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We discuss some results and problems connected with estimation of spectra
of operators (or elements of general Banach algebras) which are expressed as
polynomials in several operators, noncommuting but satisfying weaker conditions
of commutativity type (for example, generating a nilpotent Lie algebra). These
results have applications in the theory of invariant subspaces; in fact, such ap-
plications were the motivation for consideration of spectral problems. More or
less detailed proofs are given for results unpublished before or published in short
communications; in some other cases we give a scheme of proof.

The author is obliged to J. A. Erdos, V. S. Guba and especially to Yu. V.
Turovskĭı for useful discussions.

Notations. “Banach algebra” means a unital Banach algebra, and “operator” a
bounded linear operator between Banach spaces. The space of all linear operators
from X to Y is denoted by B(X ,Y); moreover, B(X ) = B(X ,X ), and σ(T ) is the
spectrum of T in B(X ). For a subset E of a Banach algebra, let A0(E) and L(E)
denote respectively the subalgebra and the Lie subalgebra generated by E , and
A(E) the closure of A0(E); in operator algebras we also consider A(E), the closure
of A0(E) in the weak operator topology. The lattice of all (closed) subspaces of X
which are invariant for operators from a subset E of B(X ) is denoted by lat E ; on
the other hand, algL is the algebra of all operators leaving invariant all subspaces
from the set L of subspaces of X . The commutant of E is denoted by E ′, and the
commutator ab− ba of elements a, b by [a, b]. For any subsets E , F of a Banach
algebra A let D(E ,F) = {x ∈ A : [x, E ] ⊂ F} and D(E) = D(E , E).
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1. The root algebra. We recall that a subspace M ⊂ B(X ,Y) is called
transitive if Mξ is dense in Y for each ξ ∈ X . If M is a unital subalgebra in
B(X ) then transitivity is equivalent to triviality of latM.

V. I. Lomonosov [8] proved that any transitive subspace M ⊂ B(X ,Y) has
the following property: if T is a nonzero compact operator in B(Y,X ) then AT
has a nonzero eigenvalue for some A ∈ M. This result implies nontransitivity of
the commutant of any compact operator KinB(X ). Indeed, we may suppose that
K is quasinilpotent, and so for any A ∈ K ′ we have

(1.1) σ(AK) ⊂ σ(A)σ(K) = {0} .

A natural direction of extending the Lomonosov theorem is the search for
subspaces invariant for larger algebras than K ′. An example of such algebras
was introduced in [13]. Let K ∈ B(X ) and let ∆ = ∆K be the inner derivation
X 7→ [K,X] of B(X ). Then K ′ = Ker∆. The subspaces Cn(K) = Ker∆n are
K ′-bimodules and more generally

(1.2) Cn(K)Cm(K) ⊂ Cn+m−1(K) .

It follows that
⋃∞
n=1 Cn(K) is an algebra; its weak operator closure C∞(K) is

called the root algebra of K.
The root algebra of a compact operator must have invariant subspaces or

contain all compact operators. The second possibility occurs if, for example, K is
nilpotent or is similar to an infinite direct sum of nilpotent operators. An example
of a nontransitive root algebra is given by the Volterra operator (1)

V : f(t) 7→
t∫

0

f(s) ds

in L2([0; 1]). As proved by Sarason [11], V ′ = A(V ). We now describe all Cn(V ).
Let T be the multiplication operator f(t) 7→ tf(t) in L2([0; 1]). It is connected
with V by the “Volterra equation”

(1.3) [T, V ] = V 2 .

Let Fn = {
∑n−1
k=0 AkT

k : Ak ∈ A(V )}.

1.1. Theorem [13]. Cn(V ) = Fn
w

.

P r o o f. It is clear that V A(V ) contains all the convolution operators Zp,

Zpf(t) =
t∫

0

f(t− s)p(s) ds

where p is a polynomial; moreover, ‖Zp‖ ≤ ‖p‖L2[0;1]. Two useful facts follow
easily: (i) V A(V )

w
= A(V ) and hence I = w-limλEλV for some net Eλ ∈ A(V )

(1) Editorial note: See also pp. 370 and 373 in this volume.



