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Let T be a bounded linear operator on a complex Banach space X, with
smallest possible spectrum, say, σ(T ) = {1}. Thus, the resolvent (T −λI)−1 is an
analytic function of λ on C \ {1}, vanishing at infinity, and the point 1 is either a
pole or an essential singularity. More precisely, it is a pole of order r if and only
if r is the least exponent such that (T − I)r = 0, because

(T − λI)−1 = −I(λ− 1)−1− (T − I)(λ− 1)−2− . . .− (T − I)n(λ− 1)−(n+1)− . . .

for λ 6= 1. This paper is devoted to characterizing the various situations, with
emphasis on the case r = 1. It relies on connections with complex analysis.

If dimX < ∞, then σ(T − I) = {0} implies that T − I is nilpotent, hence
there is a pole at 1. The first result pertaining to the infinite-dimensional case
was published by I. Gelfand [1941b]:

Theorem 1. Let T ∈ B(X) be such that σ(T ) = {1}. If supn∈Z ‖Tn‖ < ∞,
then T = I.

The original proof was not so simple as the statement above, and it was not
clear until 1950 whether all the assumptions (in particular, the boundedness of
both positive and negative powers) are really needed for the conclusion. Also
N. Dunford and E. Hille struggled with this problem around 1943, as is obvious
from footnote (14) in [N. Dunford 1943, p. 216]. Finally, G. E. Shilov [1950] gave an
example showing that the boundedness of just the positive powers is not sufficient
in Theorem 1.
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The following is a more transparent example. Let V be the Volterra operator
on the Hilbert space L2[0, 1], defined by

(Vf )(t) =
t∫

0

f(s) ds .

It is well known that σ(V ) = {0}, cf. [P. R. Halmos 1967, Problem 146]. Thus, the
operator T = (I+V )−1 has spectrum σ(T ) = {1}. Moreover, it is not difficult to
show that ‖Tn‖= 1 for n∈N, cf. [P. R. Halmos 1967, Problem 150]. But T 6= I,
because V 6=0. Notice that the exponential formula [A. Pazy 1983, Theorem 1.8.3]
yields ‖etV ‖ = 1 for t < 0, so that the operator e−V provides yet another ex-
ample; concerning this, see also [B. Aupetit 1991, Theorem 6.4.6], [G. Lumer
and R. S. Phillips 1961, Theorem 2.3], and [R. Sine 1969]. (An interesting cha-
racterization of the Volterra operator was found by D. Przeworska-Rolewicz and
S. Rolewicz [1987]. For other properties of V see [V. S. Shul’man 1994] in this
volume.) Nevertheless, Theorems 5 and 6 below, and also Theorems 7 and 8 for
Riesz operators, show some other characterizations involving the positive powers
of T or T − I only.

In connection with the latter example, let us recall that if ‖eitS‖ = 1 for all
t ∈ R, where S is a Hilbert space operator, then S is selfadjoint. This origi-
nates from [I. Vidav 1956]. The following simple proof uses the Lie–Trotter for-
mula [B. Aupetit 1991, Exercise III.15], [D. Petz 1994, Lemma 4] in this volume,
[M. Reed and B. Simon 1972, Theorem VIII.29]. Indeed, it is enough to show that
the selfadjoint operator A = i(S − S∗) has zero spectrum. Since σ(A) ⊂ R, the
claim comes from

|σ(etA)| ≤ ‖eit(S−S
∗)‖ = ‖ lim

n→∞
(eitS/ne−itS

∗/n)n‖

≤ lim sup
n→∞

(‖eitS/n‖ · ‖e−itS
∗/n‖)n = 1 .

Notice that the weaker condition supt∈R ‖eitP ‖ <∞ is satisfied, for instance, by
any P = P 2, not necessarily selfadjoint [B. Barnes 1989, p. 215]. This thread
of development, closely related to the main topic of the present paper, can be
traced in [B. Aupetit and D. Drissi 1994], [B. Aupetit and J. Zemánek 1990],
[F. F. Bonsall and J. Duncan 1971; 1973], [R. S. Doran and V. A. Belfi 1986],
[S. Kantorovitz 1965], [G. Lumer 1961; 1964], [I. Vidav 1982], and [B. Zalar 1993].
We shall see later on that the exponential function can also be used in proving
Theorem 1.

