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Abstract. This survey deals with necessary and/or sufficient conditions for continuity of
the spectrum and spectral radius functions at a point of a Banach algebra.

Introduction. Let L be a complex Banach algebra. If L has no identity, let L
denote the Banach algebra obtained by canonical adjunction of an identity to L,
whereas we set L = L if L has an identity. Furthermore, let KC denote the set of
compact nonempty subsets of the complex plane C, endowed with the Hausdorff
metric ∆.

We deal with continuity of the spectrum function σ : L → KC and of the
spectral radius function r : L → R (where σ(a) and r(a) denote respectively the
spectrum and the spectral radius of a in L for any a ∈ L).

The following inequality is not difficult to verify:

(1) |r(a) − r(b)| ≤ ∆(σ(a) , σ(b)) for any a, b ∈ L.

Hence continuity of σ implies continuity of r.

If Ω is a subset of a topological space Ξ, we denote by Ω and Ω
◦

the closure
and interior of Ω in Ξ, respectively.

If L is commutative, by the Gelfand representation theorem (see [R], 3.1.6,
3.1.11 and 3.1.20) there exist a locally compact Hausdorff space X and a continu-
ous homomorphism Γ , from L into the Banach algebra C0(X) of complex-valued
continuous functions on X which vanish at infinity, such that σ(a) = â(X) (where
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â denotes the image of a under Γ ) for any a ∈ L. Since both Γ and the map
Φ : C0(X) ∋ f 7→ f(X) ∈ KC are continuous, it follows that the spectrum func-
tion σ = Φ ◦ Γ is continuous on L. Then also the spectral radius function is
continuous on L by (1).

If L is finite-dimensional, there exists an injective unital homomorphism Λ :
L → Mn(C) for some positive integer n (where Mn(C) denotes the algebra of
complex n × n matrices). Then, for any a ∈ L, σ(a) is equal to the spectrum of
Λa in the subalgebra Λ(L) of Mn(C), which coincides with the spectrum of Λa
in Mn(C) as the resolvent set of Λa in Mn(C) is connected (see [TL], VII, 2.7).
Since the n-tuple of coefficients of terms of degree less than n of the characteristic
polynomial is a continuous function of the matrix, and the set of roots of the
characteristic polynomial is a continuous function of this n-tuple, we conclude
that the spectrum function is continuous on Mn(C). Hence σ and r are continuous
on L.

More generally, if the Banach algebra L is either commutative or finite-dimen-
sional modulo the radical, then the spectrum and spectral radius functions are
continuous on L, as the spectrum of any a ∈ L coincides with the spectrum of the
coset of a in the quotient algebra L/Rad(L), where Rad(L) denotes the radical
of L (see [Au6], 1.1, Lemma 2; notice that Rad(L) = Rad(L): indeed, when L has
no identity, then L is a maximal two-sided ideal of L, and thus contains Rad(L)
by [Au6], Appendix I, Theorem 1; therefore, since Rad(L) = L∩Rad(L) by [BD],
§24, Corollary 20, equality Rad(L) = Rad(L) holds).

Since Kakutani provided an example of a linear bounded operator on l2, with
nonzero spectral radius, which is the limit of a sequence of nilpotent operators
(see [R], p. 282; [Au6], p. 34), it has been known that the functions r and σ
may not be continuous on the whole of L when L is neither commutative nor
finite-dimensional modulo the radical.

Several other examples of spectral discontinuity, due to various authors, are
recorded in §5 of Chapter 1 in [Au6].

The first results about continuity of the spectrum and spectral radius func-
tions in general Banach algebras are due to Newburgh ([N]), who proved that
the spectrum is upper semi-continuous on any Banach algebra and gave a first
sufficient condition for continuity of σ at a point a of a Banach algebra L (namely,
total disconnectedness of σ(a)).

Further contributions to the problem of spectral continuity in Banach algebras
have been given, more recently, by several other authors. We also recall that
continuity and uniform continuity of the spectrum and spectral radius functions
are among the topics of the book [Au6].

The problem of continuity of r and σ can be considered from several points
of view. For instance, the three questions below can be posed.

Problem 1. Characterize the Banach algebras L such that the spectrum (re-
spectively , spectral radius) function is uniformly continuous on L.
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Problem 2. Give necessary and/or sufficient conditions for continuity of the
spectrum (respectively , spectral radius) function on L.

Problem 3. Give necessary and/or sufficient conditions for continuity of the
spectrum (respectively , spectral radius) function at a ∈ L.

Several authors have studied continuity of the restriction of the spectrum
function to special subsets of some Banach algebras. Newburgh proved a result
about continuity of the restriction of σ to a certain kind of subset of a Banach
algebra, from which he derived that the restriction of σ to the set of normal
elements of a C∗-algebra is continuous (see [N], VII, Corollaries 1 and 2). Both
the results of Newburgh have been generalized by Aupetit ([Au1], [Au3], [Au4]),
who among other things has replaced continuity with Lipschitz continuity. Also
in [PZ1] and in [Co] the restriction of σ to the normal operators on a Hilbert
space is proved to be Lipschitz continuous (in [PZ1] Lipschitz continuity is also
proved for hyponormal operators; simple continuity for hyponormal operators had
previously been proved by Janas in [J]).

We recall that Problem 1 above has been solved by Aupetit ([Au2]), and inde-
pendently by Pták and Zemánek ([PZ2], [Ze1]). The following three conditions are
equivalent for a complex Banach algebra L (see [Au2], Theorem 1 and Theorem 2;
[PZ2], 2.7; [Ze1], Added in proof):
(2) the spectral radius function is uniformly continuous on L;

(3) the spectrum function is uniformly continuous on L;

(4) L/Rad(L) is commutative.
As regards Problem 2, Newburgh deduced continuity of the spectrum function

on every commutative Banach algebra from a more general result of continuity
of spectrum with respect to converging sequences of elements, any of which com-
mutes with the limit, of a Banach algebra (see [N], V, corollary of Theorem 4).
More recently, Ackermans has proved that, for any commutative Banach algebra
L with identity and for any positive integer n, the spectrum function is continuous
on the Banach algebra Mn(L) of all n× n matrices with entries in L (see [Ac2],
3.1). In addition, in [Ac2], 3.2, the following relationship between continuity of
spectrum in a Banach algebra L1 and in a closed subalgebra L2 of L1 (where L1

and L2 have the same identity element) is provided: when the spectrum function
is continuous on L1, then it is also continuous on L2. A relationship between
continuity of spectrum or spectral radius in a Banach algebra L and in some con-
venient quotient algebras of L has been proved by Zemánek in [Ze2], Remark 1:
namely, if the spectral radius (respectively, spectrum) function is continuous on
L/P for every primitive ideal P of L, then it is also continuous on L.

Also the papers [Ac1], [Ap], [Au5], [B10] and [LS], by Ackermans, Apostol, Au-
petit, the author and Levi and S lodkowski, respectively, contain results which are
connected with Problem 2. In particular, in [Ac1], Theorem 3.1, it is proved that
σ is continuous on a Banach algebra L if and only if the set {a ∈ L : σ(a) ⊂ F} is
closed for any closed subset F of C (this characterization, as well as the other two
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results by Ackermans mentioned above, has been extended to suitable topologi-
cal algebras by Daoultzi-Malamou in [D]). Nevertheless, a characterization of the
Banach algebras on which σ, or r, is continuous, which can be expressed through
a property of the algebra not involving the spectrum and spectral radius (like the
characterization above of uniform continuity) still lacks, as far as we know. In this
regard, let us recall the following observation, due to Zemánek (see [Ze1], p. 261):
since continuity of σ (respectively, r) on a Banach algebra L with identity is
equivalent to continuity of σ (respectively, r) on the semi-simple Banach algebra
L/Rad(L) (as the spectra of an element of L and of its coset in L/Rad(L) co-
incide), whose topology is uniquely determined by the purely algebraic structure
in view of a well known result by Johnson (see for instance [Au6], Appendix I,
Theorem 5, or [BD], §25, Theorem 9), it follows that continuity of spectrum (re-
spectively, spectral radius) on L depends entirely on the algebraic structure of
L/Rad(L), and thus it would be interesting to characterize the Banach algebras
on which r or σ are continuous by means of purely algebraic conditions.

In [Ap], Theorem 3, a Banach algebra A is constructed such that the spectral
radius function is continuous on A whereas the spectrum function is not continu-
ous on A. Finally, in [B10] a generalization of [Ac2], 3.1 to Banach algebras with
a suitable family of representations is provided.

In [Ap], Theorem 1 the following refinement of [Ac2], 3.2, connected with
Problem 3, is obtained: if L1 is a complex Banach algebra with identity and L2 is
a closed subalgebra of L1 (endowed with the same identity element of L1), then
the spectrum function in L2 is continuous at any a ∈ L2 such that the restriction
to L2 of the spectrum function in L1 is continuous at a.

Still with regard to Problem 3, for the algebra of all linear bounded operators
on a separable Hilbert space, and for its quotient algebra modulo the compact
operators, the points of continuity of the functions r and σ (as well as the points of
continuity of several other spectral functions) have been characterized by Conway
and Morrel in [CM1]–[CM4]. Further characterizations of the points of continuity
of various spectral functions on the linear bounded operators in the separable
Hilbert space case have been subsequently given in the book [AFHV], a chapter
of which is devoted to spectral continuity. Spectral continuity for operators on
separable Hilbert spaces has also been investigated in [He1], [He2] and [Q]. It
is known that the conditions given by Conway and Morrel and by the authors
of [AFHV] are sufficient for continuity of r and σ also in the algebra of linear
bounded operators on a Banach space X and in its quotient algebra modulo the
compact operators. Nevertheless, in [B5], [B6] and [B9] we have proved that these
conditions are not necessary for continuity of r and σ when X is not supposed to
be Hilbert and separable.

As far as we know, the problem of characterizing the points of continuity of r
and σ is still open for both the algebra of bounded linear operators on a Banach
space and its quotient algebra modulo the compact operators, as well as in the
general case of an abstract Banach algebra.
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We shall be concerned here with Problem 3.
In Section 1 we recall Newburgh’s results about upper semi-continuity of spec-

trum and of separate parts of spectrum. In addition, we deal with sufficient con-
ditions for continuity of r and σ at a point a of a Banach algebra L which involve
only the topological structure of σ(a): we give an account of the conditions given
in [N] and in [Mu], and of the properties of the subsets of all points of L which
satisfy these conditions, thus completing the results of [B1] (which was concerned
only with the conditions provided in [Mu]).

Section 2 deals with the Banach algebra of linear bounded operators on a
Banach space and its quotient algebra modulo the compact operators. We give
an account of the sufficient conditions (which are also necessary when the Banach
space is Hilbert and separable) for continuity of the spectrum and spectral radius
functions in these algebras provided by Conway and Morrel and by the authors
of [AFHV]. Moreover, we review and complete some results of [B3] and [B4] about
equivalence of various families of conditions in the algebras above and about the
properties of the sets of points of these algebras which satisfy these conditions.

In Section 3 we give an account of some results of [B5]–[B9]: in [B5], [B6],
[B8] and [B9] we provided sufficient conditions for continuity of the spectrum and
spectral radius functions at a point of a Banach algebra, which, in the algebra
of linear bounded operators on a Banach space and, as regards the conditions
in [B8] and [B9], also in its quotient algebra modulo the compact operators, are
less restrictive than the ones given by Conway and Morrel and by the authors
of [AFHV]; in [B7] we proved that our conditions can be simplified when the
ideal structure of the algebra has some good properties. Furthermore, we prove
that one of our conditions is satisfied at every point of any Banach algebra which
is commutative modulo the radical. More generally, this condition is satisfied at
every point of any Banach algebra whose unitization has a sufficient family of
finite-dimensional representations (see [B10]).

Section 4 is mainly concerned with necessary and/or sufficient conditions
for continuity of spectrum and spectral radius, in the Banach algebra of linear
bounded operators on a Banach space, which are of a different type from the ones
by Conway and Morrel we recall here in Section 2. In particular, we review and
complete the results provided in [Zh] about the relationships between continu-
ity of spectrum and continuity of the boundary of the spectrum, and extend to
the general Banach space case a necessary condition for continuity of spectrum,
connected with these results and proved in [CM1] in the separable Hilbert space
case.

1. For any sequence (Xn)n∈N of subsets of a topological space X, we set

lim inf
n→∞

Xn = {x ∈ X : x = lim
n→∞

xn for some sequence (xn)n∈N

such that xk ∈ Xk for any k ∈ N}

and
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lim sup
n→∞

Xn = {x ∈ X : there exist a subsequence (Xnk
)k∈N of (Xn)n∈N and

a sequence (xk)k∈N, with xj ∈ Xnj
for any j ∈ N, such that x = lim

k→∞
xk} .

Notice that lim infn→∞Xn ⊂ lim supn→∞Xn.

For any metric space M , for any x ∈M and for any ε > 0, let BM (x, ε) denote
the set of all elements of M whose distance from x is less than ε.

For any subset D of M and for any ε > 0, we set

(D)ε =
⋃

x∈D

BM (x, ε)

(which implies that (∅)ε = ∅).

Let Ξ be a topological space, and let KC ∪{∅} be endowed with the topology
obtained by adjoining ∅ to KC as an isolated point. A map φ : Ξ → KC ∪ {∅}
is upper (respectively, lower) semi-continuous at x0 ∈ Ξ if for any ε > 0 there
exists a neighborhood Ω of x0 in Ξ such that φ(x) ⊂ (φ(x0))ε (respectively,
φ(x0) ⊂ (φ(x))ε) for any x ∈ Ω. Notice that φ is continuous at x0 if and only if
φ is both upper and lower semi-continuous at x0.

We set

B(Ξ) = {φ : Ξ →KC ∪ {∅} : for any converging sequence (xn)n∈N in Ξ

there exists δ > 0 such that φ(xn) ⊂ BC(0, δ) for any n ∈ N} .

Notice that σ ∈ B(L) for any complex Banach algebra L. Indeed, if (an)n∈N is
a converging sequence in L, there exists δ > 0 such that ‖an‖ < δ for any n ∈ N.
Then σ(an) ⊂ BC(0, δ) for any n ∈ N.

Now let Ξ be a first countable topological space and let φ ∈ B(Ξ). Then φ is
upper (respectively, lower) semi-continuous at x ∈ Ξ if and only if

lim sup
n→∞

φ(xn) ⊂ φ(x) (respectively, φ(x) ⊂ lim inf
n→∞

φ(xn))

for any sequence (xn)n∈N of elements of Ξ which converges to x (see also [CM2],
1.6 and 1.7).

The following theorem is due to Newburgh.

Theorem 1.1 ([N], III, Theorem 1). Let L be a complex Banach algebra. Then
the spectrum function is upper semi-continuous on L.

The result below is a consequence of Theorem 1.1.

Corollary 1.2. Let L be a complex Banach algebra. Then the spectral radius
function is upper semi-continuous on L.

It is lower semi-continuity of r which fails in the example by Kakutani we men-
tioned in the Introduction: if (An)n∈N is a sequence of nilpotent linear bounded
operators on l2 which converges to an operator A with nonzero spectral radius,
we have limn→∞ r(An) = 0 < r(A).
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If L is a complex Banach algebra and a ∈ L, a spectral set of a is any closed
and open subset of σ(a) in the relative topology of σ(a).

