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Abstract. This expository article deals with results surrounding the following question:
Which pairs of Banach algebras A and B have the property that every unital invertibility pre-
serving linear map from A to B is a Jordan homomorphism?

In this article, all Banach algebras are over the field of complex numbers C
and are assumed to have an identity 1. The spectrum of an element a is denoted
by σ(a). A map φ from an algebra A to an algebra B is called unital if φ(1) = 1, is
called invertibility preserving if φ(a) is invertible in B for every invertible element
a ∈ A, and is called a Jordan homomorphism if φ(ab + ba) = φ(a)φ(b) for all a
and b ∈ A, or equivalently φ(a2) = (φ(a))2 for every a ∈ A. It is obvious that
every homomorphism and every anti-homomorphism is a Jordan homomorphism.
(A linear map φ is called an anti-homomorphism if φ(ab) = φ(b)φ(a).)

There is a history of research activity centered around the question of when
invertibility preserving linear maps are Jordan homomorphisms. One of the ear-
liest results in this area is the following, which was obtained independently by
Gleason [5] and Kahane and Żelazko [9].

Theorem 1 ([5], [9]). Let φ be a unital invertibility preserving linear map from
a commutative Banach algebra A to a commutative semisimple Banach algebra
B. Then φ is multiplicative.

R e m a r k s. 1. Żelazko [15] has shown that the conclusion of the above theorem
also holds for noncommutative A.

2. It is shown in [5] and [9] that the proof of the above theorem reduces easily
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to the case where B = C. In this case the condition on φ is equivalent to the
condition that σ(φ(a)) ⊂ σ(a) for every a ∈ A, and the result can be stated as a
characterization of maximal ideals.

The next theorem, dealing with matrix algebras, is due to Marcus and Purves
[11], and in the case of bijective mappings to Dieudonné [3], who considers
“semilinear” maps of matrix algebras over arbitrary fields which preserve non-
invertibility. In what follows, we denote the transpose of a matrix x by xt.

Theorem 2 ([3], [11]). Let φ be a unital invertibility preserving linear map on
Mn, the algebra of all n× n complex matrices. Then φ takes one of the following
forms:

φ(x) = axa−1 or φ(x) = axta−1 ,

for some invertible element a ∈Mn.

R e m a r k. The conclusion of Theorem 2 is equivalent to asserting that φ is a
Jordan isomorphism. This follows from a result of Herstein [6, pp. 47–51] which
states that every Jordan homomorphism of rings whose range is a prime ring is
either a homomorphism or an anti-homomorphism, together with the classical
result that every automorphism of Mn is inner. (Recall that a ring R is called
prime if aRb = 0 implies that a = 0 or b = 0.)

Motivated by the results above, Kaplansky [10] raised the question of when
must additive invertibility preserving maps on rings be homomorphisms (or Jor-
dan homomorphism) (1). Of course this is not always the case for arbitrary rings
(see [10]). There are also counterexamples for linear unital maps on Banach alge-
bras. Indeed, if A is obtained from a radical algebra by adjoining an identity, then
any unital linear map on A that maps the radical part to itself preserves invert-
ibility but is rarely multiplicative. We give below a concrete example. Another
example is given by Aupetit in [1, p. 28].

Example. Let A be the algebra of upper triangular n × n matrices with
n ≥ 3, and let φ(aij) = (bij) where b12 = a13, b13 = a12, and bij = aij otherwise.
It is immediate that φ is unital and preserves invertibility. However, if c is the
matrix given by c23 = c13 = 1, cij = 0 otherwise, then φ(c2) = 0 but (φ(c))2 6= 0,
and so φ is not a Jordan homomorphism. Observe that, as in Aupetit’s example,
(φ(c))2 − φ(c2) is nilpotent.

The following theorem of Aupetit [1] is a generalization of Theorems 1 and 2.

Theorem 3 ([1]). Let A and B be Banach algebras and assume that B has a
separating family of irreducible finite-dimensional representations. If φ : A → B
is a surjective, unital , invertibility preserving linear map, then φ is a Jordan
homomorphism.

(1) Editorial note: See also footnote (2) in the paper of M. Mathieu in this volume.
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The next two results deal with *-algebras and *-linear maps. The von Neu-
mann algebra result is due to Russo [13] and the C∗-algebra result is due to
Choi–Hadwin–Nordgren–Radjavi–Rosenthal [2]. We state them together.

Theorem 4 ([2], [13]). Let A and B be C∗-algebras and let φ : A → B be
a unital invertibility preserving linear map such that φ(a∗) = (φ(a))∗, for every
a ∈ A. Then φ is a Jordan homomorphism provided that either

(i) A and B are von Neumann algebras, or
(ii) φ is surjective and continuous.

R e m a r k. A counterexample in [2] shows that the result above is false when
the range of φ is not a C∗-algebra. In that example, φ has a dense range.

The next result generalizes Dieudonné’s to infinite-dimensional spaces. The
algebra of all bounded operators on a Banach space X is denoted by B(X).