It was E. Hille [1944] who pointed out that Theorem 1 and its generalization,
Theorem 2 below, are consequences of an earlier result in complex analysis. To
describe this, suppose that F (λ) is an analytic function on C \ {1}, vanishing at
infinity, with Taylor series

F (λ) = a0 + a1λ+ a2λ
2 + . . . for |λ| < 1 ,
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and
F (λ) = b1λ

−1 + b2λ
−2 + . . . for |λ| > 1 .

Going back to L. Leau [1899], E. Le Roy [1900], S. Wigert [1900], and G. Faber
[1903], consider the function

G(z) =
1

2πi

∫
F (λ)e−(z+1) log λ dλ ,

where the integration is over a small circle around 1. This entire function has
mild growth (zero exponential type of order one, cf. [L. Bieberbach 1927, Sec-
tion VII.3]), which permits us to conclude that it is a polynomial of degree less
than r whenever the values at the integers satisfy G(n) = o(nr), or G(n) =
O(nr−1), as |n| → ∞. The conclusion comes from the solutions by G. Szegö
[1934] and L. Tschakaloff [1934] of a problem posed by G. Pólya [1931a]. This
in turn implies that the original function F (λ) has a pole of order at most r
at 1, cf. [P. Dienes 1931, p. 337] or [N. Obreschkoff 1934]. Further related lite-
rature includes [N. U. Arakelyan and V. A. Martirosyan 1991], [L. Bieberbach
1955], [R. P. Boas, Jr. 1954], [E. Hille 1962], [J. Korevaar 1948; 1949a; 1949b],
[B. Ja. Levin 1964], [E. Lindelöf 1905], [A. I. Markushevich 1976], [R. E. A. C. Pa-
ley and N. Wiener 1934], [G. Pólya 1974], [A. Pringsheim 1932], [I. I. Privalov
1950], [S. L. Segal 1981], [M. H. Stone 1948], [G. Valiron 1925], and [D. V. Widder
1941].

The Pólya theorem [1931a] is a discrete version of the Bernstein inequality
[1923], cf. [R. P. Boas, Jr. 1954, Theorem 11.1.2]. For a historical account of the
latter see [N. I. Akhiezer 1951] and [P. R. Boas, Jr. 1969].

For applications to operator theory it is important to know that

G(n) = an and G(−n) = −bn
for n ∈ N, cf. [N. Obreschkoff 1934] and [L. Bieberbach 1927, p. 289]. The parti-
cular function F (λ) = (T − λI)−1, with σ(T ) = {1}, yields

an = T−n−1 and bn = −Tn−1

for n ∈ N. This together with the results mentioned before gives immediately the
following theorem of E. Hille [1944], see also [M. H. Stone 1948] and [E. Hille and
R. S. Phillips 1957, Theorem 4.10.1].

Theorem 2. Let T ∈ B(X) be such that σ(T ) = {1}. Let r be a positive
integer. Then (T − I)r = 0 if and only if ‖Tn‖ = o(nr), or ‖Tn‖ = O(nr−1), as
|n| → ∞.

M. H. Stone [1948] obtained this by simplifying the proof of Pólya’s theo-
rem. G. E. Shilov [1950] pointed out that Theorem 2 can also be derived from
[I. Gelfand 1941a]. Other proofs of Theorem 1 were discovered by A. Browder
[1969] and G. Lumer [1971]. The latter gives an interesting estimate of ‖T − I‖
by the behaviour of the spectrum on a path of finite length of elements joining T
to I within a bounded commutative group, and is closely related to the result of
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A. Browder [1971], V. È. Katsnel’son [1970], and A. M. Sinclair [1971] (see also
[F. F. Bonsall and M. J. Crabb 1970] and [B. Aupetit and D. Drissi 1994]) that
the spectral radius is equal to the norm for a Hermitian operator on a Banach
space in the sense of I. Vidav [1956].