Newburgh proved the following result.

Theorem 1.3 ([N], IV, Lemma 3). Let L be a complex Banach algebra, let
a ∈ L and let Σ be a nonempty spectral set of a. Then for any neighborhood G
of Σ there exists δ > 0 such that σ(b) ∩G 6= ∅ for any b ∈ BL(a, δ).

If Σ is a spectral set of a, then so is σ(a) \ Σ. Hence there exist two open
disjoint subsets F and G of C such that Σ ⊂ F and σ(a) \Σ ⊂ G. Since F ∪G is
a neighborhood of σ(a), the following consequence of Theorems 1.1 and 1.3 can
be deduced.

Corollary 1.4. Let L be a complex Banach algebra, let a ∈ L and let Σ
be a nonempty spectral set of a. Then for any neighborhood G of Σ there exists
δ > 0 such that G contains a nonempty spectral set of b for any b ∈ BL(a, δ).

If X is a compact Hausdorff space and C is a component of X, then for any
neighborhood G of C there exists a closed and open subset Σ of X such that
C ⊂ Σ ⊂ G (see [HY], Theorem 2-15). Hence the following result can be deduced
from Theorems 1.1 and 1.3.

Corollary 1.5 ([Mu], Theorem 3). Let L be a complex Banach algebra and
let a ∈ L. Then, for any component C of σ(a) and for any neighborhood G of C,
there exists δ > 0 such that G contains a component of σ(b) for any b ∈ BL(a, δ).

Theorem 1.3 is the main tool used by Newburgh in order to prove his sufficient
condition for continuity of spectrum:

Theorem 1.6 ([N], IV, Theorem 3). If L is a complex Banach algebra and
a ∈ L has totally disconnected spectrum, then the spectrum function is continuous
at a.

Continuity of σ on finite-dimensional Banach algebras, recalled in the Intro-
duction, can also be deduced from Theorem 1.6.

Let X be a complex nonzero Banach space, and let L(X) and K(X) denote
the Banach algebra of all linear bounded operators on X and the closed two-
sided ideal of all compact operators on X, respectively. Then from Theorem 1.6
it follows that the spectrum function σ : L(X) → KC is continuous at every
K ∈ K(X).

Definition 1.7. Let L be a complex Banach algebra, and let a ∈ L. We set:

(i) ψ(a) = {λ ∈ σ(a) : {λ} is a component of σ(a)};
(ii) δ(a) = sup{inf{|λ| : λ ∈ ω} : ω is a component of σ(a)}.

Notice that ψ(a) ⊂ σ(a) and δ(a) ≤ r(a) for any a ∈ L.
The condition of Theorem 1.6 for continuity of σ has been refined by Murphy

([Mu]), who has provided the two sufficient conditions below for continuity of
spectral radius and spectrum.
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Theorem 1.8 ([Mu], Propositions 1 and 2). Let L be a complex Banach algebra
and let a ∈ L.

(i) If

(5) r(a) = δ(a) ,

then the spectral radius function is continuous at a.
(ii) If

(6) σ(a) = ψ(a) ,

then the spectrum function is continuous at a.

Newburgh’s condition of Theorem 1.6 implies (6), and (6) implies (5). An
example in L(X) (where X is an infinite-dimensional complex Hilbert space)
is provided in [B1], 2.11, in order to show that Newburgh’s condition is more
restrictive than (6). Also, (6) is more restrictive than (5): for instance, in L(l2(Z)),
the bilateral shift U satisfies (5) and does not satisfy (6) (as σ(U) = ∂BC(0, 1),
so that δ(U) = 1 = r(U) and ψ(U) = ∅).

If X is a complex nonzero Hilbert space, then, in virtue of Theorem 1.8, the
spectral radius function is continuous at every unitary operator U ∈ L(X).

By using a special case of an approximation theorem by Apostol and Morrel
([AM], 3.1), Murphy also proved that a normal operator on a separable Hilbert
space X must satisfy (5) (respectively, (6)) in order to be a point of continuity of
the spectral radius (respectively, spectrum) function on L(X) (see [Mu], Propo-
sitions 1 and 2). Thus (5) (respectively, (6)) is the best possible of the sufficient
conditions for continuity of r (respectively, σ) which only involve the topological
structure of the spectrum.

Definition 1.9. Let L be a complex Banach algebra. We denote by ContL(σ)
and ContL(r) the sets of all points of continuity of the spectrum function and of
the spectral radius function on L, respectively.

Notice that ContL(σ) ⊂ ContL(r) by (1).
In [B1] two subsets τL and πL of ContL(σ) and ContL(r), respectively, are

introduced, through topological conditions on the spectrum (see [B1], 1.1 and
2.1). The following characterizations can be given (see [B1], 1.5 and 2.4):

πL = {a ∈ L : r(a) = δ(a)} , τL = {a ∈ L : σ(a) = ψ(a)} .

Thus πL and τL are the sets of all elements of L which satisfy Murphy’s conditions
(5) and (6), respectively. If we set

νL = {a ∈ L : σ(a) is totally disconnected} ,

then νL ⊂ τL ⊂ πL .
We remark that K(X) ⊂ τL(X) for any complex nonzero Banach space X.

If in particular X is a Hilbert space, then πL(X) contains all unitary operators
on X.
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Algebraic and topological properties of πL and τL are studied in [B1]. In
particular, τL is proved to be invariant under the action of holomorphic functions.

If a ∈ L and f is a complex-valued function, holomorphic on an open neigh-
borhood G of σ(a), the integral

f(a) =
1

2πi

∫

+∂D

f(λ)(λe− a)−1 dλ (∈ L)

is well defined (where e denotes the identity of L, (λe− a)−1 denotes the inverse
of λe − a in L for any λ ∈ C \ σ(a) and +∂D denotes the positively oriented
boundary of an open bounded set D, containing σ(a) and with closure contained
in G, such that ∂D = ∂D, D has a finite number of components and ∂D consists
of a finite number of simple closed rectifiable curves, no two of which intersect)
and does not depend on the choice of D. Moreover, if the isolated points of σ(a)
are simple poles, g(a) = f(a) for any complex-valued function g, holomorphic on
a neighborhood of σ(a), which coincides with f on σ(a).

When L has no identity, then it is not difficult to verify that f(a) ∈ L if and
only if f(0) = 0.

Let U(a) denote the linear algebra of all complex-valued functions, defined on
σ(a), that can be extended to holomorphic functions on some open neighborhood
of σ(a). In the above situation, the map

ϑa : U(a) ∋ h 7→ h̃(a) ∈ L

(where, for any h ∈ U(a), h̃ is some holomorphic function that extends h to an
open neighborhood of σ(a)) is well defined and is a unital homomorphism of linear
algebras, which maps the identity function into a.

Thus, if Σ is a spectral set of a and the holomorphic function f coincides
with the characteristic function of Σ on a neighborhood of σ(a), then f(a) is an
idempotent of L and is called the spectral projection associated with Σ.

The proof of the following result is implicit in [B1], 2.13.

Theorem 1.10. If K is a compact nonempty subset of C, {λ ∈ K : {λ} is a
component of K} is dense in K and f is a complex-valued function, holomorphic
on an open neighborhood of K, then also {λ ∈ f(K) : {λ} is a component of
f(K)} is dense in f(K).

The result below (invariance of τL under the action of holomorphic functions)
is a consequence of Theorem 1.10 and of the spectral mapping theorem.

Corollary 1.11 ([B1], 2.13). If L is a complex Banach algebra, a ∈ τL and
f is a complex-valued function, holomorphic on an open neighborhood of σ(a)
(and such that f(0) = 0 if L has no identity), then f(a) ∈ τL.

Now we prove that also νL is invariant under the action of holomorphic func-
tions.
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Lemma 1.12. Let X be a locally compact Hausdorff topological space, let n be
a positive integer and let Fj be a totally disconnected closed subset of X for any
j = 1, . . . , n. Then also

⋃n
j=1 Fj is totally disconnected.

P r o o f. It is sufficient to prove the lemma for n = 2, as the general result
can be derived from this special case by induction. Thus let F1 and F2 be totally
disconnected closed subsets of a locally compact Hausdorff space X. Then also
F1 ∪ F2 is a locally compact Hausdorff space. For any x ∈ F2 \ F1, since {x} is
a component of F2 \ F1, which is open in F1 ∪ F2, from [B3], 1.5, it follows that
{x} is also a component of F1 ∪ F2. Consequently, for any y ∈ F1, if Cy denotes
the component of F1 ∪F2 which contains y then Cy ⊂ F1. Thus Cy = {y}, as F1

is totally disconnected.
We have thus proved that F1 ∪ F2 is totally disconnected.

Theorem 1.13. If K is a compact nonempty totally disconnected subset of
C, and f is a complex-valued function, holomorphic on an open neighborhood of
K, then also f(K) is totally disconnected.

P r o o f. We set Z = {λ ∈ K : f ′(λ) = 0}. Repeating the arguments in the
first part of the proof of [B1], 2.13, we can prove that f(Z) is finite and, for any
λ ∈ f(K) \ f(Z), there exist an open neighborhood G0 of λ and a finite number
G1, . . . , Gn of open subsets of the domain of f such that G0 ∩ f(K \ (

⋃n
j=1Gj))

= ∅, f(Gk) = G0 for any k = 1, . . . , n and the map fk : Gk → G0 defined by
fk(µ) = f(µ) for any µ ∈ Gk is a homeomorphism for any k = 1, . . . , n. Then

f(K) ∩G0 = f
(
K ∩

n⋃

j=1

Gj

)
=

n⋃

j=1

fj(K ∩Gj) .

Consequently, for any j ∈ {1, . . . , n}, since K ∩ Gj is a totally disconnected set
which is closed in the relative topology of Gj and fj is a homeomorphism, we
see that fj(K ∩Gj) is totally disconnected and is closed in the relative topology
of G0. Therefore f(K)∩G0 is totally disconnected by Lemma 1.12. Consequently,
by [B3], 1.5, {λ} is a component of f(K), for any λ ∈ f(K) \ f(Z). Since f(Z) is
finite, it follows that f(K) is totally disconnected.

The following result is a consequence of Theorem 1.13 and of the spectral
mapping theorem.

Corollary 1.14. If L is a complex Banach algebra, a ∈ νL and f is a
complex-valued function, holomorphic on an open neighborhood of σ(a) (and such
that f(0) = 0 if L has no identity), then f(a) ∈ νL.

In the case of a C∗-algebra L, Corollaries 1.11 and 1.14 cannot be extended
to the continuous functional calculus for normal elements, as the analogues of
Theorems 1.10 and 1.13 do not hold for continuous functions (e.g., if K is the
Cantor set there exists a continuous function f from K onto [0, 1]). Indeed, if H
is a complex infinite-dimensional Hilbert space, since every compact nonempty
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subset of C is the spectrum of some diagonal operator on H (see [Ha], Problem
48; the argument of Solution 48 works in every infinite-dimensional—possibly
nonseparable—Hilbert space) there exists A ∈ L(H) such that σ(A) = K and A
is diagonal (and consequently normal). Therefore, since K is totally disconnected,
we have A ∈ νL(H) (which implies that also A ∈ τL(H)). Now let f(A) denote
the image of f under the unique isometric ∗-homomorphism from the C∗-algebra
C(σ(A)) of continuous complex-valued functions on σ(A) into L(H) which ex-
tends ϑA (see [TL], VII, 7.1; for any normal B ∈ L(H), the ∗-homomorphism
from C(σ(B)) into L(H) which extends ϑB is unique as it is uniquely determined
on the dense subspace of all polynomials in λ and λ by the condition of mapping
p1 into B and p1 into B∗, where p1(λ) = λ for any λ ∈ σ(B)). Then from [TL],
VII, 4.4, 6.5 and 7.1, it follows that σ(f(A)) = f(σ(A)) = f(K) = [0, 1]. Thus
f(A) 6∈ πL(H).

Let L be a complex Banach algebra. In general, πL is not invariant under the
action of holomorphic functions. Indeed, an example can be constructed in L(X)
(for an infinite-dimensional Hilbert space X) showing that an may belong to πL

for no positive integer n ≥ 2, although a ∈ πL (see [B1], 1.10). Also, if L has an
identity e and σ(a) = ∂BC(0, 1) (e.g., L = L(l2(Z)) and a is the bilateral shift),
then a ∈ πL and λe+ a 6∈ πL for any nonzero scalar λ.

Theorem 1.15 ([B1], 3.8 and 3.11). Let L be a complex Banach algebra. Then
πL and τL are Gδ-sets.

Theorem 1.16. Let L be a complex Banach algebra. Then νL is a Gδ-set.

P r o o f. For any ε > 0, we set

ν
(ε)
L = {a ∈ L : σ(a) is the union of a finite number of spectral sets,

any of which has diameter less than ε} .

First, we prove that ν
(ε)
L is an open subset of L for any ε > 0.

For any a ∈ ν
(ε)
L , there exist a positive integer n and Σ1, . . . , Σn ⊂ C such that

σ(a) =
⋃n

j=1Σj andΣk is a nonempty spectral set of a such that diam(Σk) < ε for
any k = 1, . . . , n. It is not restrictive to suppose that the sets Σj , j = 1, . . . , n,
are pairwise disjoint. Then there exist n pairwise disjoint open subsets G1, . . . , Gn

of C such that Σj ⊂ Gj and diam(Gj) < ε for any j = 1, . . . , n. By Theo-
rem 1.1, there exists δ > 0 such that σ(b) ⊂

⋃n
j=1Gj for any b ∈ BL(a, δ).

Hence σ(b) =
⋃n

j=1(σ(b) ∩ Gj) and, for any k = 1, . . . , n, σ(b) ∩ Gk is a spec-
tral set of b and diam(σ(b) ∩ Gk) ≤ diam(Gk) < ε. Consequently, BL(a, δ)

⊂ ν
(ε)
L .

Now we prove that νL =
⋂

n∈Z+
ν

(1/n)
L .

Let a ∈ νL and let n ∈ Z+. For any λ ∈ σ(a), since {λ} is a component of
σ(a), which is a compact Hausdorff space, there exists a spectral set Σλ of a such
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that λ ∈ Σλ and diam(Σλ) < 1/n. Since σ(a) is compact, there exist a positive

integer m and λ1, . . . , λm ∈ σ(a) such that σ(a) =
⋃m

j=1Σλj
. Thus a ∈ ν

(1/n)
L .

Hence νL ⊂
⋂

n∈Z+
ν

(1/n)
L .

Conversely, let a ∈
⋂

n∈Z+
ν

(1/n)
L . Then, for any λ ∈ σ(a) and for any n ∈ Z+,

there exists a spectral set of a which contains λ and whose diameter is less than
1/n. Consequently, if Cλ denotes the component of σ(a) which contains λ, then
diam(Cλ) < 1/n. It follows that diam(Cλ) = 0, which means that Cλ = {λ}.
Thus σ(a) is totally disconnected, i.e. a ∈ νL.