INVARIANT SUBSPACES 315

where I is the identity operator, (ii) V (L2([0; 1])) ⊂ A(V )(1) where 1 ∈ L2([0; 1]),
1(t) = 1.

The inclusion Fn
w ⊂ Cn(V ) is a simple consequence of (1.3). To prove the

inverse inclusion we use induction. If X ∈ C1(V ) then (V X −A)(1) = 0 for some
A ∈ A(V ) (due to (ii)) and V X − A commutes with A(V ). Since 1 is cyclic for
A(V ) it follows that V X − A = 0, V X ∈ A(V ), X = w-limλEλV X ∈ A(V ). We
thus proved that C1(V ) = F1

w
(this is Sarason’s theorem, the proof is included

for it is very short; another short proof is in [1]). Suppose that the inclusion
Cn(V ) ⊂ Fn

w
is proved and take X ∈ Cn+1(V ). Setting A = ∆n(X) it is not

difficult to prove, using (1.3), that

∆n(n!V 2nX −ATn) = 0 ,

n!V 2nX −ATn ∈ Fn
w
,

V 2nX ∈ Fn+1
w
.

Again applying the net Eλ we get X.

Question 1. It is true that Fn
w

= Fn?

It follows immediately from Theorem 1.1 that C∞(V ) = A(V, T ). The algebra
A(V, T ) may be described in terms of latV . It is known that latV = {La : a ∈
[0; 1]} where La = {f ∈ L2 : f(t) = 0 for t ≤ a}; hence alg latV is the algebra N
of all “upper triangular” operators in L2([0; 1]) (the Volterra nest algebra). It is
not difficult to prove that A(V, T ) = N.

1.2. Corollary. C∞(V ) = N.

Let us consider the next (transfinite) step in the sequence Cn(K), C∞(K):

C∞+1(K) = {X ∈ B(X ) : ∆K(X) ∈ C∞(K)} .
1.3. Theorem. C∞+1(V ) = C∞(V ).

P r o o f. Let H be the space of all Hilbert–Schmidt operators in L2([0; 1]).
Assigning to any operator its kernel function we define a bijection λ : H →
L2(Π) where Π is the unit square. Operators in H ∩N correspond to functions
k(t, s) ∈ L2(Π) with k(t, s) = 0 for t < s. In particular,

λ(V ) =
{

1, t ≥ s,
0, t < s.

It follows that λ(XV ) =
∫ 1

s
k(t, τ) dτ , λ(V X) =

∫ t
0
k(τ, s) dτ where k = λ(X). So

if X ∈ H ∩ C∞+1(V ) then
1∫
s

k(t, τ) dτ −
t∫

0

k(τ, s) dτ = 0

for all t, s with t<s. This implies easily that k(t, s) = 0 for t<s; in other words,
X ∈ N. We have proved that H ∩ C∞+1(V ) ⊂ N. Now for any X ∈ C∞+1 we
have V X ∈ H ∩ C∞+1(V ) ⊂ N, and X = w-limλEλV X ∈ N.
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The result may be reformulated in the following way:

D(V,N) = N (or D(A(V ),N) = N) .

This strengthens the equality D(N) = N which is true for any nest algebra.

Question 2. Is every derivation from A(V ) to N inner? What can be said
about higher cohomologies?

Question 3. Is it true that C∞+1(K) = C∞(K) for any compact operator K?

Question 4. Does the inclusion C∞(K) ⊂ alg latK hold for any unicellular
operator K (that is, such that latK is totally ordered by inclusion)?

Question 5. Is it true that D(K, alg latK) = alg latK for any unicellular
(compact) operator K?

E. Kissin [6] showed that D(A) ⊂ D(alg latA) for any subalgebra A of B(H)
where H is a Hilbert space. As a corollary, the existence of D(A(K))-invariant
subspaces for a wide class of compact operators is obtained. For an arbitrary
compact operator K the problem of existence of D(A(K))-invariant subspaces is
unsolved. Let us formulate a weaker problem:

Question 6. Must D(A(K)) be nontransitive for any compact operator
K 6= 0?