Yet another proof and a generalization of Theorem 2 were obtained by T. Pyt-
lik [1987]. The latter also follows from S. M. Shah’s generalization [1946, Theo-
rem 1] of Pólya’s theorem [1931b]. Pólya’s theorem [1931a] was also applied to
Banach lattice homomorphisms by X.-D. Zhang [1992]. Elementary arguments in
the context of Banach lattices can be found in [S. J. Bernau and C. B. Huijsmans
1990] and [H. H. Schaefer 1974, Proposition I.3.4].

The proof of Theorem 1 promised above in connection with the exponen-
tial function proceeds as follows. Since σ(T ) = {1}, the holomorphic calculus
[F. F. Bonsall and J. Duncan 1973, Theorems 7.4 and 7.6] or [E. Hille and
R. S. Phillips 1957, Theorems 5.3.1 and 5.3.2] gives a Q ∈ B(X) with T = eQ

and σ(Q) = {0}. The entire function eλQ is of the exponential type required in
Pólya’s theorem [1931a], by [F. F. Bonsall and J. Duncan 1973, Corollary 4.2],
and its values at the integers, Tn = enQ, are bounded by Gelfand’s assumption.
Thus, the function is constant, which immediately yields T = I. Theorem 2 can
be derived similarly by using Pólya’s theorem as given in [R. P. Boas, Jr. 1954,
Theorem 10.2.11] and [E. Hille and R. S. Phillips 1957, Theorem 3.13.8].

A significant step towards understanding Theorem 1 was made by J. Esterle
[1983, Theorem 9.1] who proved, by an elegant argument based on the preceding
exponential function and a Phragmén–Lindelöf theorem (a device also involved
in Gelfand’s proof), the following “half” counterpart to Theorem 1.

Theorem 3. Let T ∈ B(X) be such that σ(T ) = {1}. If supn∈N ‖Tn‖ < ∞,
then ‖Tn − Tn+1‖ → 0 as n→ +∞.

Notice that Theorem 1 is an immediate consequence of Theorem 3.
In fact, knowing that

Tn(T − I)→ 0 as n→ +∞, and sup
n∈N
‖T−n(T − I)‖ <∞ ,

one sees that (T−I)2 = 0. This implies that the sequence {Tn(T−I)} is constant,
because

Tn(T − I)− Tn+1(T − I) = −Tn(T − I)2 = 0 .
Hence Tn(T−I)=0. Multiplication by T−n yields T =I. This argument suggests
the following generalization of Theorems 1 and 2.

Theorem 4. Let T ∈ B(X) be invertible.

1o If ‖Tn − Tn+1‖ → 0 as n → +∞, and supn<0 ‖Tn − Tn+1‖ < ∞, then
T = I.

2o If ‖Tn − Tn+1‖ = O(nr−1) as |n| → ∞, for some positive integer r , then
each isolated point of σ(T ) is a pole of order not exceeding r+ 1; in particular , if
σ(T ) = {1}, then (T − I)r+1 = 0.
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P r o o f. Part 1o sums up the preceding elementary argument. Part 2o follows
from [S. M. Shah 1946, Theorem 1] applied to the function F (λ) = (λ − 1)(T −
λI)−1 whose Taylor coefficients are an = T−n − T−n−1 on |λ| < 1, and bn =
Tn−1 − Tn on |λ| > 1, for n ∈ N; the particular case comes directly from Pólya’s
theorem [1931b].

The matrix T =
(
1 1
0 1

)
illustrates the difference between Theorem 4 and the

preceding results.
An apparently more general result than Theorem 3 (the same conclusion, and

the same condition on the positive powers of T , but a weaker condition on σ(T )
allowing it to have points inside the unit disk, possibly accumulating at 1) was
published by Y. Katznelson and L. Tzafriri [1986]; see also [C. J. K. Batty 1994b,
Corollary 2.2] in this volume, for the precise formulation and some other related
references. However, Vũ Quôc Phóng [1992] gave an elegant proof reducing the
problem to the case where σ(T ) = {1}, and applying Theorem 1. Thus Theorem 3
is really the essential case. It is curious that [J. Esterle 1983] is not even referenced
in [Y. Katznelson and L. Tzafriri 1986]. Another simple approach can be found in
[G. R. Allan and T. J. Ransford 1989] and [P. Meyer-Nieberg 1991, Section 4.6].