Hence νL =
⋂

n∈Z+
ν

(1/n)
L , and consequently νL is a Gδ-set.

The set of all points of continuity of any map from a topological space into
a metric space is a Gδ-set. For the spectrum and spectral radius functions the
following stronger property holds.

Theorem 1.17 ([LS], Theorem 7 and Remark 8). Let L be a complex Banach
algebra. Then ContL(σ) and ContL(r) are dense Gδ-sets.

In general, πL and τL are strictly contained in ContL(r) and ContL(σ), re-
spectively, and are not dense in L. E.g., if C([0, 1]) denotes the Banach algebra of
complex-valued continuous functions on [0, 1], endowed with the supremum norm,
then ContC([0,1])(r) = ContC([0,1])(σ) = C([0, 1]), whereas τC([0,1]) and πC([0,1])

consist of the constant functions on [0, 1] and of the continuous functions on [0, 1]
whose modulus is constant, respectively.

The peripheral spectrum of a ∈ L is the set

{λ ∈ σ(a) : |λ| = r(a)} .

Let X be a complex nonzero Banach space. We recall (see [B2], 1.9) that τL(X)

is not dense in L(X) if there exists a linear bounded semi-Fredholm operator on
X with nonzero index (i.e., there exists a proper closed nonzero subspace Y of
X such that X is isomorphic to either Y or X/Y : e.g., X is either an infinite-
dimensional Hilbert space, or c0, or lp, p ∈ [1,∞], or X contains a complemented
copy of one of these spaces).

On the contrary, πL(X) always contains an open dense subset of L(X), namely
the bounded linear operators on X, with nonzero spectral radius, whose peripheral
spectrum consists of a finite number of isolated points, any of which has finite-
dimensional spectral projection (see [He1], Proposition 8, [AFHV], 14.6, where
X is supposed to be Hilbert and separable—yet, the proof works for a Banach
space—and [B2], 1.10 and subsequent remarks; this density result is also implicit
in [HS]).

2. Let X be a complex nonzero Banach space, and let A∈L(X). We denote by
σ0

p(A) the set of all isolated points of σ(A) whose spectral projection has finite-
dimensional range. In addition, let σe(A) (respectively, σle(A), σre(A)) denote
the spectrum (respectively, left spectrum, right spectrum) of the coset of A in the
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quotient algebra L(X)/K(X) (for X finite-dimensional, we set σe(A) = σle(A) =
σre(A) = ∅). σe(A), σle(A) and σre(A) are called the essential spectrum, the left
essential spectrum and the right essential spectrum of A, respectively, and are
closed subsets of σ(A). Since the intersection of the left and right spectra of
any element of every Banach algebra is nonempty, as it contains the boundary
of the spectrum (see [R], 1.5.4), it follows that σle(A) ∩ σre(A) 6= ∅ when X is
infinite-dimensional.

A linear bounded operator on X is semi-Fredholm if it has closed range and
either finite-dimensional kernel or finite-codimensional range. The index of a semi-
Fredholm operator is the difference of its kernel dimension and range codimension,
and thus ranges in Z∪{−∞,∞}. A Fredholm operator is a semi-Fredholm operator
with finite index, and (see [CPY], 3.2.8)

σe(A) = {λ ∈ C : λIX −A is not Fredholm}

(where IX denotes the identity operator on X).

We set

δ1(A) = sup{inf{|λ| : λ ∈ ω} : ω is a component of σe(A) ∪ σ0
p(A)}

and

δ2(A) = sup{inf{|λ| : λ ∈ ω} : ω is a component of (σle(A) ∩ σre(A)) ∪ σ0
p(A)} .

Then δj(A) ≤ r(A) for j = 1, 2.

Let ̺±s-F(A) denote the set of all λ∈C such that λIX−A is semi-Fredholm with
nonzero index. For any n ∈ Z ∪ {−∞,∞} let ̺n

s-F(A) denote the set of all λ ∈ C
such that λIX − A is semi-Fredholm of index n. From stability of the index for
semi-Fredholm operators (see [Ka1], Theorem 1 and Remark 1, or [Ka2], IV, 5.17)
it follows that the set of all semi-Fredholm operators of index n is open in L(X)
for any n ∈ Z∪{−∞,∞}. Consequently, ̺±s-F(A) and (for any n ∈ Z∪{−∞,∞})
̺n
s-F(A) are open subsets of C. Since any invertible operator on X has index zero,

we have ̺n
s-F(A) ⊂ σ(A) when n 6= 0, and ̺±s-F(A) ⊂ σ(A). Set

β(A) = sup{|λ| : λ ∈ ̺±s-F(A)} .

It follows that β(A) ≤ r(A) (if ̺±s-F(A) = ∅, we set β(A) = 0).

Finally, we set

σs-F(A) = {λ ∈ C : λIX −A is not semi-Fredholm} .

Notice that σs-F(A) is closed and σe(A) = σs-F(A) ∪ ̺−∞
s-F (A) ∪ ̺∞s-F(A) (which

implies that σs-F(A) 6= ∅ if X has infinite dimension). Also, σs-F(A) ⊂ σle(A) ∩
σre(A) (see [CPY], 4.3.4; when X is Hilbert, equality holds), and consequently
σe(A) = (σle(A) ∩ σre(A)) ∪ ̺−∞

s-F (A) ∪ ̺∞s-F(A).

The following characterizations of the points of continuity of r in L(X), for a
separable Hilbert space X, are given in [CM1].
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Theorem 2.1 ([CM1], 2.5 and 2.6). Let X be a complex separable nonzero
Hilbert space, and let A ∈ L(X). Then the following conditions are equivalent :

r(A) = max{β(A), δ1(A)} ;(7)

r(A) = max{β(A), δ2(A)} .(8)

In addition, the spectral radius function is continuous at A iff A satisfies (7)
and (8).

If X is a complex nonzero Banach space and A ∈ L(X), we set

ψ2(A) = {λ ∈ C : {λ} is a component of (σle(A) ∩ σre(A)) ∪ σ0
p(A)}

and

ψ0(A) =
{
λ ∈ C : {λ} is a component of

(σ(A) \ ̺±s-F(A)) ∪
⋃

n∈Z

(̺n
s-F(A)

◦

\ ̺n
s-F(A))

}
.

Then ψ2(A) ⊂ σ(A). Furthermore, ψ0(A) ⊂ σ(A), since ̺n
s-F(A) ⊂ σ(A) for any

n ∈ Z \ {0} and ̺0
s-F(A)

◦

\ ̺0
s-F(A) ⊂ C \ ̺0

s-F(A) ⊂ σ(A).

The following characterizations of the points of continuity of σ in L(X), for a
separable Hilbert space X, are due to Conway and Morrel.

Theorem 2.2 ([CM1], 3.1; [CM3], 3.3). Let X be a complex separable nonzero
Hilbert space, and let A ∈ L(X). Then the following conditions are equivalent :

σ(A) = ̺±s-F(A) ∪ ψ2(A) ;(9)

σ(A) = ̺±s-F(A) ∪ ψ(A) .(10)

In addition, the spectrum function is continuous at A iff A satisfies (9) and (10).

The characterization below of the points of continuity of σ in L(X) for a
separable Hilbert space X is given in [AFHV].

Theorem 2.3 ([AFHV], 14.15). Let X be a complex separable nonzero Hilbert
space, and let A ∈ L(X). Then the spectrum function is continuous at A iff

(11) σ(A) = ̺±s-F(A) ∪ ψ0(A) .

If A is a bounded linear operator on a complex infinite-dimensional Banach
space X, the essential spectral radius of A, denoted by re(A), is the spectral radius
of the coset of A in the quotient algebra L(X)/K(X).

In [CM1], [CM2] and [CM4] the points of continuity of several other spectral
functions on L(H) (in [CM1] the essential spectral radius and the Weyl spec-
trum, in [CM2] the essential spectrum, the left and right essential spectra and
their intersection, and the left and right spectra and their intersection, in [CM4]
the closure of the point spectrum and (σle ∩ σre) ∪ σ0

p) are characterized for a
separable Hilbert space H. Still in the separable Hilbert space case, the charac-

terizations of the points of continuity of the Browder spectrum, of σ0
p and of ̺Σ

s-F
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for any nonempty subset Σ of (Z\{0})∪{−∞,∞} (where, for any linear bounded
operator A on a Banach space X, ̺Σ

s-F(A) denotes the set of all λ ∈ C such that
λIX − A is semi-Fredholm with index in Σ) have been provided by Herrero in
[He1]. Generalizing some remarks of [CM1], Herrero has also proved that, if H is
a separable Hilbert space, then all the spectral functions mentioned above (spec-
trum and spectral radius included) are simultaneously continuous at each point
of a dense subset of L(H) (see [He1], Theorem 2) and (except for the spectral
radius) are simultaneously discontinuous at each point of another dense subset of
L(H) (see [He1], Theorem 3). Finally, again for a separable Hilbert space H, Qiu
([Q]) has characterized the points of continuity of σD in L(H) (where, for any
linear bounded operator A on a Banach space X, σD(A) is the set of all λ ∈ C
such that the range of λIX −A is not closed) and has proved that (σle ∩σre) \σD

is discontinuous at every A ∈ L(H) whenever H has infinite dimension.
The following result, due to Herrero, shows that discontinuity of spectral func-

tions on the Banach algebra of all linear bounded operators on a separable infinite-
dimensional Hilbert space is a particular case of a more general phenomenon of
discontinuity of similarity-invariant nonconstant functions.

Theorem 2.4 ([He2], Theorem 1). Let X be a complex separable infinite-
dimensional Hilbert space, let Y be a T1-topological space and let f : L(X) → Y
be a continuous function such that f(B−1AB) = f(A) for any A ∈ L(X) and for
any invertible B ∈ L(X). Then f is constant.

The analogue of Theorem 2.4 holds for the quotient algebra L(X)/K(X),
where X is a complex separable infinite-dimensional Hilbert space (see [He2],
Theorem 6).

For any closed subspace Y of a Banach space X, let QY : X → X/Y denote
the canonical quotient map.

Let X be a complex infinite-dimensional Banach space. As remarked at the
beginning of Section 4 in [CM3], characterizing the points of continuity of the
essential spectrum in L(X) is equivalent to characterizing the points of continuity
of the spectrum in L(X)/K(X): namely, σe : L(X) → KC is continuous at
A ∈ L(X) if and only if σ : L(X)/K(X) →KC is continuous at QK(X)(A). The
analogue of this property holds for the essential spectral radius. Thus Conway
and Morrel have characterized also the points of continuity of the spectrum and
spectral radius functions in L(X)/K(X) for a separable Hilbert space X.

For any complex infinite-dimensional Banach space X and for any A ∈ L(X),
we set

δ2e(A) = sup{inf{|λ| : λ ∈ ω} : ω is a component of σle(A) ∩ σre(A)} .

We remark that δ2e(A) ≤ re(A). In addition, β(A) ≤ re(A), since ∂̺±s-F(A) ⊂
σs-F(A).

Theorem 2.5 ([CM1], 2.14 and 2.15). Let X be a complex separable infinite-
dimensional Hilbert space, and let A ∈ L(X). Then the following conditions are



68 L. BURLANDO

equivalent :

re(A) = max{β(A), δ(QK(X)(A))} ;(12)

re(A) = max{β(A), δ2e(A)} .(13)

In addition, the spectral radius function is continuous at QK(X)(A) iff A satisfies
(12) and (13).

Let H be a complex separable infinite-dimensional Hilbert space, and let
A ∈ L(H). In [CM1], 2.19, Conway and Morrel prove that re(A) = max{β(A),
δ(QK(H)(A))} implies r(A) = max{β(A), δ1(A)}, and consequently continuity
of spectral radius at QK(H)(A) implies continuity of spectral radius at A. The
converse is not true: indeed, an example of a linear bounded operator A on a sep-
arable Hilbert space H such that the spectral radius function is continuous at A
and is not continuous at QK(H)(A) is provided in [CM1], remarks following 2.19.

In Section 4 we show that continuity of r at QK(X)(A) implies continuity of r
at A for any complex infinite-dimensional Banach space X and for any A ∈ L(X).

Theorem 2.6 ([CM2], 4.1 (1); [CM3], 4.6). Let X be a complex separable
infinite-dimensional Hilbert space, and let A ∈ L(X). Then the following condi-
tions are equivalent :

(14) any neighborhood of any λ ∈ σe(A) \ ̺±s-F(A) contains a component of

σle(A)∩σre(A), and any neighborhood of any λ ∈ ̺n
s-F(A)

◦

\̺n
s-F(A) contains

a component of σle(A) ∩ σre(A) for any n ∈ Z \ {0};

(15) σe(A) = ∂̺±s-F(A)∪̺−∞
s-F (A)∪̺∞s-F(A)∪ψ(QK(X)(A)), and any neighborhood

of any λ ∈ ̺n
s-F(A)

◦

\ ̺n
s-F(A) contains a component of σe(A) for any n ∈

Z \ {0}.

In addition, the spectrum function is continuous at QK(X)(A) iff A satisfies (14)
and (15).

The following further characterization of the points of continuity of σ in
L(X)/K(X) for a separable Hilbert space X follows from a characterization (in
the separable Hilbert case) of the points of continuity of σe which can be found
in [AFHV].

Let A be a linear bounded operator on a complex infinite-dimensional Banach
space. We set

ψ0e(A) =
{
λ ∈ C : {λ} is a component of

(σe(A) \ ̺±s-F(A)) ∪
⋃

n∈Z

(̺n
s-F(A)

◦

\ ̺n
s-F(A))

}
.

Since ̺n
s-F(A)

◦

\ ̺n
s-F(A) ⊂ σs-F(A), it follows that ψ0e(A) ⊂ σe(A).

(1) For some remarks concerning the proof of [CM2], 4.1, see [B9], comments preceding 2.1.
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Theorem 2.7 ([AFHV], 14.23). Let X be a complex separable infinite-dimen-
sional Hilbert space, and let A ∈ L(X). Then the spectrum function is continuous
at QK(X)(A) iff

(16)
σe(A) = ∂̺±s-F(A) ∪ ̺−∞

s-F (A) ∪ ̺∞s-F(A) ∪ ψ0e(A) , and

σle(A) ∩ σre(A) ∩ ̺n
s-F(A)

◦

⊂ ψ0e(A) for any n ∈ Z \ {0} .

If X1, . . . ,Xn are Banach spaces and Tk ∈ L(Xk) for k ∈ {1, . . . , n}, then
T1 × . . .× Tn is the linear bounded operator on X1 × . . .×Xn defined by

(T1×. . .×Tn)(x1, . . . , xn) = (T1x1, . . . , Tnxn) for (x1, . . . , xn) ∈ X1×. . .×Xn .