Clearly, D(A(K)) ⊂ C2(K). Even in a finite-dimensional space, latC2(K) can
be trivial. But C2(K) cannot be transitive in this case (see below).

Question 7. Must C2(K) be nontransitive for any compact operator K 6= 0?

The proof of nontransitivity of C2(K) is a natural first step in the investigation
of latC∞(K). One may suppose that K is quasinilpotent (all spectral subspaces
of K are C∞(K)-invariant). Lomonosov’s technique reduces Question 7 to the
following spectral problem:

Question 8. Let elements x, a of a Banach algebra satisfy the conditions

(∗) [x, [x, a]] = 0

and σ(x) = 0. Is it true that σ(ax) = 0?

This question turned out to be very productive—it gave rise to a number of
other questions and results. We discuss that below.

The condition (∗) may be called the “Kleinecke–Shirokov condition” because
of their famous theorem [7], [12] stating that (∗) implies the quasinilpotence of
[x, a].

2. Algebraic approach. One possible way to prove the quasinilpotence of
ax (for x, a satisfying (∗)) is by direct estimation of ‖(ax)n‖. For this we may try
to represent (ax)n, using (∗), as a sum of elements bxmc with sufficiently large m.
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2.1. Theorem [13]. Let elements x, a of an arbitrary algebra A satisfy (∗).
Then

(2.1) (ax)2n−2 ⊂ A0x
nA0

for any n > 1, where A0 = A0(x, a).

P r o o f. Let Un,m be the set of all linear combinations of “monomials”
xn1am1 . . . xnkamk with

∑
i ni = n and

∑
imi = m. We prove the following

Lemma. For any r, q with r + q = 2n−m+ 1,

(2.2) Un,m ⊂ xrA0 +A0x
q .

To deduce Theorem 2.1 from the Lemma it is enough to notice that x(ax)2n−3

∈ U2n−2,2n−3 and one may take r = q = n in (2.2):

x(ax)2n−3 ∈ xnA0 +A0x
n ,

whence
(ax)2n−2 ∈ axnA0 +A0x

n ⊂ A0x
nA0 .

P r o o f o f t h e L e m m a. (∗) easily implies the equality

(2.3) xkaxl =
k

k + l
xk+la+

l

k + l
axk+l

for any k, l ∈ N. In particular,

(2.4) xq+1a = (q + 1)xaxq − qaxq+1 .

We use induction on m. For m=0 the assertion is obvious. Let m > 0 and let w
be a monomial in Un,m. Three cases are possible:

1) w = va. Then v ∈ Un,m−1 and by assumption v ∈ xrA0 + A0x
q+1. But

xq+1a ∈ A0x
q by (2.4), so w ∈ xrA0 +A0x

q.
2) w = vax. Then v ∈ Un−1,m−1 and by assumption v = xru1 + u2x

q−1 with
u1, u2 ∈ A0. Hence w = xru1ax+ u2x

q−1ax and, by (2.3),

w = xru1ax+
1
q
u2ax

q +
q − 1
q

u2x
qa .

It remains to notice that u2x
qa is a monomial considered in 1).

3) w = vaxk, k > 1. Then, by (2.4), w = kvxk−1ax − (k − 1)vxka so w is a
sum of monomials considered in 1) and 2).

2.2. Corollary. If xn = 0 then (ax)2n−2 = 0.

2.3. Corollary. If p(x) = 0 for some polynomial p of degree n then [a, x]2n−1

= 0.

P r o o f. If xn = 0 the assertion follows from the Lemma. The same is true if
(x− λ)n = 0 for [a, x] = [a, x− λ]. The general case may be reduced to this one
in a usual way (spectral idempotents of x commute with a).
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This result may be considered as an algebraic variant of the Kleinecke–Shiro-
kov theorem.