The quantitative behaviour of the sequence {‖Tn − Tn+1‖} as n → +∞ is
studied in [O. Nevanlinna 1993, Chapter 4]. It does not mention the interest-
ing result of J. Esterle [1983, Corollary 9.5], with the lower bound obtained by
M. Berkani [1983, Corollaire 5.1.2]: If σ(T ) = {1} and T 6= I, then

lim inf
n→+∞

n‖Tn − Tn+1‖ ≥ 1/12 .

Can this result be improved knowing that there is an essential singularity or a
pole (1) of a given order at 1?

Next, the natural question arises whether it is possible to split Theorem 2
in a way similar to Theorem 3, at least in the case when ‖Tn‖ = o(n) as n →
+∞. Notice that the latter condition is necessary for ‖Tn − Tn+1‖→ 0 as n →
+∞. The question of sufficiency was raised by G. R. Allan [1989, p. 7]. One can
also ask whether the converse to the implication in Theorem 3 holds. However,
A. Atzmon [in preparation] claims having a negative answer to both questions: for
this purpose, translation operators on Banach spaces of special entire functions
seem suitable; the highly interesting details await publication.

A negative answer to the second question, with T = I−V , can also be derived
from the example in [T. Pytlik 1987, p. 292–293] by using the Fejér formula
[H. Bateman, A. Erdélyi et al . 1953, p. 199], [G. Szegö 1959, Theorems 8.22.1
and 7.6.4], cf. also [G. Sansone 1959, p. 348] and [F. G. Tricomi 1955, p. 242].

The conclusion of Theorem 3 and the Fatou–Riesz theorem (see, for instance,
[C. J. K. Batty 1994a, Theorem 1.6] in this volume, [P. Dienes 1931, p. 469],
[E. Landau 1946, §18], [E. C. Titchmarsh 1939, Theorem 7.3.1], [G. Valiron 1954,
§20]) guarantee the (weak) convergence of the exterior Taylor series (|λ| > 1) of

(1) Krzysztof Bolibok observed that in this case the limit is +∞ (March 9, 1994).
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the function (λ − 1)(T − λI)−1 at the points of the unit circle different from 1,
where the function has analytic extension. These boundary values can then be ex-
tended, by the Abel theorem (see, for instance, [P. Dienes 1931, p. 102], [K. Knopp
1947, p. 179], [R. Remmert 1991, p. 120]), to a new power series on the open unit
disk. If one knows that the interior Taylor series (|λ| < 1) of (λ−1)(T−λI)−1 also
(weakly) converges at the same points of the unit circle, then the radial limits of
the two Taylor series coincide at these points and, finally, the Lusin–Privalov theo-
rem (see, for instance, [E. F. Collingwood and A. J. Lohwater 1966, Corollary 8.3],
[K. Noshiro 1960, §III.3], [I. I. Privalov 1950, pp. 319–320]) implies that the two
series coincide, which gives the conclusion of Theorem 1. It is this difficulty that
had to be overcome by the other analytic tools involved in Theorems 2 and 3.

Theorem 2 was used by J. Wermer [1952] in proving that an invertible opera-
tor T on a Banach space has a non-trivial invariant subspace if ‖Tn‖ = O(nr)
as |n| → ∞, for some r = 0, 1, 2, . . . ; it seems interesting to note that (a more
general form of) this condition as well as (a particular case of) the spectral radius
formula appear already in [A. Beurling 1938]. H. Radjavi and P. Rosenthal [1973,
Theorem 6.4] give another proof based on a resolvent growth condition. Local
versions of Wermer’s theorem can be found in [A. Atzmon 1984] and [B. Beauzamy
1988]. For operators with general spectra, the aim of these results is to conclude
that, under certain growth conditions on the iterates of T , either T = I or T has
a non-trivial hyperinvariant subspace. See also [S. Grabiner 1979, Theorem 4.1].
The quantitative behaviour of the powers has also influence on the structure of
invariant subspaces of an operator, cf. [A. Atzmon 1993]. In general, this deve-
lopment has led to a better understanding of Theorem 2.