Now let X be a complex separable infinite-dimensional Hilbert space, and let
A ∈ L(X). There is no relationship between continuity of spectrum at A and at
QK(X)(A). Indeed, let S and T denote respectively the unilateral and backward
shift operators on l2, and let R ∈ L(l2) be the diagonal operator defined by

R(xn)n∈N = (qnxn)n∈N for (xn)n∈N ∈ l2

(where the sequence (qn)n∈N is such that {qn}n∈N = Q ∩ [0, 1]). Then σ(S) =
σ(T ) = BC(0, 1), ̺−1

s-F(S) = ̺1
s-F(T ) = BC(0, 1) and σ(R) = σe(R) = [0, 1]. Conse-

quently, σ(S×2T ) = BC(0, 2), ̺0
s-F(S×2T )∩σ(S×2T ) = BC(0, 1), ̺1

s-F(S×2T ) =
{λ ∈ C : 1 < |λ| < 2} and σe(S×2T ) = ∂BC(0, 1)∪∂BC(0, 2); furthermore, σ(S×

R) = BC(0, 1), ̺−1
s-F(S ×R) = BC(0, 1) \ [0, 1) and σe(S ×R) = ∂BC(0, 1) ∪ [0, 1].

Thus, since ̺±s-F(S × 2T ) ∪ ψ(S × 2T ) = {λ ∈ C : 1 ≤ |λ| ≤ 2}  σ(S × 2T ), the
spectrum function is not continuous at S × 2T by Theorem 2.2; since ∂̺±s-F(S ×

2T ) = ∂BC(0, 1) ∪ ∂BC(0, 2) = σe(S × 2T ) and ̺n
s-F(S × 2T )

◦

\ ̺n
s-F(S × 2T ) = ∅

for any n ∈ Z \ {0}, the spectrum function is continuous at QK(l2×l2)(S × 2T ) by

Theorem 2.6. Conversely, since ̺±s−F(S ×R) = BC(0, 1) = σ(S×R), the spectrum

function is continuous at S ×R; since ̺−1
s-F(S ×R)

◦

\ ̺−1
s-F(S × R) = [0, 1), so that

S×R does not satisfy condition (15), the spectrum function is not continuous at
QK(l2×l2)(S ×R).

The proofs of necessity of conditions (7)–(16) are based upon approximation
results for operators on separable Hilbert spaces, such as the Apostol–Morrel
theorem ([AM], 3.1). The proofs of sufficiency, on the contrary, depend only on
stability properties of semi-Fredholm operators and on upper semi-continuity of
separate parts of the spectrum. Thus it is well known that these conditions are
sufficient for continuity of the corresponding spectral functions also for general Ba-
nach spaces (see concluding remarks of [CM1]; [AFHV], Introduction of Chapter
14 and p. 312; [B9], remarks preceding 2.1; sufficiency of conditions (10) and (15)
in the Banach space case is explicitly proved in [CM3], 3.2 and 4.5, respectively).

In [B3] further sufficient conditions for continuity of σ and r at a point of the
Banach algebra of all linear bounded operators on a Banach space are given, and
are compared with the already known ones.



70 L. BURLANDO

Let X be a complex nonzero Banach space, and let A ∈ L(X). We set:

ψ1(A) = {λ ∈ C : {λ} is a component of σe(A) ∪ σ0
p(A)} ,

ψ3(A) = {λ ∈ C : {λ} is a component of σs-F(A) ∪ σ0
p(A)} ,

ψ4(A) = {λ ∈ C : {λ} is a component of σm(A) ∪ σ0
p(A)}

(where σm(A) is the union of σs-F(A) and the set of all λ ∈ σle(A)∩σre(A) whose
component in σle(A) ∩ σre(A) does not intersect σs-F(A), see [B3], 1.2),

ψ5(A) = {λ ∈ C : {λ} is a component of σ(A) \ ̺±s−F(A)} ,

δ3(A) = sup{inf{|λ| : λ ∈ ω} : ω is a component of σs-F(A) ∪ σ0
p(A)} ,

δ4(A) = sup{inf{|λ| : λ ∈ ω} : ω is a component of σm(A) ∪ σ0
p(A)} .

Then ψj(A) ⊂ σ(A) for j = 1, 3, 4, 5 and δj(A) ≤ r(A) for j = 3, 4. Notice also
that ψ2(A) = ψ3(A) = ψ4(A) and δ2(A) = δ3(A) = δ4(A) if X is a Hilbert space,
as σs-F(A) and σle(A) ∩ σre(A) coincide in this case.

Theorem 2.8 ([B3], 2.2 and 2.13). Let X be a complex nonzero Banach space
and let A ∈ L(X). Then

δ(A) ≤ δ1(A) ≤ δj(A) ≤ δ4(A) for j = 2, 3

and

δ4(A) = max{δ2(A), δ3(A)} .

Moreover , the following conditions are equivalent :

(17) r(A) = max{β(A), δ3(A)} ;

(18) r(A) = max{β(A), δ4(A)} .

Finally , each of conditions (17) and (18) is equivalent to each of conditions (7)
and (8), and implies continuity of the spectral radius function at A.

Thus conditions (7) and (8) are also equivalent for operators on Banach spaces.
Moreover, in the separable Hilbert space case, also (17) and (18) are necessary as
well as sufficient for continuity of spectral radius at A.

The inequalities δ(A) ≤ δ1(A) ≤ δ2(A) and equivalence of (7) and (8) are
proved in [CM1] (1.4 and 2.5, respectively) in the separable Hilbert space case.
Nevertheless, the proofs work in the general Banach space case.

Condition (5) in L(X) (for a complex nonzero Banach space X) implies (7),
(8), (17) and (18).

The condition

(19) r(A) = max{β(A), δ(A)}

is sufficient for continuity of r at A ∈ L(X) (where X is any complex nonzero
Banach space), since in virtue of the inequalities provided in Theorem 2.8 it
implies (7), (8), (17) and (18). Nevertheless, (19) is more restrictive than the
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latter conditions, even in the case of a separable Hilbert space X. Indeed, if
V ∈ L(l2(Z)) is defined by

V (xn)n∈Z =
∑

n∈Z\{0}

xnen+1 for (xn)n∈Z ∈ l2(Z)

(where {en}n∈Z is the canonical basis of l2(Z)), then σ(V ) = BC(0, 1) and
BC(0, 1) ⊂ ̺0

s-F(V ). Consequently, max{β(V ), δ(V )} = 0 < r(V ) = 1 =
max{β(V ), δ1(V )}. Thus also condition (5) (which implies (19)) is more restric-
tive than (7), (8), (17) and (18).

In [B3] several examples are provided in order to show that none of the in-
equalities of Theorem 2.8 can be replaced by equality.

Theorem 2.9 ([B3], 1.6 and 1.15). Let X be a complex nonzero Banach space
and let A ∈ L(X). Then

ψ(A) ψ2(A)

ψ5(A) ψ1(A) ψ4(A)

ψ0(A) ψ3(A)

and the following equalities hold:

(i) ψ5(A) = ψ(A) ∩ ψ0(A);

(ii) ψ4(A) = ψ2(A) ∪ ψ3(A).

Moreover, the following conditions are equivalent:

σ(A) = ̺±s-F(A) ∪ ψ1(A) ;(20)

σ(A) = ̺±s-F(A) ∪ ψ3(A) ;(21)

σ(A) = ̺±s-F(A) ∪ ψ4(A) ;(22)

σ(A) = ̺±s-F(A) ∪ ψ5(A) .(23)

In addition, each of conditions (20)–(23) is equivalent to each of conditions (9)–
(11) and implies continuity of the spectrum function at A.

Thus conditions (9)–(11) are also equivalent for operators on Banach spaces.
Moreover, in the separable Hilbert space case, also conditions (20)–(23) are nec-
essary as well as sufficient for continuity of spectrum at A.

Condition (6) in L(X) (for a complex nonzero Banach space X) implies (9)–
(11) and (20)–(23). Actually, it is more restrictive: for instance, the unilateral
shift on l2 satisfies (9)–(11) and (20)–(23) and does not satisfy (6).

Notice also that (9)–(11) and (20)–(23) imply (19), and consequently also
(7), (8), (17) and (18). The bilateral shift on l2(Z) provides an example of an
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operator which satisfies (5) (and thus also (7), (8), (17) and (18)) and does not
satisfy (9)–(11) and (20)–(23).

In [B3] several examples are given in order to show that none of the inclusions
of Theorem 2.9 can be replaced by equality.

Definition 2.10. Let X be a complex nonzero Banach space. We denote by
Λ(X) (respectively, Θ(X)) the subset of all A ∈ L(X) which satisfy (7), (8), (17)
and (18) (respectively, (9)–(11) and (20)–(23)).

The following proposition summarizes the relationships among the conditions
that we have investigated up to now for continuity of r and σ in L(X).

Proposition 2.11. Let X be a complex nonzero Banach space. Then

ContL(X)(σ)

Θ(X) ContL(X)(r)

νL(X) ⊂ τL(X) Λ(X)

πL(X)

The unilateral and bilateral shift operators, together with the operator of
[B1], 2.11, can be used in order to show that, even when X is supposed to be
a separable Hilbert space, none of the inclusions of Proposition 2.11, except for
Θ(X) ⊂ ContL(X)(σ) and Λ(X) ⊂ ContL(X)(r), can be replaced by equality (of
course Θ(X) = ContL(X)(σ) and Λ(X) = ContL(X)(r) when X is Hilbert and
separable). We shall show in Section 3 that Θ(X) and Λ(X) may be strictly
contained in ContL(X)(σ) and ContL(X)(r), respectively, when the Banach space
X fails to be Hilbert and separable.

The inclusions τL(X) ⊂ Θ(X) and πL(X) ⊂ Λ(X) are strict for any complex
Banach space X such that there exists a nonsurjective isometry S on X (e.g.,
an infinite-dimensional Hilbert space, or c0, or lp, p ∈ [1,∞]): indeed, since S

is a nonsurjective isometry on X, we have σ(S) = BC(0, 1) = ̺±s-F(S). Thus
S ∈ Θ(X) (which implies that S ∈ Λ(X)). Nevertheless, S 6∈ πL(X) (so that
S 6∈ τL(X) either), since δ(S) = 0 < 1 = r(S).

In view of the final remarks of Section 1, we have τL(X)  πL(X) for any
complex Banach space X such that L(X) contains a semi-Fredholm operator
with nonzero index.

Algebraic and topological properties of Λ(X) and Θ(X) are studied in [B3]
and [B4].

Theorem 2.12 ([B3], 3.4 and 3.8). Let X be a complex nonzero Banach space.
Then Λ(X) and Θ(X) are Gδ-sets.
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Generally speaking, Λ(X) is not invariant under the action of holomorphic
functions: e.g., the bilateral shift U ∈ L(l2(Z)) belongs to Λ(l2(Z)), whereas
λIl2(Z) +U 6∈ Λ(l2(Z)) for any nonzero λ. Also Θ(X) (unlike τL(X)), in general, is
not invariant under the action of holomorphic functions, because of the behavior
of the semi-Fredholm index under holomorphic functions. For instance, let S and
T denote respectively the unilateral and backward shift operators on l2, and let
G = {λ ∈ C : Reλ 6= 2}. Then σ(S × (4Il2(Z) + T )) = BC(0, 1) ∪ BC(4, 1) ⊂ G,

̺−1
s-F(S × (4Il2(Z) + T )) = BC(0, 1) and ̺1

s-F(S × (4Il2(Z) + T )) = BC(4, 1). Hence

σ(S × (4Il2(Z) + T )) = ̺±s−F(S × (4Il2(Z) + T )) ,

and consequently S × (4Il2(Z) + T ) ∈ Θ(l2 × l2). Now let f : G → C be the
holomorphic function defined by

f(z) =
{
z if Re z < 2,
z − 4 if Re z > 2.

Then f(S × (4Il2(Z) + T )) = S × T . Since σ(S × T ) = BC(0, 1) and BC(0, 1) ⊂

̺0
s-F(S×T ), it follows that ̺±s-F(S × T )∪ψ(S × T ) = ∅. Thus f(S×(4Il2(Z)+T )) 6∈
Θ(l2 × l2).

In [B4], 2.5, necessary and sufficient conditions for membership of f(A) in
Θ(X) (where X is a complex nonzero Banach space, A ∈ Θ(X) and f is a
complex-valued function, holomorphic in a neighborhood of σ(A)) are given (2).
The following is a corollary of [B4], 2.5.

Theorem 2.13 ([B4], 2.6). Let X be a complex nonzero Banach space, let
A ∈ L(X) and let f be a complex-valued function, holomorphic on a neighborhood
of σ(A). If f is one-to-one on {λ ∈ σ(A) : f ′(λ) 6= 0}, then f(A) ∈ Θ(X).

For an infinite-dimensional (possibly nonseparable) Hilbert space X, the holo-
morphic functions under whose action Θ(X) (= ContL(X)(σ) when X is sepa-
rable) is invariant are characterized in [B4]. If f is a complex-valued function,
holomorphic on an open nonempty subset G of C, let Ωf (G) denote the union of
all components of G on which f is not constant.

Theorem 2.14 ([B4], 2.9). Let X be a complex infinite-dimensional Hilbert
space, let G be an open nonempty subset of C and let f : G→ C be a holomorphic
function. Then the following conditions are equivalent :

(i) f(A) ∈ Θ(X) for any A ∈ Θ(X) such that σ(A) ⊂ G;
(ii) f is one-to-one on Ωf (G).

Conditions (12) and (13) are also equivalent in the general Banach space
case (see [CM1], 2.14, where the space is supposed to be Hilbert and separable;
nevertheless, the proof works in the general case). Thus the following result holds.

(2) We take this opportunity to make a remark about the proof of [B4], 2.5: “f(cl(ψ(A)))”
should be replaced with “f(σ(A))” in lines 1 and 3 of page 107.
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Theorem 2.15. Let X be a complex infinite-dimensional Banach space and
let A ∈ L(X). Then A satisfies condition (12) iff A satisfies (13). Furthermore,
if A satisfies (12) and (13), then the spectral radius function is continuous at
QK(X)(A).

If X is a complex infinite-dimensional Banach space and a ∈ L(X)/K(X)
satisfies (5), then any A ∈ L(X) such that QK(X)(A) = a satisfies (12) and (13).

In [B9] another sufficient condition for continuity of σ at a point of L(X)/K(X)
(where X is an infinite-dimensional Banach space) is given, and is compared with
(14) and (16). We now recall this condition, and compare it with (15) as well.

Let X be a complex nonzero Banach space, and let A ∈ L(X). We remark
that ∂̺n

s-F(A) ⊂ ∂̺n
s-F(A) ⊂ σs-F(A) ⊂ σe(A) for any n ∈ Z ∪ {−∞,∞}.

Theorem 2.16. Let X be a complex infinite-dimensional Banach space and
let A ∈ L(X). Then the condition

(24) σe(A) = ̺−∞
s-F (A) ∪ ̺∞s-F(A) ∪ ψ(QK(X)(A)) ∪

⋃

n∈Z

∂̺n
s-F(A)

is equivalent to each of conditions (14)–(16), and implies continuity of the spec-
trum function at QK(X)(A).

P r o o f. By [B9], 2.2, conditions (14), (16) and (24) are equivalent and imply
continuity of σ at QK(X)(A). Thus we only have to prove that (15) is equivalent
to (14), (16) and (24).