Let us rewrite (2.1) in the form

(2.5) (ax)2n−2 =
N∑
i=1

λibix
ndi

where λi ∈ C, and bi and di are monomials. It is clear that

‖(ax)2n−2‖ ≤ ‖xn‖ · ‖x‖n−2‖a‖2n−2
n∑
i=1

|λi| .

Let Λ(n) be the infimum of
∑N
i=1 |λi| in all variants of (2.5). If Λ(n) grows not very

fast (for example exponentially) then quasinilpotence of ax follows immediately.

Question 9. Find the asymptotics of Λ(n).

It was shown above that the desirable estimate is logΛ(n) = o(n). Is it true
at least that logΛ(n) = O(n log n)? The proof of Theorem 2.1 gives logΛ(n) =
O(2n).

It is obvious that
∑N
i=1 λi = 1 in (2.5). So the question arises whether one

can take λi ≥ 0. For n ≤ 3 the answer is affirmative, but in the general case it
is negative (V. S. Guba [4]). In fact, questions of this type concern the universal
algebra A(∗) of the relation (∗) (“Kleinecke–Shirokov algebra”) defined as the
quotient of the free algebra F2 by the ideal generated by the “word” [x, [x, a]].
Let A+(∗) be the cone in A(∗) generated by monomials.

2.4. Theorem [4]. If

(2.6) (ax)m ∈ A+(∗)xnA+(∗)

then m ≥ (n2 − 1)/3.

The proof of this and some other results in [4] is based on the linear monomial
(i.e. mapping monomials to monomials) bijection between A(∗) and the algebra
of all polynomials in commuting variables {xj}∞j=1 satisfying (xj+1 − xj)2 = 0.
The problem of existence of m=m(n) such that (2.6) holds is unsolved even for
n = 4; it is connected, as proved by V. S. Guba, with rather deep number-theoretic
problems.

Question 8 is a special case of a more general problem: for which “polynomials”
p(α, β) ∈ F2 the spectral mapping theorem in a weak form

(2.7) σ(p(a, x)) ⊂ p(σ(a)× σ(x))

holds if x, a satisfy (∗)? Indeed, for p(α, β) = αβ, (2.7) would imply

(2.8) σ(ax) ⊂ σ(a)σ(x) ,

whence σ(ax) = 0 if σ(x) = 0.
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The Kleinecke–Shirokov theorem gives (2.7) for p(α, β) = αβ − βα. But in
general, (∗) does not imply (2.7). Even (2.8) need not be true, as the following
example shows:

a =

 0 0 1
1 0 0
0 1 0

 , x =

 1 0 0
0 1 0
0 1 1

 .

So (2.7) follows from (∗) only for particular polynomials, and for some wider
classes it holds under some additional restrictions on σ(x). We describe this phe-
nomenon in more detail, assuming that the algebra A0(a, x) is finite-dimensional
or, more generally, that x is an algebraic element.

Let Vn,m be a homogeneous component of F2 (the linear span of monomials
in α, β with α-degree m and β-degree n), and

K =
∑
n>m

Vn,m , S =
∑

2n>m

Vn,m

2.5. Theorem. If a polynomial p(α, β) ∈ F2 satisfies the condition
p(α, β − λ · 1) ∈ S for any λ ∈ σ(x), then (2.7) holds.

P r o o f. Using spectral projections we can reduce the general case to a special
one, when σ(x) is a singleton; replacing x by x− λ · 1 we may suppose that σ(x)
= 0. Since x is an algebraic element, xk = 0 for some k ∈ N. Now p(α, β) ∈ S
implies p(α, β)2k ∈

∑
2n−m≥2k Vn,m; by the Lemma, p(α, β) ∈ xkA0 +A0x

k = 0.
It follows that

σ(p(a, x)) = {0} = p(σ(a)× σ(x)) .
It is not difficult to deduce from (∗) that any p ∈ F2 can be represented in

the form p(a, x) =
∑
k≥0 x

kpk(a, [a, x]) with some pk ∈ F2. Hence it suffices to
consider (2.7) for polynomials of the form

(2.9) p(α, β) =
∑
k

βkpk(α, [α, β]) .