Recall that the condition σ(T ) = {1} is equivalently expressed by requiring
that ‖(T −I)n‖1/n → 0 as n→ +∞. It was observed by A. Atzmon [1980, Corol-
lary 7] that a stronger requirement on the rate of convergence in the preceding
spectral radius formula (anyway necessary for T − I to be nilpotent) makes it
possible to drop the assumption on the negative powers of T ; the analytic device
underlying this is again [G. Pólya 1931a].

Theorem 5. Let T ∈ B(X) be such that n‖(T − I)n‖1/n → 0 as n→ +∞. If
‖Tn‖ = O(nr−1) as n→ +∞, for some positive integer r , then (T − I)r = 0.

Characterizations of nilpotent elements in terms of conditions on the growth
of the resolvent can be found in [I. Gelfand 1941a], [O. Nevanlinna 1993, Theo-
rem 5.4.1], [J. G. Stampfli 1967], and [J. G. Stampfli and J. P. Williams 1968,
Theorem 7]. The behaviour of the spectrum near such elements was studied by
B. Aupetit and J. Zemánek [1981; 1983].

Recall that an operator T is said to have finite descent, equal to r, if r is the
smallest non-negative integer such that R(T r) = R(T r+1), where R(T ) = TX
is the range of T . The ascent is defined similarly with respect to the behaviour
of the null space N(T ) = T−1(0) of the iterates of T . See [A. E. Taylor and
D. C. Lay 1980, p. 290], and remember that for a general operator such finite
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numbers may not exist. However, if they both exist, then they are equal [ibid.,
Theorem V.6.2], and 0 is a pole of the resolvent of order r; in fact, this is a
geometric characterization of a pole [ibid., p. 330]:

X = N(T r)⊕R(T r) ,

where R(T r) is automatically closed by [ibid., Theorem IV.5.10].
Gelfand’s case r = 1 admits more characterizations. They are listed in the

next theorem, where the notation

Mn(T ) =
I + T + . . .+ Tn−1

n
, n ∈ N ,

and M−n(T ) = Mn(T−1), is used.

Theorem 6. Let T ∈ B(X). The following conditions are equivalent :

1o σ(T ) = {1}, and supn∈Z ‖Mn(T )‖ <∞;
2o σ(T ) = {1}, and the sequence {Mn(T );n ∈ N} is convergent in B(X);
3o σ(T ) = {1}, and the set {Tn; n ∈ N}− is compact in B(X);
4o σ(T ) = {1}, and lim supn→+∞ ‖Tn − Tn+1‖1/n < 1;
5o σ(T ) = {1}, and lim infn→+∞ ‖Tn − Tn+1‖1/n < 1;
6o σ(T ) = {1}, ‖Tn‖ = o(n) as n → +∞, and R((T − I)m) is closed for

some m = 1, 2, . . . ;
7o σ(T ) = {1}, ‖Tnx‖ = o(n) as n→ +∞, for every x ∈ X, and R((T−I)m)

is closed for some m = 2, 3, . . . ;
8o σ(T ) = {1}, ‖Tnx‖ = o(n) as n→ +∞, for every x ∈ X, and T − I has

finite descent ;
9o ‖Tn‖ = o(n) as n→ +∞, and lim infn→+∞ ‖I −Mn(T )‖ < 1;

10o σ(T ) = {1}, and ‖(T − λI)−1‖ ≤ const ·|λ − 1|−1 for λ in a deleted
neighbourhood of 1;

11o σ(T ) = {1}, and ‖(T − λI)−1‖ ≤ const ·||λ| − 1|−1 for |λ| 6= 1;
12o T = I.

P r o o f a n d c o m m e n t s. It is enough to show that each condition implies
12o. The implication 1o⇒12o is a simple application of the formula

I − Tn

n
= (I − T )Mn(T )

and the case r = 2 of Theorem 2, see [M. Mbekhta et J. Zemánek 1993, Théo-
rème 2].