Suppose that A satisfies (15). Then, for any n ∈ Z \{0}, any neighborhood of

any λ ∈ ̺n
s-F(A)

◦

\ ̺n
s-F(A) contains a component of σle(A) ∩ σre(A), since σe(A) ∩

̺n
s-F(A)

◦

⊂ σle(A)∩σre(A). In addition, since σe(A)\̺±s-F(A) ⊂ ψ(QK(X)(A)) and,
by Theorem 2.9, ψ(QK(X)(A)) = ψ1(A) \ σ0

p(A) ⊂ ψ2(A) \ σ0
p(A), any neighbor-

hood of any λ ∈ σe(A) \ ̺±s−F(A) contains a component of σle(A) ∩ σre(A). Thus
A satisfies (14), (16) and (24).

Conversely, suppose that A satisfies (14), (16) and (24). Then

∂̺0
s-F(A) \ (̺−∞

s-F (A) ∪ ̺∞s-F(A) ∪ ψ(QK(X)(A))) ⊂ ∂̺±s-F(A) .

Consequently, since ∂̺n
s-F(A) ⊂ ∂̺±s-F(A) for any n ∈ Z \ {0}, we have

σe(A) = ∂̺±s-F(A) ∪ ̺−∞
s-F (A) ∪ ̺∞s-F(A) ∪ ψ(QK(X)(A)) .

Moreover, for any n ∈ Z \ {0},

̺n
s-F(A)

◦

\ ̺n
s-F(A) ⊂ σe(A) \ (̺−∞

s-F (A) ∪ ̺∞s-F(A) ∪
⋃

k∈Z

∂̺k
s-F(A))

⊂ ψ(QK(X)(A)) ,

and hence any neighborhood of any λ ∈ ̺n
s-F(A)

◦

\ ̺n
s-F(A) contains a component

of σe(A). Therefore A satisfies (15).
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Thus conditions (14)–(16) are equivalent also for operators on Banach spaces.
Besides, in the special case of a separable Hilbert space, also (24) is necessary as
well as sufficient for continuity of spectrum at QK(X)(A).

Now let X be a complex infinite-dimensional Banach space. Notice that, if
a ∈ L(X)/K(X) satisfies (6), then any A ∈ L(X) such that QK(X)(A) = a
satisfies (14)–(16) and (24).

We also remark that the equivalent conditions (14)–(16) and (24) imply (12)
and (13).

Definition 2.17. Let X be a complex infinite-dimensional Banach space. We
denote by Λe(X) (respectively, Θe(X)) the subset of all A ∈ L(X) which satisfy
the equivalent conditions (12) and (13) (respectively, (14)–(16) and (24)).

Let X be a complex infinite-dimensional Banach space and let A ∈ Λe(X)
(respectively, Θe(X)). Then, in view of stability of semi-Fredholm operators un-
der compact perturbations (see [CPY], 5.6.9), also A + K ∈ Λe(X) (respec-
tively, Θe(X)), for any K ∈ K(X). Hence Λe(X) = Q−1

K(X)(QK(X)(Λe(X))) and

Θe(X) = Q−1
K(X)(QK(X)(Θe(X))).

The remarks following Theorem 2.7 show that, generally speaking, there are
no inclusion relations between Θe(X) and Θ(X). On the contrary, the proof of
[CM1], 2.19, can be repeated in the general Banach space case, showing that
Λe(X) ⊂ Λ(X) for any complex infinite-dimensional Banach space X.

The following proposition summarizes the relationships among the conditions
that we have investigated up to now for continuity of r and σ in L(X)/K(X).

Proposition 2.18. Let X be a complex infinite-dimensional Banach space.
Then

ContL(X)/K(X)(σ)

QK(X)(Θe(X)) ContL(X)/K(X)(r)

νL(X)/K(X) ⊂ τL(X)/K(X) QK(X)(Λe(X))

πL(X)/K(X)

The bilateral shift operator and a shift operator with infinite-codimensional
range, together with a convenient modification of the operator constructed in
[B1], 2.11, can be used in order to show that, even when X is supposed to be
a separable Hilbert space, none of the inclusions of Proposition 2.18, except for
QK(X)(Θe(X)) ⊂ ContL(X)/K(X)(σ) and QK(X)(Λe(X)) ⊂ ContL(X)/K(X)(r),
can be replaced by equality (of course, the last two inclusions are equalities if X is
Hilbert and separable). Indeed, if U ∈ L(l2(Z)) is the bilateral shift, then σ(U) =
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σe(U) = ∂BC(0, 1); thus QK(l2(Z))(U) ∈ πL(l2(Z))/K(l2(Z)) and U 6∈ Θe(l2(Z)) (as

∅ = ̺−∞
s-F (U) = ̺∞s-F(U) = ψ(QK(l2(Z))(U)) = ∂̺n

s-F(U) for any n ∈ Z). Moreover,
if W ∈ L(l2) is defined by

W (xn)n∈N =
∑

n∈N

xne2n for (xn)n∈N ∈ l2 ,

then σ(W ) = σe(W ) = ̺−∞
s-F (W ) = BC(0, 1); thus W ∈ Θe(l2) and QK(l2)(W ) 6∈

πL(l2)/K(l2) (as δ(QK(l2)(W )) = 0 < 1 = r(QK(l2)(W ))). Finally, if A ∈ L(l2) is
the diagonal operator defined by

A(xn)n∈N =

((
qϕ(n) +

i

ϕ(n)

)
xn

)

n∈N

for (xn)n∈N ∈ l2

(where (qk)k∈Z+
is a sequence such that {qk}k∈Z+

= Q ∩ [0, 1] and ϕ : N → Z+

is a map such that ϕ−1({k}) is infinite for any k ∈ Z+), then σ(A) = σe(A) =
[0, 1] ∪ {qk + i/k : k ∈ Z+} (for any k ∈ Z+, qk + i/k ∈ σe(A) as (qk + i/k)Il2 −A
has infinite-dimensional kernel); thus QK(l2)(A) 6∈ νL(l2)/K(l2), as σe(A) is not
totally disconnected; nevertheless, since ψ(QK(l2)(A)) = {qk + i/k : k ∈ Z+} and
hence is dense in σe(A), we have QK(l2)(A) ∈ τL(l2)/K(l2).

We shall show in Section 3 that QK(X)(Θe(X)) and QK(X)(Λe(X)) may be
strictly contained in ContL(X)/K(X)(σ) and ContL(X)/K(X)(r), respectively, if X
fails to be Hilbert and separable.

The inclusions τL(X)/K(X) ⊂ QK(X)(Θe(X)) and πL(X)/K(X) ⊂ QK(X)(Λe(X))
are strict for any complex Banach spaceX such that there exists an isometryW on
X with infinite-codimensional range (e.g., an infinite-dimensional Hilbert space,
or c0, or lp, p ∈ [1,∞]), since W ∈ Θe(X) and QK(X)(W ) 6∈ πL(X)/K(X).

Theorem 2.19. Let X be a complex infinite-dimensional Banach space. Then
Λe(X) and Θe(X) are Gδ-sets.

P r o o f. For Λe(X) the proof of [B3], 3.4, can be repeated, upon replacing δ3
and δ5 (which we have called δ1 here) with δ(QK(X)(·)), [CM1], 2.2, with [CM1],
2.11, R0(X) (which we have called Λ(X) here) with Λe(X) and r with re.

As regards Θe(X), if for any ε > 0 we set

Θe,ε(X) = {A ∈ L(X): for any λ ∈ σe(A)

such that BC(λ, ε) ∩ (̺−∞
s-F (A) ∪ ̺∞s-F(A)) = ∅,

either BC(λ, ε) contains a component of σe(A),

or there exist n1, n2 ∈ Z

such that n1 6= n2 and BC(λ, ε) ∩ ̺
nj

s-F(A) 6= ∅ for any j = 1, 2}

then, using similar arguments to the ones in the proof of [B3], 3.6, we can prove
that Θe,ε(X) is an open subset of L(X). Now it is sufficient to prove that Θe(X) =⋂

n∈Z+
Θe,1/n(X).

Let A ∈ Θe(X), let n ∈ Z+ and let λ ∈ σe(A) be such that BC(λ, 1/n) does
not intersect ̺−∞

s-F (A)∪̺∞s-F(A) and contains no components of σe(A). Then, since
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A satisfies (15), we have

BC(λ, 1/n) ∩ σe(A) ⊂ ∂̺±s-F(A) \ ̺−∞
s-F (A) ∪ ̺∞s-F(A)

(which implies BC(λ, 1/n) ⊂
⋃

m∈Z ̺
m
s-F(A)) and BC(λ, 1/n) \ ̺m

s-F(A) 6= ∅ for any
m ∈ Z \ {0}. Thus there exist m1,m2 ∈ Z such that m1 6= m2 and BC(λ, 1/n) ∩
̺

mj

s-F (A) 6= ∅ for j = 1, 2. Therefore A ∈
⋂

n∈Z+
Θe,1/n(X).

Conversely, let A∈
⋂

n∈Z+
Θe,1/n(X). Then, for any λ∈σe(A)\̺±s-F(A) and for

any ε > 0 such thatBC(λ, ε)∩̺±s-F(A) = ∅, BC(λ, ε) contains a component of σe(A)
(which is also a component of σle(A)∩σre(A), as σe(A)\̺±s-F(A) ⊂ σle(A)∩σre(A)).

Furthermore, also for any m ∈ Z \ {0}, λ ∈ ̺m
s-F(A)

◦

\ ̺m
s-F(A) and ε > 0 such that

BC(λ, ε) ⊂ ̺m
s-F(A), BC(λ, ε) contains a component of σe(A) (which is also a

component of σle(A) ∩ σre(A) as σe(A) ∩ ̺m
s-F(A) ⊂ σle(A) ∩ σre(A)). Thus A

satisfies (14), and so A ∈ Θe(X).

Let X be a complex infinite-dimensional Banach space. From stability of
semi-Fredholm operators under compact perturbations it follows that Θe,ε(X) =
Θe,ε(X)+K(X) for any ε > 0. HenceQK(X)(Θe(X)) =

⋂
n∈Z+

QK(X)(Θe,1/n(X))

is also a Gδ-set. By repeating the proof of [B3], 3.4, with the changes suggested
above, it is not difficult to verify that also Λe(X) is obtained as the intersection
of a countable family of open subsets of L(X), any of which is invariant under
compact perturbations. Consequently, QK(X)(Λe(X)) is a Gδ-set.

In general, Λe(X) is not invariant under the action of holomorphic func-
tions: e.g., if U ∈ L(l2(Z)) is the bilateral shift, then U ∈ Λe(l2(Z)), whereas
λIl2(Z) +U 6∈ Λe(l2(Z)) for any λ ∈ C \ {0}. The example (in L(l2 × l2)) we have
given in order to show that Θ(X) is not in general invariant under the action of
holomorphic functions, shows the same property for Θe(X).

3. For any Banach algebra M with identity, we denote by GM the group of
invertible elements of M .

Definition 3.1. Let L be a complex Banach algebra, and let a ∈ L. If e
denotes the identity of L, we set:

(i) S(a) = {λ ∈ C : λe− a 6∈ GL};

(ii) γ(a) =

{
sup{|λ| : λ ∈ S(a)} if S(a) 6= ∅,
0 if S(a) = ∅.

We remark that S(a) is an open subset of C, and S(a) ⊂ σ(a). Hence γ(a) ≤
r(a).

Now let X be a complex nonzero Banach space. Since GL(X) is contained in
the set of all Fredholm operators of index zero and, for any n ∈ Z ∪ {−∞,∞},
the set of semi-Fredholm operators with index n is open in L(X), it follows that
̺±s-F(A) ⊂ S(A) (and consequently β(A) ≤ γ(A)) for any A ∈ L(X). Furthermore,
since GL(X) contains the Fredholm operators with index zero (see [G]), ̺0

s-F(A) ∩
S(A) = ∅ for any A ∈ L(X). If in addition X is infinite-dimensional, then since
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the image under QK(X) of the set of all semi-Fredholm operators on X with
index either ∞ or −∞ is an open subset of L(X)/K(X) and does not intersect
GL(X)/K(X), for any A ∈ L(X) we have ̺−∞

s-F (A) ∪ ̺∞s-F(A) ⊂ S(QK(X)(A)).
Henceforth, by an ideal of a Banach algebra we mean a proper closed two-sided

ideal. For any Banach algebra L, we denote by JL the set of all ideals of L. If
L is a complex Banach algebra, a ∈ L and J ∈ JL, we denote by σJ (a) the
spectrum of the coset of a in L/J (e.g., if X is a complex nonzero Banach space,
we have σK(X)(A) = σe(A) for any A ∈ L(X)). Notice that σJ2

(a) ⊂ σJ1
(a) for

any J1, J2∈JL such that J1 ⊂ J2. Hence σJ (a) ⊂ σ(a) = σ{0}(a) for any J ∈JL.

Definition 3.2. Let L be a complex Banach algebra, and let a ∈ L. We set

δJ (a) = sup{inf{|λ| : λ ∈ ω} : ω is a component of σJ (a)}

for any J ∈ JL, and ζ(a) = {λ ∈ σ(a): any neighborhood of λ contains a compo-
nent of σJ (a) for some J ∈ JL}.

We remark that δJ (a) ≤ r(a) for any J ∈ JL and δ(a) = δ{0}(a). Moreover,

ζ(a) is a closed subset of σ(a) and ψ(a) ⊂ ζ(a). More generally,
⋃

J∈JL
ψ(QJ (a))

⊂ ζ(a); this inclusion cannot be replaced by equality, as shown by the example
(in L(l2)) constructed in [B6], 2.4.

In [B5] the following sufficient condition for continuity of the spectral radius
function at a point of a Banach algebra is given.

Theorem 3.3 ([B5], 1.5). Let L be a complex Banach algebra and let a ∈ L.
If

(25) r(a) = max{γ(a), sup{δJ (a) : J ∈ JL}} ,

then the spectral radius function is continuous at a.

Murphy’s condition (5) implies (25), as δ(a) = δ{0}(a) ≤ max{γ(a), sup{δJ (a):
J ∈ JL}}.

In [B6] the following sufficient condition for continuity of the spectrum func-
tion at a point of a Banach algebra is given.

Theorem 3.4 ([B6], 1.5). Let L be a complex Banach algebra and let a ∈ L.
If

(26) σ(a) = S(a) ∪ ζ(a) ,

then the spectrum function is continuous at a.

Murphy’s condition (6) implies (26), as ψ(a) ⊂ ζ(a).
Condition (5) (respectively, (6)) is more restrictive than (25) (respectively,

(26)). Indeed, the unilateral shift S in L(l2) satisfies (26), as σ(S) = ̺±s-F(S) ⊂
S(S), which implies that σ(S) = S(S). Nevertheless, S does not satisfy (5), as
δ(S) = 0 < r(S) = 1.

Condition (26) implies (25). The reverse implication does not hold: e.g., if
U ∈ L(l2(Z)) is the bilateral shift, since ̺±s-F(U) = ψ(U) = ∅ the spectrum
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function is not continuous at U by Theorem 2.2. Hence U does not satisfy (26) by
Theorem 3.4. Nevertheless, U satisfies (5) as δ(U) = 1 = r(U), and consequently
U also satisfies (25).