Theorem 5 ([14]). Let X and Y be Banach spaces over the complex field and
let φ be a unital bijective linear map from B(X) to B(Y ). The following conditions
are equivalent :

(a) φ preserves invertibility.
(b) φ is a Jordan isomorphism.
(c) φ is either an isomorphism or an anti-isomorphism.
(d) Either

(i) Y is isomorphic to X and φ(T ) = A−1TA for every T ∈ B(X) where
A is an isomorphism from Y to X, or

(ii) Y is isomorphic to X∗ and φ(T ) = B−1T ∗B for every T ∈ B(X)
where B is an isomorphism from Y to X∗.

The proof of Theorem 5 uses the following characterizations of rank one op-
erators, which are also of independent interest.

Proposition 1. Let R ∈ B(X), R 6= 0. The following are equivalent.

(i) R has rank one.
(ii) σ(T + αR) ∩ σ(T + βR) ⊆ σ(T ), for every T ∈ B(X), and every scalars

α and β, where α 6= β.
(iii) For every T ∈ B(X), there exists a compact subset KT of the complex

plane such that
σ(T + αR) ∩ σ(T + βR) ⊆ KT ,

for every T ∈ B(X), and every scalars α 6= β.

R e m a r k s. 1. The equivalence of (i) and (ii) is given in [8] and is used there
to characterize spectrum preserving linear maps. The stronger equivalence of (i)
and (iii) is what is needed to prove Theorem 5.

2. Function theory seems to play a role in several proofs. The proof of Propo-
sition 1 in [14], which is too technical to include here, uses Picard’s Theorem,
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and the proof of the main result in [9] uses Hadamard’s Theorem. However, an
elementary proof of Theorem 1 can be found in [12].

O u t l i n e o f p r o o f o f T h e o r e m 5. What follows is a brief outline with
most details omitted. First we introduce some notation. The duality between a
Banach space and its dual is denoted by 〈 , 〉. The rank one operator u→ f(u)x
is denoted by x⊗ f .

The implications (d)⇒(c)⇒(b)⇒(a) are easy. To show that (a)⇒(d), assume
that condition (a) is satisfied. It follows that

(†) σ(φ(T )) ⊆ σ(T ) ,

for every T ∈ B(X). Condition (iii) of Proposition 1 implies that φ sends rank one
operators to rank one operators. Thus if x ∈ X and f ∈ X∗, then φ(x⊗f) = y⊗g
for some y ∈ Y and g ∈ Y ∗. It is not too difficult to prove that y depends linearly
only on one of x and f , and that g depends only on the other variable. Therefore

φ(x⊗ f) = Ax⊗ Cf ,

or

φ(x⊗ f) = Bx⊗Df ,
where A : X → Y and C : X∗ → Y ∗, or B : X∗ → Y and D : X → Y ∗, are linear
transformations.

Next we use the fact (see [8]) that if λ 6∈ σ(T ), then λ ∈ σ(T + x⊗ f) if and
only if 〈(λ−T )−1x, f〉 = 1. This, together with the spectral inclusion (†), implies
that

〈(1− zT )−1x, f〉 = 〈(1− zφ(T ))−1Cx,Df〉 ,
for every z in a deleted neighbourhood of 0. These equations and the closed graph
theorem show that A and C (or B and D) are bounded. Taking the limit as z → 0,
we see that C = (A−1)∗ or that D = (B−1)∗|X. Taking the derivative at 0, we
obtain the forms of condition (d) in Theorem 5.

R e m a r k s. 1. The map φ in Theorem 5 is not assumed to be continuous in
any topology. Of course, the conclusion of the theorem implies that if it preserves
invertibility, then it must be continuous when B(X) and B(Y ) are both equipped
with any of the standard operator topologies.

2. Weakly continuous rank preserving maps on B(X) are characterized in [7].
3. The equivalence of conditions (c) and (d) in Theorem 5 implies that every

isomorphism of B(X) is inner, a result due to Eidelheit [4].
4. The equivalence of conditions (b) and (c) in Theorem 5 also follows from

Herstein’s Theorem [6, pp. 47–51], as indicated in the remark following Theorem 2
above.

We note that Proposition 1 can be generalized, as stated below, to a charac-
terization of operators having rank less than n for a fixed positive integer n.
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Proposition 2. The operator R has rank less than n if and only if for every
T ∈ B(X), there exists a compact subset KT of the complex plane such that⋂

1≤j≤n

σ(T + αjR) ⊆ KT ,

for every T ∈ B(X), and any n distinct scalars αj , j = 1, . . . , n.

We end by asking a more concrete question than the one in the Abstract. Let
A be semisimple Banach algebra and φ a bijective linear map on A that preserves
invertibility; must φ be a Jordan isomorphism?
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bringing to his attention references [7] and [12].

References

[1] B. Aupet i t, Propriétés Spectrales des Algèbres des Banach, Lecture Notes in Math. 735,
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[9] J.-P. Kahane and W. Że lazko, A characterization of maximal ideals in commutative

Banach algebras, Studia Math. 29 (1968), 339–343.
[10] I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, Amer. Math. Soc.,

Providence, 1970.
[11] M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invari-

ance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383–396.
[12] M. Roitman and Y. Sternfe ld, When is a linear functional multiplicative?, Trans.

Amer. Math. Soc. 267 (1981), 111–124.
[13] B. Russo, Linear mappings of operator algebras, Proc. Amer. Math. Soc. 17 (1966),

1019–1022.
[14] A. R. Sourour, Invertibility preserving linear maps, preprint, 1992.
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