The implication 2o⇒12o can also be derived from the preceding formula; it is
a particular case of [N. Dunford 1943, Theorem 3.16].

Condition 3o implies that 1 is a simple pole of the resolvent of T (hence T = I),
by the theorem of M. A. Kaashoek and T. T. West [1968, Theorem 3; 1974, Theo-
rem I.2.3]; see also [M. A. Kaashoek 1969], [J. J. Koliha 1974a], [R. A. Hirschfeld
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1968], [L. J. Wallen 1967], and [A. Świȩch 1990]. Notice that the Kaashoek–West
theorem has an earlier analogy in complex analysis [G. Pólya und G. Szegö 1964,
Aufgabe III.241].

The implication 4o⇒12o is a consequence of the corresponding result in com-
plex analysis [A. Pringsheim 1929, p. 115; 1932, p. 917]; see also [N. U. Arakelyan
and V. A. Martirosyan 1991, p. 57]. The implication 5o⇒12o follows from the
already mentioned result of J. Esterle [1983, Corollary 9.5].

The implication 6o⇒12o can be found in [M. Mbekhta et J. Zemánek 1993,
Corollaire 2].

The condition ‖Tnx‖ = o(n) as n→ +∞, for every x ∈ X, implies that T − I
has ascent at most 1, cf. [ibid., Lemme]. Thus 8o implies 12o by [A. E. Taylor and
D. C. Lay 1980, Theorem V.6.2 and p. 330], while 7o implies 12o by [D. C. Lay
1970, Theorem 2.7] or [S. Grabiner 1974, Theorem 5.4]. It is not clear whether
m = 1 can be allowed in condition 7o. More general forms of 8o⇒12o are [S. Gra-
biner 1971, Theorem 2; 1974, Theorem 5.2; 1982, Corollary 4.9], [D. C. Lay 1970,
Theorem 2.6], and [A. E. Taylor and D. C. Lay 1980, p. 332].

An elementary proof of the implication 9o⇒12o can be found in [W. Wils
1969]; it is remarkable that this result has no spectral assumption.

Condition 10o implies 12o by the Laurent series development at 1. It is included
here because it can be split in two symmetric parts: condition 10o restricted to
|λ| > 1 only yields the Hille condition ‖Tn‖ = o(n) as n → +∞, by [R. K. Ritt
1953], and similarly for |λ| < 1 it gives the analogous conclusion as n → −∞.
Thus the result is also a consequence of Theorem 2. It would be interesting to
know whether, conversely, the (one-sided) Hille condition implies the (one-sided)
Ritt resolvent estimate. If not, is it then possible that the Ritt condition implies a
stronger conclusion like ‖Tn−Tn+1‖ → 0 as n→ +∞ (2), or conversely? Perhaps
[E. C. Titchmarsh 1939, Example 7.8.16] and [N. K. Nikol’skĭı 1977] could be of
use here? A finite-dimensional version of the latter can be found in [L. Collatz
1963, §19.8].

Finally, condition 11o implies that ‖Tn‖ = O(n) as |n| → ∞, by [I. Colojoară
and C. Foiaş 1968, Proposition 5.1.6], hence T = I by Theorem 2 and the Laurent
series development at 1. Alternatively, one can also show that 11o implies 10o.
The proof is complete.

It would be interesting to find analogous characterizations of a general pole
at 1, cf. [H.-D. Wacker 1985] and [J. Zemánek, à parâıtre]. As for condition 11o,
this is possible by [I. Colojoară and C. Foiaş, Proposition 5.1.6] and Theorem 2.
Apart from the characterizations of poles and nilpotent elements already men-
tioned, a recent result in this direction is [C. Schmoeger 1993, Theorem 5]. Also
L. Burlando [1994] follows this way.

Is there a link between Theorem 5 and conditions 4o, 5o, or 9o of Theorem 6?