Now let L be a complex Banach algebra. We have already recalled in the
Introduction that the spectrum function is continuous on the whole of L if L
is either finite-dimensional or commutative modulo the radical. Suppose that
L/Rad(L) is finite-dimensional. Then, for any a ∈ L, since σ(a) = σRad(L)(a) by
[Au6], 1.1, Lemma 2, σ(a) is finite. Hence every element of L satisfies Newburgh’s
sufficient condition for continuity of spectrum, which means that νL = L. Suppose
instead that L/Rad(L) is commutative, but infinite-dimensional. Then, although
the spectrum function is continuous on L, there may be elements of L which do
not satisfy Murphy’s condition (5) (e.g., νC([0,1]) = τC([0,1])  πC([0,1])  C([0, 1]),
see final remarks of Section 1). Nevertheless, every element of L satisfies (26), as
the following result shows.

Theorem 3.5. Let L be a complex Banach algebra, and let L/Rad(L) be
commutative. Then σ(a) = ζ(a) for any a ∈ L.

P r o o f. Let λ∈σ(a) = σRad(L)(a). Since L/Rad(L) is a commutative Banach
algebra, there exists a nonzero linear multiplicative functional φλ on L/Rad(L)
such that φλ(QRad(L)(a)) = λ (see [R], 3.1.6). Then φλ ◦ QRad(L) is a nonzero

linear multiplicative functional on L. Set J = Q−1
Rad(L)(φ

−1
λ ({0})). Then J ∈

JL (see [TL], VII, preliminaries of Theorem 3.2) and σJ(a) coincides with the
spectrum of φλ(QRad(L)(a)) in C; therefore, σJ (a) = {φλ(QRad(L)(a))} = {λ}.
Hence λ ∈ ζ(a).

In a paper in process of completion ([B10]), Theorem 3.5 is extended to a
larger class of Banach algebras. A complex Banach algebra M with identity is said
to have a sufficient family of finite-dimensional representations (see for instance
[AK], [Kr]) when there exist a family {Xi}i∈I of finite-dimensional Banach spaces
and a family {Γi}i∈I of representations of M (where Γi : M → L(Xi) for any
i ∈ I) such that, for any a ∈ M , a ∈ GM if and only if Γi(a) ∈ GL(Xi) for any
i ∈ I. When in addition there exists n ∈ Z+ such that dim(Xi) ≤ n for any i ∈ I,
M is said to have an invertibility symbol of order n (see [GKru]).

Theorem 3.6 ([B10]). Let L be a complex Banach algebra such that L has a
sufficient family of finite-dimensional representations. Then σ(a) = ζ(a) for any
a ∈ L, and consequently the spectrum function is continuous on L.

Continuity of σ on the Banach algebras L such that L has a sufficient family
of finite-dimensional representations could also be obtained by means of a similar
argument to the one of [Ze2], Remark 1.

A complex Banach algebra M with identity is said to satisfy a polynomial
identity if there exist n ∈ Z+ and a nonzero polynomial p in n noncommuta-
tive indeterminates such that p(a1, . . . , an) = 0 for any (a1, . . . , an) ∈ Mn (see
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[Kr], preliminaries to Theorem 22.2). A complex Banach algebra M with identity
has an invertibility symbol of order n for some positive integer n if and only if
M/Rad(M) satisfies a polynomial identity (see [Kr], Theorem 22.2).

Now let L be a complex Banach algebra such that L/Rad(L) satisfies a poly-
nomial identity. Then, since L has a sufficient family of finite-dimensional repre-
sentations, the spectrum function is continuous on L by Theorem 3.6.

Examples of complex Banach algebras L such that L/Rad(L) satisfies a poly-
nomial identity are provided by the complex Banach algebras that are either
finite-dimensional modulo the radical (see [Kr], Theorem 20.1) or commutative
modulo the radical (if A is a commutative Banach algebra, we have ab− ba = 0
for any (a, b) ∈ A2): in the latter case, the nonzero linear multiplicative func-
tionals on L provide a sufficient family of 1-dimensional representations of L.
Furthermore, from [Ac2], 2.1 and 2.2, it follows that the Banach algebra Mn(A),
where A is a complex commutative Banach algebra with identity and n ∈ Z+,
has an invertibility symbol of order n, so that continuity of σ on Mn(A), proved
in [Ac2], 3.1, could also be derived from Theorem 3.6 (more generally, for any
n ∈ Z+ and for any complex Banach algebra A with identity and with invert-
ibility symbol of order m, Mn(A) has an invertibility symbol of order mn—see
[GKru], Theorem 1.4). We also recall that a recent result by Clauss ([Cl]) charac-
terizes the closed subalgebras L of K(X) (where X is a Banach space) such that
L/Rad(L) satisfies a polynomial identity: namely, if L is a closed subalgebra of
K(X) and N is a complete maximal chain of closed subspaces of X which are
invariant under every element of L, then L/Rad(L) satisfies a polynomial identity
if and only if

sup
{

dim
(
Y/

⋃

Y !Z∈N

Z
)

: Y ∈ N
}
<∞ (see [Cl], 3.8) .

There exist Banach algebras which do not have an invertibility symbol of any
order, and nevertheless have a sufficient family of finite-dimensional representa-
tions (see [Kr], Example 27.3, or [B10]).

A dense subalgebra N of a complex Banach algebra M with identity is said
to have an invertibility symbol of order n in M (where n ∈ Z+) if there exists
a set {Γi}i∈I of continuous representations of N (where Γi : N → L(Xi) and
dim(Xi) ≤ n for any i ∈ I) with the following property: for any a ∈ N , we have
a ∈ GM if and only if Γi(a) ∈ GL(Xi) for any i ∈ I (see [GKru], beginning of
§1.1). In [GKru] the possibility of an extension of an invertibility symbol from a
dense subalgebra of a Banach algebra to the whole algebra is characterized, and
in particular is proved to be equivalent to nonexistence of Kakutani elements (i.e.
nonquasinilpotent elements which are norm limits of quasinilpotent elements) in
the Banach algebra (see [GKru], Theorem 1.1). In virtue of Theorem 3.6, we can
add another two conditions (namely, continuity of r and continuity of σ) to the
four equivalent conditions of [GKru], Theorem 1.1, thus yielding the following
result.
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Theorem 3.7 ([B10]). Let M be a complex Banach algebra with identity , let
N be a dense subalgebra of M and let n ∈ Z+. Then, if N has an invertibility
symbol of order n in M , the following conditions are equivalent :

(i) M has an invertibility symbol of order n;

(ii) M/Rad(M) satisfies the standard polynomial identity of order 2n (namely ,
∑

ω∈S2n

sgn(ω)aω(1) . . . aω(2n) = 0 for any (a1, . . . , a2n) ∈ (M/Rad(M))2n ,

where S2n denotes the symmetric group);

(iii) M does not have Kakutani elements;

(iv) M \ GM = N \ GM ;

(v) the spectrum function is continuous on M ;

(vi) the spectral radius function is continuous on M .

Now let X be a complex nonzero Banach space and let A ∈ L(X). In [B5],
1.6, the following equality is proved:

δ1(A) = max{δ(A), δK(X)(A)} .

Hence max{β(A), δ1(A)} ≤ max{γ(A), sup{δJ (A) : J ∈ JL(X)}} for any A ∈
L(X), and the following result can be deduced.

Theorem 3.8 ([B5], 1.7). Let X be a complex nonzero Banach space and let
A ∈ L(X). Suppose that A satisfies the equivalent conditions (7), (8), (17) and
(18). Then A also satisfies (25).

Since ̺±s-F(A) ⊂ S(A) and ψ(A) ⊂ ζ(A) for any complex nonzero Banach space
X and for any A ∈ L(X), the following result can be deduced.

Theorem 3.9 ([B6], 2.1). Let X be a complex nonzero Banach space and
let A ∈ L(X). Suppose that A satisfies the equivalent conditions (9)–(11) and
(20)–(23). Then A also satisfies (26).

Let X be a complex nonzero Banach space.

From Theorems 3.3, 2.1 and 3.8 (respectively, Theorems 3.4, 2.2 and 3.9) it
follows that, if X is Hilbert and separable, condition (25) (respectively, (26)) char-
acterizes continuity of r (respectively, σ) in L(X) and is equivalent to conditions
(7), (8), (17) and (18) (respectively, (9)–(11) and (20)–(23)).

Several examples, both in nonseparable Hilbert spaces and in non-Hilbert
separable Banach spaces, are constructed in [B5] and [B6], in order to show that
condition (25) (respectively, (26)) in L(X) is less restrictive than (7), (8), (17) and
(18) (respectively, (9)–(11) and (20)–(23)) if X is not supposed to be Hilbert and
separable. Thus the equivalent conditions (7), (8), (17) and (18) (respectively,
(9)–(11) and (20)–(23)) are not necessary for continuity of the spectral radius
(respectively, spectrum) function for the general Banach space X. This contradicts
a conjecture formulated by the authors of [AFHV] (see [AFHV], p. 313).
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In [B5], 2.1, it is proved that for any complex nonseparable Hilbert space
X there exists A ∈ L(X) such that max{β(A), δ1(A)} = γ(A) = 0, whereas
r(A) = sup{δJ (A) : J ∈ JL(X)} = 1.

In [B5], 2.3, it is proved that for any complex nonseparable Hilbert space X
there exists A ∈ L(X) such that max{β(A), δ1(A)} = sup{δJ (A) : J ∈ JL(X)}

= 0, whereas σ(A) = BC(0, 1) = S(A).

In addition, when X, Y ∈ {c0} ∪ {lp}p∈[1,∞), with X 6= Y , an operator A∈
L(X × Y ) can be constructed such that

max{β(A), δ1(A)} = sup{δJ (A) : J ∈ JL(X×Y )} = 0 ,

whereas σ(A) = BC(0, 1) = S(A). In [B5], 2.6, the case X = lp, Y = lp′ (where
p ∈ (1, 2) ∪ (2,∞) and p′ = p/(p − 1)) is treated, but the construction works in
the general case.

Finally, in [B6], 3.4, an operator A ∈ L((
⊕

n∈N Xn)X) is constructed (where
X, Xn ∈ {c0} ∪ {lp}p∈[1,∞), with X 6= Xn for any n ∈ N and Xj 6= Xk when
j 6= k; by (

⊕
n∈N Xn)X we mean the separable Banach space of all sequences

(xn)n∈N such that xn ∈ Xn for any n ∈ N and (‖xk‖)k∈N ∈ X, endowed with the
canonical norm) such that

σ(A) = [0, 1] =
⋃

J∈JL((⊕n∈NXn)X)

ψ(QJ (a)) .

Thus σ(A) = ζ(A), S(A) = ̺±s-F(A) = ∅ and σe(A) = [0, 1] (as ∂σ(A) ⊂ σ0
p(A) ∪

σs-F(A) by [Ka2], IV, 5.10, 5.28 and 5.31), so that γ(A) = max{β(A), δ1(A)} =
0 < 1 = r(A).

Definition 3.10. Let L be a complex Banach algebra. We denote by ηL

(respectively, ιL) the subset of all a ∈ L which satisfy condition (25) (respectively,
(26)).

Notice that τL ⊂ ιL ⊂ ηL and πL ⊂ ηL for any complex Banach algebra L.
In addition, ιL = L if L is either finite-dimensional or commutative modulo
the radical, or, more generally, if L has a sufficient family of finite-dimensional
representations.

Theorem 3.11 ([B5], remarks following 1.5; [B6], 1.6). Let L be a complex
Banach algebra. Then ηL and ιL are Gδ-sets.

Also in the case of the Banach algebra L(X)/K(X), condition (25) is less
restrictive than (26), and conditions (25) and (26) are less restrictive than (5)
and (6), respectively. Indeed, let U ∈ L(l2(Z)) be the bilateral shift and let
W ∈ L(l2) be defined as in the comments following Proposition 2.18. Then,
since σ(QK(l2(Z))(U)) = ∂BC(0, 1), we have QK(l2(Z))(U) ∈ ηL(l2(Z))/K(l2(Z));

since ̺±s-F(U) = ψ(QK(l2(Z))(U)) = ∅, from Theorem 2.6 it follows that σ is not
continuous at QK(l2(Z))(U) and consequently, by Theorem 3.4, QK(l2(Z))(U) 6∈
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ιL(l2(Z))/K(l2(Z)). Furthermore, since σ(QK(l2)(W )) = BC(0, 1) = ̺−∞
s-F (W ) ⊂

S(QK(l2)(W )) it follows that QK(l2)(W ) ∈ ιL(l2)/K(l2) \ πL(l2)/K(l2).

Unfortunately, conditions (25) and (26) are not necessary for continuity of r
and σ, respectively: e.g., if S ∈ L(l2) is either the unilateral or the backward shift,
thenQK(l2)(Il2+S) ∈ QK(l2)(Θe(l2))\ηL(l2)/K(l2) (see [B6], 3.5); consequently, the
spectrum function is continuous at QK(l2)(Il2 +S) and yet QK(l2)(Il2 +S) does not
satisfy (25) and (26) in L(l2)/K(l2). In order to overcome this counterexample,
less restrictive sufficient conditions are provided in [B8] and [B9].

Let M be a Banach algebra with identity and let J ∈ JM . We denote by HJ
M

the union of all components of Q−1
J (GM/J ) which do not contain the identity of M

and intersect GM (in particular, H
{0}
M is the union of all components of GM which

do not contain the identity of M). Notice that HJ
M is an open subset of M ; if GM

is connected, then HN
M = ∅ for any N ∈ JM . Moreover, if E is the component of

GM that contains the identity, then E ∩ HJ
M = ∅. Finally, if GM/J is connected,

then also Q−1
J (GM/J ) is connected (see [CPY], 6.2.5) and consequently HJ

M = ∅.

Definition 3.12. Let L be a complex Banach algebra and let a ∈ L. If e
denotes the identity of L, for any J ∈ JL we set

(i) HJ (a) = {λ ∈ C : λe− a ∈ HJ
L};

(ii) αJ (a) =

{
sup{|λ| : λ ∈ HJ (a)} if HJ (a) 6= ∅,
0 if HJ (a) = ∅.

For any J ∈ JL, HJ(a) is an open subset of C. It may not be contained in

σ(a): indeed, H{0}(a) ∩ σ(a) = ∅, as H
{0}
L ⊂ GL.

If G is a component of Q−1
J (GL/J ) which does not intersect GL, we have G⊂

L \ GL. Consequently,

{λ ∈ C : λe− a ∈ G} ⊂ S(a) .

We denote by ̺(a) the resolvent set of a, i.e., ̺(a) = C \ σ(a).

If D is the unbounded component of ̺(a) and E is the component of GL that
contains e, since e−a/λ converges to e as |λ| converges to ∞ we have λe−a ∈ E
for any λ ∈ D. Thus HJ(a)∩D = ∅ for any J ∈ JL. Consequently, αJ (a) ≤ r(a)
for any J ∈ JL, even if HJ (a) intersects ̺(a).

In [B9] the following sufficient condition for continuity of the spectral radius
function at a point of a Banach algebra is given.