Such a representation is essentially unique (in other words, a and [a, x] generate
a free subalgebra in A(∗)). Let B(∗) be the set of all p ∈ F2 satisfying (2.9) with
pk ∈ K. It is clear that the image of B(∗) in A(∗) is a subalgebra.

2.6. Corollary. Formula (2.7) holds for all p ∈ B(∗).

P r o o f. Since p(α, β−λ · 1) =
∑
k(β−λ · 1)kpk(α, [α, β]) it remains to notice

that pk(α, β) ∈ K implies pk(α, [α, β]) ∈ S.

It is clear that there exist polynomials p 6∈ B(∗) for which (2.7) holds, for
example p(α, β) = α.

Question 10. What is the set of all p ∈ F2 for which (2.7) holds?

Question 11. Is Corollary 2.6 true if one removes the restriction “x is an
algebraic element”?

For example, does (∗) imply quasinilpotence of a[a, x]2?
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3. Other weakened commutativity conditions. The important special
case of (∗) is the condition

(3.1) [a, x] = q(x)

where q 6= 0 is a polynomial; it is clear that the Volterra relation (1.3) is a
special case of (3.1). Yu. V. Turovskĭı [19] has proved that (3.1) implies (2.7) for
all p ∈ F2; in particular, σ(x) = 0 ⇒ σ(ax) = 0. We discuss two remarkable
generalizations of this result, also obtained in [19].

Theorem 3.1. Let σ(x) = 0 and letM be the algebra generated by all elements
a ∈ A satisfying (3.1) for various q (in other words, M = A0(D(A0(x)))). Then
σ(bx) = 0 for all b ∈M.

O u t l i n e o f t h e p r o o f. It is easy to see that all possible q in (3.1) form
an ideal and the minimal polynomial of this ideal is q(t) = tk, k > 1 (if [x, a] =
xkq1(x) with q1(0) 6=0, then [aq1(x)−1, x] = xk). Let n = k−1. Then [a, x]=xn+1

for some a ∈ A. We have (by induction) ∆m
a (xn) = m!nmx(m+1)n for any m ∈ N.

Hence ‖x(m+1)n‖ ≤ ‖∆a‖m‖xn‖n−m(m!)−1 so ‖xmn‖1/(mn) ≤ Cm−1/n. Now
standard arguments show that

(3.2) ‖xm‖1/m = O(m−1/n) .

An important tool for the proof is the possibility of realizing the boundary
spectrum of any element as the point spectrum of its image under some repre-
sentation of the algebra. Let b ∈ M and λ ∈ ∂(σ(bx)). Then bxξ = λξ for some
element ξ 6= 0 of a Banach A-module X . So

(3.3) [xm, b]xξ + bxm+1ξ = λxmξ

for all m ∈ N. The numbers αm = ‖xmξ‖ satisfy α
1/m
m → 0 and, consequently,

αmk+1 = o(αmk
) for a subsequence mk → ∞. Analysis in [19] shows that (3.2)

permits selecting mk in such a way that also ‖[xmk , b]xξ‖ = o(αmk
). Hence (3.3)

implies λ = 0.

The inclusion (2.7) is a special case of the general “weak” spectral mapping
theorem

(3.4) σ(p(x1, . . . , xm)) ⊂ p(σ(x1)× . . .× σ(xm))

where p ∈ Fm. The “strong” spectral mapping theorem deals with a joint spec-
trum σ(x1, . . . , xm) of an m-tuple of elements of Banach algebra A:

(3.5) σ(p(x1, . . . , xm)) = p(σ(x1, . . . , xm)) ,

where p is an n-tuple of “polynomials”: p∈Fnm. We consider Harte’s joint spec-
trum; for any (finite or infinite) family {xi}i∈I it is defined as the set of all families
{λi}i∈I of complex numbers such that {xi − λi1}i∈I is contained in a proper left
or right ideal of A.