(2) Yes, Olavi Nevanlinna verified this on March 9, 1994.
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Theorem 6 also suggests a number of other problems: If the spectral restric-
tion σ(T ) = {1} is relaxed or dropped, what are the relationships between the
remaining parts of the corresponding conditions? For instance, S. Grabiner (pri-
vate communication) has constructed an operator with descent one and non-closed
range. Interesting examples of relationships between various conditions involving
the powers of operators and the resolvent can be found e.g. in [A. Atzmon 1983;
1993], [B. Beauzamy 1987; 1988], [A. Bernard 1971], [A. Brunel et R. Émilion
1984], [A. L. Bukhgĕım 1988], [Y. Derriennic and M. Lin 1973], [W. F. Donoghue,
Jr. 1963], [R. Emilion 1985], [C. Fernandez-Pujol 1988], [A. G. Gibson 1972],
[I. Gohberg, S. Goldberg and M. A. Kaashoek 1990, p. 166], [I. C. Gohberg
and M. G. Krĕın 1969, p. 244], [L. K. Jones and M. Lin 1980], [J. J. Koliha
1974b], [G. K. Leaf 1963], [E. R. Lorch 1941], [C. Lubich and O. Nevanlinna 1991],
[C. A. McCarthy 1971], [C. A. McCarthy and J. Schwartz 1965], [A. Mokhtari
1988], [V. Müller 1994], [O. Nevanlinna 1993], [T. Nieminen 1962], [H. C. Rönne-
farth 1993], [A. L. Shields 1978], [B. M. Solomyak 1982; 1983], [J. C. Strikwerda
1989], [J. A. Van Casteren 1985], [F. Wolf 1957].

On the other hand, it would be interesting to know what happens to some of
these results if a spectral restriction, like σ(T ) = {1}, is imposed. Sometimes the
spectral condition itself may imply T = I, cf. [W. Arendt 1983, Corollary 3.6].

B. Sz.-Nagy [1947] proved that a Hilbert space operator T with supn∈Z ‖Tn‖ <
∞ is similar to a unitary operator. What is the class of operators satisfying the
weaker condition supn∈Z ‖Mn(T )‖ < ∞? For the Riesz operators, see assertion
3o in Theorem 8 below. For general Hilbert space operators, related results can
be found in [J. A. Van Casteren 1985, Theorem 7.10].

For special operators the situation simplifies. For instance, the following comes
from [M. Mbekhta et J. Zemánek 1993, Théorème 3] and [J. I. Nieto 1982, Corol-
laire 1], correcting and completing [B. Beauzamy 1988, Exercise I.1].

Theorem 7. Let T ∈ B(X) be a Riesz operator. The following conditions are
equivalent :

1o supn∈N ‖Tn‖ <∞;
2o ‖Tn‖ = o(n) as n→ +∞;
3o Mn(T ) converges as n→ +∞;
4o supn∈N ‖Tnx‖ <∞, for every x ∈ X;
5o ‖Tnx‖ = o(n) as n→ +∞, for every x ∈ X;
6o Mn(T )x converges as n→ +∞, for every x ∈ X;
7o |σ(T )| ≤ 1 and ascent(T − λI) ≤ 1 for |λ| = 1;
8o |σ(T )| ≤ 1 and ‖(T − λI)−1‖ ≤ const.(|λ| − 1)−1 for |λ| > 1.

Notice that, in contrast to Theorems 1 and 2, one-sided conditions are suf-
ficient in Theorem 7; this is also explained by an interesting inequality between
‖T−1‖ and ‖T‖ in the finite-dimensional case, cf. [J. W. Daniel and T. W. Palmer
1969], [V. Pták 1976], and [N. J. Young 1978, Theorem 4].
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Of course, 1o and 4o (of Theorem 7) are equivalent for any operator, by the
Banach–Steinhaus theorem. What are the relations between the other conditions
in general? A characterization of property 6o can be found in [R. Sine 1970]; see
also MR40#5825, [S.-Y. Shaw 1980], and [R. Sato 1979; 1981]. The qualitative
behaviour of orbits {Tnx} was studied by S. Rolewicz [1969], and the subsequent
development is traced by B. Beauzamy [1988]; see also [L. Kérchy 1994] and
[V. Müller 1994] in this volume.