Theorem 3.13 ([B9], 1.1). Let L be a complex Banach algebra and let a ∈ L.
If

(27) r(a) = max{γ(a), sup{δJ (a) : J ∈ JL}, sup{αJ (a) : J ∈ JL}} ,

then the spectral radius function is continuous at a.

Notice that (25) implies (27).
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For any Banach algebra M with identity, we denote by χ(GM ) the set of all
components of GM .

Now let L be a complex Banach algebra and let a∈L. If e denotes the identity
of L, for any G ∈ χ(GL) we set

̺G(a) = {λ ∈ C : λe− a ∈ G} .

Notice that ̺(a) =
⋃

G∈χ(GL) ̺G(a). Thus
⋂

G∈χ(GL) ̺(a) \ ̺G(a) ⊂ σ(a).

Furthermore, ∂̺G(a) ⊂ ∂̺G(a) ⊂ σ(a) for any G ∈ χ(GL). Also, if E is the
component of GL which contains e, we have H{0}(a) =

⋃
G∈χ(GL)\{E} ̺G(a) =

̺(a) \ ̺E(a), and if D is the unbounded component of ̺(a), then D ⊂ ̺E(a).
In [B8] the following two sufficient conditions for continuity of spectrum are

given.

Theorem 3.14 ([B8], 2.7). Let L be a complex Banach algebra and let a ∈ L.
Then the following two conditions are equivalent :

σ(a) = S(a) ∪ ζ(a) ∪
⋂

G∈χ(GL)

̺(a) \ ̺G(a) ;(28)

σ(a) = S(a) ∪ ζ(a) ∪
⋃

G∈χ(GL)

∂̺G(a) .(29)

In addition, if (28) and (29) are satisfied , then the spectrum function is contin-
uous at a.

Condition (26) implies (28) and (29). Furthermore, since
⋂

G∈χ(GL) ̺(a)\̺G(a)

⊂ ̺(a) \ ̺E(a) = H{0}(a) (where E denotes the component of GL which contains
the identity of L), conditions (28) and (29) imply (27). More precisely, (28) and
(29) imply

(30) r(a) = max{γ(a), sup{δJ (a) : J ∈ JL}, α{0}(a)} ,

which implies (27). Thus (30), as well as (27), is sufficient for continuity of the
spectral radius function at a. Notice that (25) implies (30).

The bilateral shift on l2(Z) can be used again to show that (30) does not imply
(28) and (29) (and consequently (27) does not imply those two conditions either).

Let L be a complex Banach algebra. If GL is connected, then in L conditions
(25), (27) and (30) are equivalent, and (26) is equivalent to (28) and (29). Indeed,
then HJ

L = ∅ for any J ∈ JL, and consequently αJ (a) = 0 for any J ∈ JL and

for any a ∈ L. In addition, since χ(GL) = {GL} and ̺GL
(a) = ̺(a), we have

⋂
G∈χ(GL) ̺(a) \ ̺G(a) = ̺(a) \ ̺GL

(a) = ∅.

As regards the Banach algebra L(X) (where X is a complex nonzero Banach
space), the group of invertible elements is connected in several classical cases,
such as Hilbert spaces (see [Ha], Problem 110) and the spaces lp and Lp([0, 1])
(p ∈ [1,∞]), c0 and C([0, 1]) (see [Mi], corollary of Proposition 2, Theorem 2, The-
orem 2a, corollary of Lemma 11b and Theorem 4). Nevertheless, there exist Ba-
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nach spaces X such that GL(X) is disconnected: e.g., if X1, X2 ∈ {c0}∪{lp}p∈[1,∞)

with X1 6= X2, a subset G0 of GL(X1×X2), no element of which can be connected
with IX1×X2

by means of invertible operators, has been constructed by Douady
(see for instance §1 of [Mi]). In [B9], 1.7, a certain element A of G0 is proved to
satisfy the equalities σ(A) = ∂BC(0, 1) (which implies that S(A) = ∅ and there
exists G ∈ χ(GL(X1×X2)), not containing IX1×X2

, such that ̺G(A) = BC(0, 1))
and σJ(A) = ∂BC(0, 1) for any J ∈ JL(X1×X2). Then IX1×X2

+ A satisfies (28)

and (29), as σ(IX1×X2
+A) = ∂BC(1, 1) = ∂̺G(IX1×X2

+A), and does not satisfy
(25), as γ(IX1×X2

+A) = 0 and δJ (IX1×X2
+A) = 0 for any J ∈ JL(X1×X2).

Therefore, even in the case of L(X), the equivalent conditions (28) and (29) are
less restrictive than (26), and (30) (and consequently also (27)) is less restrictive
than (25).

In [B9] another example in L(X1×X2) (with X1 and X2 as above) is provided,
showing that (30) is more restrictive than (27). Indeed, in [B9], 1.8, it is proved
that, if S1 and S2 denote respectively the backward shift on X1 and the unilateral
shift on X2, then σ(IX1×X2

+S1 ×S2) = BC(1, 1) (so that ̺(IX1×X2
+S1 ×S2) is

connected, and consequently H{0}(IX1×X2
+S1 ×S2) = ∅), S(IX1×X2

+S1 ×S2)
= ∅, HK(X1×X2)(IX1×X2

+ S1 × S2) = BC(1, 1) and σJ (IX1×X2
+ S1 × S2) =

∂BC(1, 1) for any J ∈ JL(X1×X2) \ {0}. Hence

max{γ(IX1×X2
+ S1 × S2),

sup{δJ (IX1×X2
+ S1 × S2) : J ∈ JL(X1×X2)}, α{0}(IX1×X2

+ S1 × S2)}

= 0 < 2 = r(IX1×X2
+ S1 × S2) = αK(X1×X2)(IX1×X2

+ S1 × S2) .

Now let X be a complex infinite-dimensional Banach space, and let A ∈ L(X).
Since GL(X)/K(X) is the union as n ∈ Z of the sets

QK(X)({A ∈ L(X) : A is Fredholm with index n}) ,

which are open and pairwise disjoint, and IX has zero index, the following inclu-
sion holds: ⋃

n∈Z\{0}

̺n
s-F(A) ⊂ H{0}(QK(X)(A)) .

Thus, since ̺−∞
s-F (A) ∪ ̺∞s-F(A) ⊂ S(QK(X)(A)), we have

β(A) ≤ max{γ(QK(X)(A)), α{0}(QK(X)(A))} ,

and the following result can be deduced.

Theorem 3.15 ([B9], 2.1). Let X be a complex infinite-dimensional Banach
space and let A ∈ L(X). Suppose that A satisfies the equivalent conditions (12)
and (13). Then QK(X)(A) satisfies (30).

In the proof of [B9], 2.2, the inclusion
⋃

n∈Z

∂̺n
s-F(A) ⊂

⋃

G∈χ(GL(X)/K(X))

∂̺G(QK(X)(A))

is proved, and is used to derive the following result.
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Theorem 3.16 ([B9], 2.2). Let X be a complex infinite-dimensional Banach
space and let A ∈ L(X). Suppose that A satisfies the equivalent conditions (14)–
(16) and (24). Then QK(X)(A) satisfies the equivalent conditions (28) and (29).

Let X be a complex infinite-dimensional Banach space.

From Theorems 3.13, 2.5 and 3.15 (respectively, Theorems 3.14, 2.6 and 3.16)
it follows that, when X is Hilbert and separable, each of conditions (27) and (30)
is (respectively, the equivalent conditions (28) and (29) are) also necessary, as
well as sufficient, for continuity of r (respectively, σ) at a point of L(X)/K(X),
and A ∈ L(X) satisfies the equivalent conditions (12) and (13) (respectively,
(14)–(16) and (24)) if and only if QK(X)(A) satisfies (27) and (30) (respectively,
(28) and (29)).

Thus in L(X)/K(X) condition (30) is (respectively, the equivalent conditions
(28) and (29) are) less restrictive than (25) (respectively, (26)), even if X is
supposed to be Hilbert and separable.

If X is Hilbert and nonseparable, conditions (27) and (30) are still equivalent
in L(X)/K(X) (see [B9], 2.4), but are less restrictive than (12) and (13). Further-
more, in L(X)/K(X) conditions (28) and (29) are less restrictive than (14)–(16)
and (24). Indeed, there exists A ∈ L(X), not satisfying (12) and (13), such that
QK(X)(A) satisfies (28) and (29) (see [B9], remarks following 2.6).

If X is not supposed to be Hilbert, condition (30) in L(X)/K(X) is (re-
spectively, the equivalent conditions (28) and (29) in L(X)/K(X) are) less re-
strictive than (12) and (13) (respectively, (14)–(16) and (24)), even if X is sup-
posed to be separable. Indeed, if X1,X2 ∈ {c0} ∪ {lp}p∈[1,∞), X1 6= X2, and
S1 and S2 denote respectively the backward shift on X1 and the unilateral shift
on X2, then IX1×X2

+ S1 × S2 does not satisfy (12) and (13) and nevertheless
QK(X1×X2)(IX1×X2

+ S1 × S2) satisfies (28) and (29) (see final remarks of [B9]).

The following example shows that (30) is more restrictive than (27) also in
the case of L(X)/K(X).

The symbol≈means isomorphism of Banach spaces. A complemented subspace
of a Banach space X is a closed subspace Y of X such that X = Y ⊕Z for some
other closed subspace Z of X. For any A ∈ L(X), let N(A) and R(A) denote
the kernel and the range of A, respectively.

Example 3.17. Let X, Y ∈ {c0} ∪ {lp}p∈[1,∞), X 6= Y , and let A,B ∈ L(X)
be defined by

A(xn)n∈N = (x2n)n∈N , B(xn)n∈N =
∑

n∈N

xne2n for any (xn)n∈N ∈ X ,

where {en}n∈N is the canonical basis of X.

We remark that σ(A) = σ(B) = BC(0, 1). Furthermore, since ‖A‖ = ‖B‖ = 1
and AB = IX , for any λ ∈ BC(0, 1) we have that λA − IX and λB − IX are
in GL(X) and (λIX − A)B(λB − IX)−1 = IX = (λA − IX)−1A(λIX − B). Thus
R(λIX −A) = X and N(λIX −B) = {0}, and in addition from [Ca], Chapter 1,
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Theorem 1, it follows that N(λIX − A) and R(λIX − B) are complemented
subspaces of X,

N(λIX −A) ≈ X/R(B(λB − IX)−1) = X/R(B) ≈ X

and

X/R(λIX −B) ≈N((λA− IX)−1A) =N(A) ≈ X .

Now let S ∈ L(Y ) be the unilateral shift on Y . Then σ(A×B×S) = BC(0, 1).
Furthermore, for any λ ∈ BC(0, 1),

N(λIX×X×Y −A×B × S) =N(λIX −A) × {0} × {0}

and

R(λIX×X×Y −A×B × S) = X ×R(λIX −B) ×R(λIY − S)

are complemented subspaces of X ×X × Y . Moreover,

(X ×X × Y )/R(λIX×X×Y −A×B × S) ≈ (X/R(λIX −B))× (Y/R(λIY − S))

≈ X × C ≈ X ≈N(λIX −A) ≈N(λIX×X×Y −A×B × S)

for any λ ∈ BC(0, 1). Hence σ(QK(X×X×Y )(A × B × S)) = BC(0, 1), and con-
sequently H{0}(QK(X×X×Y )(A × B × S)) = ∅, as ̺(QK(X×X×Y )(A × B × S))
is connected. In addition, from the characterization of membership in the clo-
sure of the invertibles for Banach space operators with complemented kernel
and range, provided by Gonzalez in [G], it follows that, for any λ ∈ BC(0, 1),
λIX×X×Y −A×B × S ∈ GL(X×X×Y ) and consequently

QK(X×X×Y )(λIX×X×Y −A×B × S) ∈ GL(X×X×Y )/K(X×X×Y ) .

Thus S(QK(X×X×Y )(A×B × S)) = ∅.

Let P1, P2 ∈ L(X ×X × Y ) be defined by

P1(u, v,w) = (u, v, 0), P2(u, v,w) = (0, 0, w) for (u, v,w) ∈ X ×X × Y .

We set Jk = {T ∈ L(X ×X × Y ) : PkTPk ∈ K(X ×X × Y )} for k = 1, 2.

Since X×X is isomorphic to X, it follows that Jk ∈ JL(X×X×Y ) for k = 1, 2,
and in addition J ⊂ J1 ∩ J2 for any J ∈ JL(X×X×Y ) \ {J1, J2} (see [P], 5.3.2,
where only the case of lp × lq, 1 ≤ p < q < ∞, is considered; anyway, the proof
also works when lq is replaced by c0, just by replacing reference to 5.1.2 with
reference to the remark following 5.1.2).

Consequently, QK(X×X×Y )(Jk) ∈ JL(X×X×Y )/K(X×X×Y ) for k = 1, 2 and
N ⊂ QK(X×X×Y )(J1 ∩ J2) for N ∈ JL(X×X×Y )/K(X×X×Y ) \ {QK(X×X×Y )(J1),
QK(X×X×Y )(J2)}. We remark that

σQK(X×X×Y )(J1)(QK(X×X×Y )(A×B×S)) = σJ1
(A×B×S) = σe(A×B) = BC(0, 1)

and

σQK(X×X×Y )(J2)(QK(X×X×Y )(A×B×S)) = σJ2
(A×B×S) = σe(S) = ∂BC(0, 1) .
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Consequently, for any N as above, since

N ⊂ QK(X×X×Y )(J1 ∩ J2) ⊂ QK(X×X×Y )(J1) ,

we have

σQK(X×X×Y )(J1)(QK(X×X×Y )(A×B × S)) ⊂ σN (QK(X×X×Y )(A×B × S))

⊂ σ(QK(X×X×Y )(A×B × S)) .

Therefore σN (QK(X×X×Y )(A×B × S)) = BC(0, 1).
It follows that

σN (QK(X×X×Y )(IX×X×Y +A×B × S)) = BC(1, 1)

for any N ∈ JL(X×X×Y )/K(X×X×Y ) \ {QK(X×X×Y )(J2)} and

σQK(X×X×Y )(J2)(QK(X×X×Y )(IX×X×Y +A×B × S)) = ∂BC(1, 1) .

Thus

sup{δN (QK(X×X×Y )(IX×X×Y +A×B×S)) : N ∈ JL(X×X×Y )/K(X×X×Y )} = 0 .

Consequently, since r(QK(X×X×Y )(IX×X×Y +A×B × S)) = 2 and in addition

H{0}(QK(X×X×Y )(IX×X×Y +A×B × S))

= S(QK(X×X×Y )(IX×X×Y +A×B × S)) = ∅ ,

we conclude that QK(X×X×Y )(IX×X×Y +A×B×S) does not satisfy (30). Nev-
ertheless, we prove that it satisfies (27).

