
algebra. A still unsolved old question is that of the nonassociative extension of the
Gelfand—Mazur theorem, namely if any division normed (nonassociative) algebra
must be finite-dimensional (which would imply dimension 1 in the complex case,
and 1, 2, 4, 8 in the real one, by a theorem of R. Bott and J. Milnor [12]). This
problem was explicitly posed by F. B. Wright [42] in 1953, who in the same paper
gave a partial affirmative answer proving that division absolute valued algebras
are finite-dimensional. Another folklore partial positive result about this question
is that one-sided division complete normed complex algebras are isomorphic to
the complex field, the case of (two-sided) division noncomplete normed complex
algebras as well as that of division (even complete) normed real algebras remaining
open.

In the converse direction, J. A. Cuenca [17] and the author [37] have proved
very recently and almost at the same time the existence of one-sided division
infinite-dimensional complete absolute valued real algebras. The Banach spaces
of the algebras in these examples are in fact Hilbert spaces, of hilbertian dimension
Ny in Cuenca’s nice construction, and of arbitrary infinite hilbertian dimension
in the more involved construction by the author. Since the fact that one-sided
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division absolute valued complex algebras are isomorphic to the complex field can
be considered as folklore, it seems to be reasonable to look for a structure theory
of arbitrary one-sided division absolute valued real algebras. Such a structure
theory is provided in [37], and will be reviewed in what follows.

A first easy result in this direction is given by the next proposition involving
a peculiar concept of “isotopy” between absolute valued algebras. Two absolute
valued algebras A and B are said to be isotopic if there exist linear isometries
©1, P2, @3 from A onto B satisfying

p1(zy) = @2(2)ps3(y)
for all z,y in A. This notion is motivated by the obvious fact that, given an
absolute valued algebra A and arbitrary linear isometries ¢1, 2, @3 from A onto
A, the normed space of A with the new product ® given by

z Oy = o1 (p2(2)p3(y))
becomes an absolute valued algebra.

PROPOSITION 4.1. An absolute valued algebra is a left division algebra if and
only if it is isotopic to a left division absolute valued algebra with o left unit.

Now the attention must be centered on absolute valued real algebras with a
left unit, and then the set (say P) of all left multiplication operators on such an
algebra is a space of bounded linear operators on the normed space (say X) of
the algebra containing the identity operator and satisfying

1T (@)l = Tl ]|
for all T in P and x in X. We isolate this information, that has its own interest,
and we obtain the following theorem.

THEOREM 4.1. Let X be a nonzero real normed space, and P be a space of
bounded linear operators on X containing the identity operator (say I) and satis-
Jying

1T ()] = (T[] ]
for all T in P and all x in X. Then the operator norm on P derives from an inner
product and, for T in P orthogonal to I, the equality
1% = —||T|*1
holds.
As a first consequence, in the setting of the theorem every nonzero element in

P is an invertible operator on X. This fact reflects for absolute valued algebras
in the following corollary.

COROLLARY 4.1. Every absolute valued algebra with a left unit is a left division
algebra.

It follows also from the theorem that the space P of operators considered
above is actually a Jordan algebra of bounded linear operators on X, and that
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more precisely, if we denote by (- | -) the inner product from which the operator
norm on P derives, then we have

M+ 8).(ul +T) = M\ — (S| T))I + AT + S,

for all A\, x in R and S, T in P orthogonal to I (where “.” denotes Jordan product,
namely F.G := (FG+GF)). Considering the description of smooth normed real
algebras given by Theorem 3.1, particularizing to the commutative case (A = 0),
and calling these algebras “smooth normed Jordan algebras” (they are actually
Jordan algebras), Theorem 4.1 can be reformulated as follows.

THEOREM 4.1 (bis). Let X be a nonzero real normed space, and P be a space
of bounded linear operators on X containing the identity operator and satisfying

[T @) = 17| ||

for all T in P and all x in X. Then P is a Jordan algebra of operators on X which,
endowed with the operator norm, is isometrically isomorphic to a smooth normed
Jordan algebra.