3.2. Theorem [19]. If elements x, a satisfy (3.1), then (3.5) holds for all
xi ∈ A0(x, a) and all p ∈ Fnm.
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The proof is close in spirit to the proof of Theorem 3.1. A new technical
tool is the following fact: any unital Banach algebra has a representation on a
Banach space such that the left spectrum of any family of elements coincides
with the point spectrum of its image (one can take the adjoint of the regular
representation).

As a corollary, σ(a, x) 6=∅ for x, a satisfying (3.1); on the other hand, (∗) does
not yield nonvoidness of σ(a, x).

Another condition of weakened commutativity, close to (∗), is a symmetrized
version of (∗), considered by R. Harte [5]:

[x, [x, a]] = [a, [x, a]] = 0 .

More generally, the elements x1, . . . , xm are called quasicommuting if [xi, [xj , xk]]
= 0 for all i, j, k. It was proved in [5] that (3.5) holds for any quasicommuting
x1, . . . , xm, and any p ∈ Fnm. It is clear that quasicommutativity is equivalent to
the nilpotence of degree 2 of the generated Lie algebra. Yu. V. Turovskĭı [18], [20]
considered spectral mapping theorems for general nilpotent and finite-dimensional
solvable Lie subalgebras of Banach algebras.

3.3. Theorem [18]. If L is a nilpotent Lie subalgebra of a Banach algebra A,
then (3.5) is true for any tuple of elements in A(L).

3.4. Theorem [20]. If L ⊂ A is a solvable finite-dimensional Lie subalgebra,
then the weak spectral mapping theorem (3.4) holds in A(L).

Notice that (3.1) provides solvability of L = L(a, x). But L can be infinite-
dimensional and Theorem 3.4 is not applicable. On the other hand, Theorem 3.2
shows that the spectral properties of A0(L) are stronger than for finite-dimen-
sional L.

Question 12. Is (3.5) or at least (3.4) true in A(a, x) for a, x satisfying (3.1)?

To clarify the relations between Theorems 3.3 and 3.4 let us notice that in
an arbitrary Banach algebra B the validity of (3.4) for all xi ∈ B, p ∈ Fm is
equivalent to commutativity of B/radB (it is sufficient to have (3.4) with m = 2).
Since the condition (3.4) is “almost” independent of extensions of B, Theorem 3.4
actually says that a Banach algebra generated by a finite-dimensional solvable
Lie subalgebra is commutative modulo the radical. Theorem 3.3 describes a more
subtle phenomenon, for the spectrum of a family of elements essentially depends
on the algebra under consideration (even for commutative families).

It was proved in [20] that Theorem 3.3 characterizes nilpotent Lie algebras
among solvable ones: for any finite-dimensional solvable Lie algebra L there exist
a Banach algebra A and a Lie homomorphism τ : L → A such that (3.5) does
not hold for some m-tuples in τ(L).

Let us call the element x of a Lie algebra L (quasi)nilpotent if π(x) is
(quasi)nilpotent for any representation π of L, and radical if π(x) ∈ rad(A(π(L))).
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The following result is due to Yu. V. Turovskĭı; the proof gives information on
methods used in the proof of Theorems 3.3 and 3.4.

Theorem 3.5. Let N be an abelian ideal in a Lie algebra L. Then

(i) N ∩ [L,L] consists of quasinilpotent elements;
(ii) if dimN <∞ then [L,N ] consists of radical elements.

P r o o f. (i) It suffices to prove that if L is a Lie subalgebra in a Banach
algebra A = A(L), then [L,L]∩N consists of quasinilpotent elements. We prove
more: [A,A] ∩ N consists of quasinilpotent elements. Let a, b ∈ A, [a, b] ∈ N ,
σ([a, b]) 6= 0. Take λ ∈ σl([a, b]), λ 6= 0. Applying the spectral mapping theorem
for commuting families (see [15]) and the theorem on the point realization of left
spactra we conclude that there exist a function µ : N → C with µ([a, b]) = λ and
a Banach A-module X such that the subspace Y = {ξ ∈ X : xξ = µ(x)ξ, x ∈ N}
is nonzero. In particular, [a, b]ξ = λξ for any ξ ∈ Y. If we proved that Y is
an A-submodule this would mean that the commutator of two multiplication
operators is equal to λ · 1, a contradiction.