The Jordan theorem gives a spectral characterization of the following more
general behaviour. Interesting related results and questions can be found in [H. C.
Rönnefarth 1993]. See also [J. C. Strikwerda and B. A. Wade 1991].

Theorem 8. Let T ∈ B(X) be a Riesz operator with |σ(T )| ≤ 1.

1o ‖Tn‖ = O(n) as n→ +∞ if and only if ascent(T − λI) ≤ 2 for |λ| = 1;
2o Tn/n converges as n→ +∞ if and only if

ascent(T − I) ≤ 2 and ascent(T − λI) ≤ 1 for |λ| = 1, λ 6= 1 ;

3o supn∈N ‖Mn(T )‖ <∞ if and only if

ascent(T − I) ≤ 1 and ascent(T − λI) ≤ 2 for |λ| = 1, λ 6= 1 .

Is it possible to obtain similar characterizations of poles, on the unit circle,
of order not exceeding a given number? Is it possible to replace the assumption
supn∈N ‖Tn‖ <∞ in Theorem 3 by supn∈N ‖Mn(T )‖ <∞?

Is there a local version of Theorem 3? In this direction, see [W. Arendt and
C. J. K. Batty 1988, Theorem 5.1], [C. J. K. Batty 1994b, Theorem 2.5] in this
volume, and [Yu. I. Lyubich and Vũ Quôc Phóng 1988].

There are local versions of the Gelfand–Hille theorems.

Theorem 9. Let T ∈ B(X) be such that σ(T ) = {1}. Let p and q be positive
integers, and let x ∈ X. Suppose that ‖Tnx‖ = o(np) as n→ +∞, and ‖Tnx‖ =
o(nq) as n → −∞. Then (T − I)rx = 0, where r = max(p, q). However , if
min(p, q) = 1, then actually Tx = x.

P r o o f. The first assertion follows from Pólya’s theorem [1931b] applied to
the function F (λ) = (T − λI)−1x.

For the second, suppose that (T − I)rx = 0 for some r ≥ 2, and that, for
instance, ‖Tnx‖ = o(n) as n → +∞. Let y = (T − I)r−1x. Then (T − I)y = 0,
hence Mn(T )y = y. On the other hand,

Mn(T )y = (T − I)r−2Mn(T )(T − I)x = (T − I)r−2T
n − I
n

x→ 0 as n→ +∞ ,

hence y = 0. By induction, (T − I)x = 0.

The first assertion was obtained in [B. Aupetit and D. Drissi 1994] by a dif-
ferent method based on a theorem of B. Ja. Levin [1964]. In view of the second
assertion, it would be interesting to know whether a similar improvement of the
first assertion is possible. Global features of this phenomenon can also be observed
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in [J. Esterle 1994], [V. I. Istrăţescu 1978, Theorem 6.3.1], [Vũ Quôc Phóng 1993,
Lemma 4], and [M. Zarrabi 1993, Corollaire 3.2; to appear]. Thus, there remains
the feeling that the role of the two one-sided conditions in the Gelfand–Hille
theorems is not quite symmetric.

Let us conclude with a problem arising in [M. Mbekhta et J. Zemánek 1993].
In conditions 6o and 7o of Theorem 6 it is important to know when (a power of) a
quasinilpotent operator has closed range. In this context, the following instructive
example was suggested by V. Müller and W. R. Wogen.

Let Q be a quasinilpotent operator which is not nilpotent. Consider the ope-
rator

S =
(
Q I
0 0

)
on X ⊕X .

Then R(S)=X is closed, and S is quasinilpotent but not nilpotent. Next, L. Bur-
lando [1994] and, independently, W. R. Wogen claimed to have constructed a
quasinilpotent operator which is not nilpotent and all of whose (positive) powers
have closed range. Concerning this situation, see also [B. Johnson 1971, Lemma].

What can be said about the intersection of the ranges of the powers of a
quasinilpotent operator? When is it non-zero? When is the range of a quasinilpo-
tent operator dense in X? Can the answers to these questions be given in terms
of the behaviour of the powers or the resolvent?
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Taylor , Ann. Fac. Sci. Toulouse Math. 2, 317–430.
B. Ja. Lev in [1964], Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence.
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