From this version of Theorem 4.1 the structure of (automatically left division)
absolute valued algebras with a left unit follows easily by introducing some natural
terminology. Given a Jordan algebra J and a vector space X, a representation
of J on X will mean a homomorphism (say ) from J onto a Jordan algebra of
operators on X. If J has a unit 1 and (1) equals the identity operator on X, the
representation 1 will be called unital. If X is a pre-Hilbert space, * is an algebra
involution on J, and the representation v satisfies

(@) () [ &) = (n | $(z7)(E))

for all z in J and all n, £ in X, then we will say that v is a *-representation. Every
smooth normed Jordan algebra J = R1® F will be considered as an algebra with
involution * defined by

(A1 +n)" =21 —1.
This involution can be intrinsically characterized as the only algebra involution *
in J such that, for every z in J, x + z* and z.x* lie in R1.

THEOREM 4.2. If J is a smooth normed Jordan algebra and i is a unital
*-representation of J on the pre-Hilbert space of J, then the normed space of J
with product © defined by

z Oy = P(@)(y)
is an (automatically left division) absolute valued algebra with left unit. Moreover,
up to isometric isomorphism, all absolute valued algebras with left unit can be
constructed in this way.

Remarks 4.1. (i) The first assertion in Theorem 4.2 is easy to prove, and
has become the common starting idea in [17] and [37] for the construction of the
infinite-dimensional examples of left-division absolute valued algebras commented
on at the beginning of this section. Concerning the last assertion in Theorem 4.2
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(the most relevant), it can be stated without involving Jordan algebras and their
representations on vector spaces, as follows. The norm of any absolute valued
algebra A with a left unit e derives from an inner product (- | -), and, for a,b,c
i A with a orthogonal to e, we have

(ab|c)=—(b|ac) and a(ab) = —|al*b.

(ii) The Albert-Urbanik-Wright theorem on absolute valued algebras with
unit, already quoted in Corollary 3.2, can also be easily derived from the above
remark. For, if A is such an algebra and 1 denotes its unit element, taking b =1
in the last equality we obtain a? = —||a|?1 for all @ in A orthogonal to 1, hence
A is a quadratic algebra. Moreover, the same equality now yields a(ab) = a?b, for
a and b in A with a orthogonal to 1, and by symmetry we also have (ba)a = ba?,
hence A is alternative. Now A is a division quadratic alternative algebra, so it is
isomorphic to R, C,H, or O by the extended Frobenius theorem.

(iii) Contrarily to what has happened for the remaining geometric require-
ments we have considered for nonassociative normed algebras in this paper,
infinite-dimensional absolute valued algebras cannot satisfy any familiar identity
like associativity or commutativity. While the result concerning associativity is
a consequence of the Gelfand—Mazur—Kaplansky theorem on associative normed
algebras with no nonzero zero-topological-divisors, the one concerning commuta-
tivity is due to K. Urbanik and F. B. Wright [41]. Both results are contained in
the one by M. L. El-Mallah and A. Micali [27] asserting that an absolute valued
algebra satisfying the identity a(ba) = (ab)a is finite-dimensional. However, al-
though infinite-dimensional left-division absolute valued algebras cannot be non-
commutative Jordan algebras, by means of Proposition 4.1 and Theorem 4.2 their
structure is reduced to that of some very particular normed Jordan algebras.

5. Concluding remarks. There are other relevant results of the kind con-
sidered in this talk, but that we have not mentioned explicitly. We shall conclude
with a list of such results, all concerning nonassociative characterizations of some
associative normed algebras. Thus we know:

e The nonassociative characterization of the real Banach algebras Cr(K)
(K a compact Hausdorff topological space) by R. V. Kadison [25].

e The nonassociative characterization of the complex Banach algebras Cc(K)
[34; Corollary 32].

e The nonassociative characterization of unital associative C'*-algebras. From
the results in [32; Section 6] this characterization can be provided by assuming
additionally in our Theorem 2.1 that the Banach space of the nonassociative
Gelfand-Naimark algebra A has no “primitive M-ideals” (in the sense of [4]) of
codimension 8.

e The nonassociative characterization of unital nonself-adjoint algebras of
bounded linear operators on a complex Hilbert space, by D. P. Blecher, Z. Ruan,
and A. M. Sinclair [9]. With the associative Vidav-Palmer theorem, this result
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contains a new nonassociative characterization of unital associative C*-algebras

[9; Corollary 3.3].
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