Let c ∈ L. Then σ([x, c]) = 0 for any x ∈ N (Kleinecke–Shirokov theorem); so
µ([x, c]) = 0. Hence [x, c]ξ = 0 for ξ ∈ Y, xcξ = cxξ = µ(x)cξ, cξ ∈ Y, LY ⊂ Y,
and AY ⊂ Y.

(ii) Let us prove first of all that N0 ⊂ radA, where N0 is the set of all nilpotent
elements in N . Indeed, N0 is a finite-dimensional subspace in N consisting of
quasinilpotents (by commutativity) so Nm

0 = 0 for some m ∈ N. Corollary 2.3
implies that N0 is an ideal in L. Hence LN0 ⊂ N0 + N0L and A0N0 = N0A0

where A0 = A0(L). So (A0N0)m ⊂ Nm
0 Am0 = 0, (AN0)m = 0, and N0 ⊂ radA.

Now consider the adjoint action of L on N . If [a, x] = λx for some λ 6= 0, then
x is nilpotent ([a, xn] = nλxn for all n), so x ∈ N0 ⊂ radA. Hence on the finite-
dimensional space N/N ∩ radA the algebra L acts as the Lie algebra of nilpotent
operators and we apply Engel’s theorem. It shows that [an, [an−1, . . . , [a1, x] . . .] ∈
radA for some n ∈ N and all aj ∈ L. Hence [a, c] ∈ radA for c = [an−1, [an−2, . . .
. . . , [a1, x] . . .] and all a ∈ A; in other words, c belongs to the centre modulo the
radical. By (i), c is quasinilpotent, so c ∈ radA. Repeating this argument we get
[a1, x]∈radA for all a1∈L and as a consequence, for all a1 ∈ A. We have proved
that [A, N ] ⊂ radA.

With a slightly more transparent argument one can generalize the preceding
results to the case of solvable N .

3.6. Corollary. Suppose a Lie subalgebra L of a Banach algebra A is quasi-
solvable (that is, L is generated by its finite-dimensional solvable ideals). Then
A(L) is commutative modulo radical.

It should be mentioned that Ş. Frunză [3] proved (in other terms) the non-
voidness of the spectrum for any n-tuple of elements generating a solvable Lie
algebra.
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4. Related results and problems

I. Let us call the family (a1, . . . , am) ∈ Am Lie-nilpotent if L(a1, . . . , an) is
nilpotent. In the work of A. S. Făınshtĕın [2] the famous definition of the Taylor
spectrum of a commutative family of operators [16] was extended to Lie-nilpotent
families.

In [17] for any module X over a Lie algebra L the Koszul complex K(L,X ) was
defined. The family A1, . . . , Am of operators on a Banach space X is called regular
if K(L(A1, . . . , Am),X ) is exact; by definition [2], σT(A1, . . . , Am) is the set of
all (λ1, . . . , λm) ∈ Cm such that (A1 − λ1, . . . , Am − λm) is a regular family. One
of the remarkable results in [2] states that for L nilpotent, exactness of K(L,X )
is equivalent to triviality of the cohomologies of L with coefficients in X .

4.1. Theorem [2]. If A = (A1, . . . , Am) is a nilpotent family of operators then

(4.1) σT(p1(A), . . . , pn(A)) = p(σT(A))

for any p = (p1, . . . , pn) ∈ Fnm such that the family (p1(A), . . . , pn(A)) is Lie-
nilpotent.

In particular, (4.1) is true for one polynomial:

4.2. Corollary. The Taylor spectrum σT(·) has the projection property for
Lie-nilpotent families of operators.

Notice also that if the Lie algebra L(p1(A), . . . , pn(A)) is finite-dimensional
then it is nilpotent. It would be of interest to know whether the condition of
nilpotence of this algebra is necessary for (4.1).

II. Among applications of the preceding results to invariant subspaces let us
mention the following consequence of Theorem 2.4 (a partial answer to Ques-
tion 6):

4.3. Corollary [20]. For any compact operator K 6= 0 the family D(A0(K))
has a nontrivial invariant subspace.

Recall that the family E of operators in a Banach space X is called triangu-
larizable if there exists a maximal linear chain of subspaces in X consisting of
E-invariant subspaces. It was proved in [9] that a family E of compact operators
is triangularizable if and only if A(E) is commutative modulo the radical. Hence
Theorems 3.3 and 3.4 imply that every nilpotent or finite-dimensional solvable
Lie algebra of compact operators is triangularizable (these results were obtained
in another “purely compact” way in [21]). It follows from Corollary 3.6 that ev-
ery quasisolvable Lie algebra of compact operators is triangularizable. In [20] it
was shown that any pair of compact operators satisfying (3.1) is triangularizable.
More general results of this kind can also be found in [20].

III. For commuting a, x the inclusion σ(ax) ⊂ σ(a)σ(x) is obvious. But similar
questions for pairwise commuting sets may be difficult.
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Question 13. Let A be a Banach algebra, and let R be a closed subalgebra
consisting of quasinilpotent elements. Is it true that σ(a1x1 +a2x2) = 0 if ai ∈ A,
xi ∈ R, [ai, xj ] = 0?

Let us also formulate a related problem:

Question 14. Let R be a radical Banach algebra. For what Banach algebras
M is the projective tensor product R⊗M radical?

It is not difficult to check that Question 13 has a positive answer if R has the
“finite quasinilpotence” property: r(M) = 0 for any finite subset M ⊂ R. The
spectral radius r(M) is defined as lim supn ‖Mn‖1/n, the norm of a set being the
supremum of the norms of its elements.

4.4. Theorem [14]. Any radical algebra of compact operators is finitely
quasinilpotent.

One of the corollaries of this result is the existence of a nontrivial subspace
invariant for a radical algebra of compact operators and simultaneously for its
commutant [14]. Yu. V. Turovskĭı extended this result in several directions.

4.5. Theorem [19]. The union of two triangularizable sets M1, M2 of compact
operators is triangularizable if M1, M2 commute or , more generally , n-commute
([. . . [a1, a2], b1], b2], . . . , bn] = 0 for any a1 ∈M1, a2 ∈M2, bj ∈M1 ∪M2).

In [19] some important Banach-algebraic properties of the map M 7→ r(M)
were proved (for example subharmonicity). One of the applications is the following
generalization of the Kleinecke–Shirokov theorem: for any a ∈ A the algebra
∆a(A) ∩ a′ is finitely quasinilpotent.

Question 15 (2). Is every radical Banach algebra finitely quasinilpotent?

IV. Two additional remarks on the Kleinecke–Shirokov theorem.

(i) It is easy to check that (∗) implies

xm(ax) = m[x, a]xm + axm+1

for all m ∈ N. If x is nilpotent and σ(ax) 6= 0 then (by the point spectra rep-
resentation theorem) there exists a module X , ξ ∈ X and m ∈ N such that
axξ = λξ (λ 6= 0), xm+1ξ = 0, xmξ 6= 0. So m[x, a]xmξ = λxmξ, contradicting
the quasinilpotence of [x, a]. We see that the Kleinecke–Shirokov theorem implies
a weakened form of Theorem 2.1 (if x is nilpotent then ax is quasinilpotent). This
elegant argument belongs to Yu. V. Turovskĭı (unpublished).

(ii) In [10] the following question was considered (among others): is it true
that σ(b) = 0 if b =

∑n
i=1[xi, ai] and [b, xi] = 0 for all i? In general the answer

is negative (b may be equal to 1) but it is affirmative if dimA < ∞ and, more
generally, if b is a “trace class element”, for example a nuclear operator.

(2) Editorial note: This problem is also cited by V. Müller, this volume, p. 262.
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