Since S cannot be connected with IY by means of Fredholm operators, it
follows that A×B×S cannot be connected with IX×X×Y by means of operators
which are invertible modulo J2. Therefore, by [CPY], 6.2.5, there exists G ∈
χ(GL(X×X×Y )/J2

) such that QJ2
(IX×X×Y ) 6∈ G and QJ2

(A×B × S) ∈ G. Since
the Banach algebras

L(X ×X × Y )/J2 and (L(X ×X × Y )/K(X ×X × Y ))/QK(X×X×Y )(J2)

are isomorphic, it follows that QK(X×X×Y )(A×B×S) cannot be connected with
QK(X×X×Y )(IX×X×Y ) by means of elements of L(X ×X × Y )/K(X ×X × Y )
which are invertible modulo QK(X×X×Y )(J2). Since QK(X×X×Y )(A ×B × S) ∈

GL(X×X×Y )/K(X×X×Y ), it follows that

QK(X×X×Y )(A×B × S) ∈ H
QK(X×X×Y )(J2)

L(X×X×Y )/K(X×X×Y ) .

Consequently, since σQK(X×X×Y )(J2)(QK(X×X×Y )(A × B × S)) = ∂BC(0, 1), we
have

BC(0, 1) = HQK(X×X×Y )(J2)(QK(X×X×Y )(A×B × S)) .

Thus

HQK(X×X×Y )(J2)(QK(X×X×Y )(IX×X×Y +A×B × S))

= BC(1, 1) = σ(QK(X×X×Y )(IX×X×Y +A×B × S)) ,

which implies that QK(X×X×Y )(IX×X×Y +A×B × S) satisfies (27).
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Definition 3.18. Let L be a complex Banach algebra. We denote by ϕL, θL

and κL the subsets of all a ∈ L which satisfy conditions (27), (28)–(29) and (30),
respectively.

Notice that ηL ⊂ κL ⊂ ϕL and ιL ⊂ θL ⊂ κL. In addition, ηL = κL = ϕL

and ιL = θL whenever GL is connected.
Now let H be a complex nonzero separable Hilbert space. Then

Λ(H) = ηL(H) = κL(H) = ϕL(H) = ContL(H)(r)

and

Θ(H) = ιL(H) = θL(H) = ContL(H)(σ) .

If H is infinite-dimensional, we also have

QK(H)(Λe(H)) = κL(H)/K(H) = ϕL(H)/K(H) = ContL(H)/K(H)(r)

and

QK(H)(Θe(H)) = θL(H)/K(H) = ContL(H)/K(H)(σ) ,

whereas for ηL(H)/K(H) and ιL(H)/K(H) the following strict inclusions hold (see
remarks following Theorem 3.11):

ηL(H)/K(H)  QK(H)(Λe(H)) and ιL(H)/K(H)  QK(H)(Θe(H)) .

Theorem 3.19 ([B8], 1.5 and 2.8; [B9], 1.1). Let L be a complex Banach
algebra. Then ϕL, κL and θL are Gδ-sets.

Since ϕL(X) = κL(X) = ηL(X) = Λ(X) and θL(X) = ιL(X) = Θ(X) for any
complex nonzero separable Hilbert space X, the examples we have given in Sec-
tion 2 in order to show that Λ(X) and Θ(X) are not invariant under the action
of holomorphic functions can also be used to prove that none of ηL, κL, ϕL, ιL
and θL is invariant under the action of holomorphic functions.

The following proposition summarizes the relationships among the sufficient
conditions for continuity of the spectrum and spectral radius functions in Banach
algebras which we have studied up to now.

Proposition 3.20. Let L be a complex Banach algebra. Then the following
inclusions hold :

ContL(σ)

θL ContL(r)

ιL κL ⊂ ϕL

νL ⊂ τL ηL

πL
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At present, we have no examples which prove the inclusions θL ⊂ ContL(σ)
and ϕL⊂ContL(r) to be proper. None of the remaining inclusions can be replaced
by equality.

The following proposition summarizes the relationships among the sufficient
conditions for continuity of the spectrum and spectral radius functions in the case
of the Banach algebra L(X).

Proposition 3.21. Let X be a complex nonzero Banach space. Then the
following inclusions hold :

ContL(X)(σ)

θL(X) ContL(X)(r)

ιL(X) κL(X) ⊂ ϕL(X)

Θ(X) ηL(X)

νL(X) ⊂ τL(X) Λ(X)

πL(X)

We have no examples which prove the inclusions θL(X) ⊂ ContL(X)(σ) and
ϕL(X) ⊂ ContL(X)(r) to be proper. None of the remaining inclusions can be
replaced by equality.

The following proposition summarizes the case of the Banach algebra
L(X)/K(X).

Proposition 3.22. Let X be a complex infinite-dimensional Banach space.
Then the following inclusions hold :

ιL(X)/K(X) θL(X)/K(X)

τL(X)/K(X) ⊂ QK(X)(Θe(X)) ContL(X)/K(X)(σ)

νL(X)/K(X) ContL(X)/K(X)(r)

πL(X)/K(X) ⊂ QK(X)(Λe(X)) ϕL(X)/K(X)

ηL(X)/K(X) κL(X)/K(X)
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Again, we have no examples which prove the inclusions θL(X)/K(X) ⊂
ContL(X)/K(X)(σ) and ϕL(X)/K(X) ⊂ ContL(X)/K(X)(r) to be proper. None of
the remaining inclusions can be replaced by equality.

Now let L be a complex Banach algebra. In view of the Hausdorff maximality
principle, any chain of JL is contained in a maximal chain. We denote by CL the
set of all maximal chains of JL.

The following result is proved in [B7].

Theorem 3.23 ([B7], 2.7). Let L be a complex Banach algebra such that CL

is finite and any element of CL is well ordered by inclusion. Then, for any a ∈ L
and for any open set Ω in the relative topology of σ(a) such that Ω ⊂ ζ(a), ψ(a)
is dense in Ω.

Thus, if the ideal structure of L has some good properties (namely, if CL

satisfies the hypotheses of Theorem 3.23), then conditions (26), (28) and (29)

can be simplified: namely, since σ(a) \S(a), σ(a) \ (S(a)∪
⋃

G∈χ(GL) ∂̺G(a)) and

σ(a) \ (S(a)∪
⋂

G∈χ(GL) ̺(a) \ ̺G(a)) are open subsets in the relative topology of

σ(a) for any a ∈ L, ζ(a) can be replaced by ψ(a).
We recall that, for any X ∈ {c0}∪{lp}p∈[1,∞), we have JL(X) = {{0},K(X)}

(see [CPY], 5.4.23). Hence both L(X) and L(X)/K(X) satisfy the hypotheses
of Theorem 3.23. Furthermore, for any complex Hilbert space H, JL(H) is well
ordered by inclusion (see [L]), and consequently also L(H) and L(H)/J , for any
J ∈ JL(H), satisfy the hypotheses of Theorem 3.23.

In [B9] conditions (27), (28)–(29) and (30) are characterized in the Banach
algebras L(X), where X is either a Hilbert space, or c0, or lp, 1 ≤ p <∞, and in
their quotient algebras.

4. In [Zh] continuity of set-valued mappings is studied. Sufficient conditions
for upper semi-continuity and lower semi-continuity of the union and difference
of set-valued mappings are given, and the relationship between continuity of a
set-valued mapping and continuity of its boundary is investigated. Furthermore,
these results are used to study continuity of spectrum and its parts, such as ̺±s-F
and σle ∩ σre, for Hilbert space operators.

For any map φ from a topological space Ξ into KC ∪ {∅}, we denote by
∂φ : Ξ → KC ∪ {∅} the function which maps every x ∈ Ξ into the boundary
of φ(x).

Theorem 4.1 ([Zh], Theorem 4). Let Ξ be a first countable topological space
and let x ∈ Ξ. If φ : Ξ → KC ∪ {∅} is continuous at x, then ∂φ is lower
semi-continuous at x.

In [Zh], Theorem 4, the function φ is assumed to be in B(Ξ) and Ξ is assumed
to be a normed linear space, but the same proof works.

The following is an immediate consequence of Theorem 4.1.
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Corollary 4.2. Let L be a complex Banach algebra and let a ∈ L. If the
spectrum function is continuous at a, then

(31) ∂σ is lower semi-continuous at a .

Condition (31) is not sufficient for continuity of spectrum, as the following
example shows.

Example 4.3. Let S and T denote respectively the unilateral and backward
shifts on l2. We recall that σ(S × 2T ) = BC(0, 2), ̺1

s-F(S × 2T ) = {λ ∈ C : 1 <
|λ| < 2} and the spectrum function is not continuous at S × 2T (see comments
following 2.7). Nevertheless, we prove that ∂σ is lower semi-continuous at S×2T .

We recall that the map

L(l2 × l2) ∋ A 7→ ̺±s-F(A) ∈KC ∪ {∅}

is lower semi-continuous on L(l2 × l2) (see [CM1], 1.4—or [Zh], corollary of
Theorem 1—and [Zh], comments preceding the lemma to Theorem 1). Since

∂σ(S × 2T ) = ∂BC(0, 2) ⊂ ̺±s-F(S × 2T ), it follows that for any ε > 0 there

exists δ′ε > 0 such that ∂σ(S × 2T ) ⊂ (̺±s-F(A))ε ⊂ (σ(A))ε for any A ∈
BL(l2×l2)(S × 2T, δ′ε). In addition, by Theorem 1.1, there exists δ′′ε > 0 such
that σ(A) ⊂ (σ(S× 2T ))ε = BC(0, 2 + ε) (and consequently ∂BC(0, 2) ⊂ (̺(A))ε)
for any A ∈ BL(l2×l2)(S × 2T, δ′′ε ). Thus, if we set δε = min{δ′ε, δ

′′
ε }, we have

∂σ(S × 2T ) ⊂ (σ(A))ε ∩ (̺(A))ε ⊂ (∂σ(A))ε for any A ∈ BL(l2×l2)(S × 2T, δε).
Hence ∂σ is lower semi-continuous at S × 2T .

Although lower semi-continuity of ∂σ does not imply continuity of σ, it implies
continuity of r, as the next result shows.

Theorem 4.4. Let L be a complex Banach algebra and let a ∈ L. If ∂σ is
lower semi-continuous at a, then the spectral radius function is continuous at a.

P r o o f. Let (an)n∈N be a sequence in L such that an → a as n→ ∞. Since ∂σ
is lower semi-continuous at a, it follows that ∂σ(a) ⊂ lim infn→∞ ∂σ(an). Thus,
if λ ∈ σ(a) is such that |λ| = r(a), there exists a sequence (λn)n∈N such that
λk ∈ ∂σ(ak) for any k ∈ N and λn converges to λ as n→ ∞. Consequently,

lim inf
n→∞

r(an) ≥ lim
n→∞

|λn| = |λ| = r(a) .

We have thus proved that r is lower semi-continuous at a. From Corollary 1.2
it follows that r is continuous at a.

Hence, generally speaking, ∂σ is not lower semi-continuous on the whole al-
gebra L (no point of discontinuity of r is a point of lower semi-continuity of ∂σ).

Condition (31) is not necessary for continuity of spectral radius. Indeed, if
U ∈ L(l2(Z)) is the bilateral shift, then the spectral radius function is continuous
at U . Yet, for any λ ∈ ∂BC(0, 1), by Apostol and Morrel’s approximation theorem
(see [AM], 3.1) there exists a sequence (Un)n∈N of linear bounded operators on
l2(Z) such that Un → U as n → ∞ and σ(Uk) = {λ} for any k ∈ N. Therefore
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limn→∞ ∂σ(Un) = {λ}  ∂BC(0, 1) = ∂σ(U), and consequently ∂σ is not lower
semi-continuous at U .

We also remark that continuity of σ does not imply continuity of ∂σ. Con-
sequently, in general, ∂σ is not upper semi-continuous on the whole algebra,
unlike σ. Indeed, the next example shows that ∂σ may fail to be upper semi-
continuous even when the spectrum function is continuous on the whole algebra.

Example 4.5. Consider the complex Banach algebra l∞. Since l∞ is commu-
tative, the spectrum function is continuous on l∞. Nevertheless, we prove that
∂σ is not upper semi-continuous on l∞.

Let (λk)k∈N ∈ l∞ be such that {λk}k∈N = BC(0, 1). Then σ((λk)k∈N) =

BC(0, 1).
For every positive integer n let fn : C→ C be defined by

fn(λ) =

{
λ if |λ| ≥ 1/n,
0 if |λ| < 1/n.

Then (fn(λk))k∈N ∈ l∞ for any n ∈ Z+. Furthermore,

‖(fn(λk))k∈N − (λk)k∈N‖ = sup{|fn(λk) − λk| : k ∈ N} ≤ 1/n

for any n ∈ Z+. Consequently, (fn(λk))k∈N → (λk)k∈N (in l∞) as n→ ∞.

We remark that σ((fn(λk))k∈N) = {fn(λk)}k∈N = {0} ∪ {λ ∈ C : 1/n ≤
|λ| ≤ 1} for any n ≥ 2, and consequently ∂σ((fn(λk))k∈N) = {0} ∪ ∂BC(0, 1/n) ∪
∂BC(0, 1) for any n ≥ 2.

Thus ∂σ((λk)k∈N) = ∂BC(0, 1)  {0}∪∂BC(0, 1) = limn→∞ ∂σ((fn(λk))k∈N).
Hence ∂σ is not upper semi-continuous at (λk)k∈N.

The next result is stated in [Zh] for the Banach algebra L(H), where H is
a Hilbert space. However, the same proof can be repeated for a general Banach
algebra.

Theorem 4.6 ([Zh], corollary of Theorem 7, and Theorem 8). Let L be a com-
plex Banach algebra and let a ∈ L. Then the following conditions are equivalent :

(i) the spectrum function is continuous at a;
(ii) dist(λ, σ(·)) is continuous at a for any λ ∈ C;

(iii) dist(λ, σ(·)) is upper semi-continuous at a for any λ ∈ C.

The following result is proved in [Zh].

Theorem 4.7 ([Zh], Theorem 5). Let H be a complex nonzero Hilbert space
and let A ∈ L(H). If A satisfies (31) and

(32) both σle(A) ∩ σre(A) and σ(A) ∩ ̺0
s-F(A) have empty interior,

then the spectrum function is continuous at A.

Theorem 4.8. Let X be a complex nonzero Banach space and let A ∈ L(X).
Then the following conditions are equivalent :

(33) σ(A) = ̺±s-F(A) ∪ ∂σ(A) ;
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(34) both σs-F(A) and σ(A) ∩ ̺0
s-F(A) have empty interior.

Furthermore, (32) implies (33) and (34).

P r o o f. Suppose that A satisfies (33). Then σ(A) ∩ ̺0
s-F(A) ⊂ ∂σ(A), and

consequently σ(A)∩̺0
s-F(A) has empty interior. In addition, σs-F(A) ⊂ ∂̺±s−F(A)∪

(∂σ(A) ∩ σs-F(A)) ⊂ ∂σs-F(A), which means that σs-F(A) also has empty interior.
Hence A satisfies (34).

Conversely, suppose that A satisfies (34). Since σ(A) ∩ ̺0
s-F(A) has empty

interior, it is contained in ∂σ(A). Since also σs-F(A) has empty interior, we have

σs-F(A) ⊂ ̺±s-F(A) ∪ σ(A) ∩ ̺0
s-F(A) ∪ (σ(A) ∩ ̺(A)) ⊂ ̺±s-F(A) ∪ ∂σ(A)

and consequently σ(A) = ̺±s-F(A)∪ (σ(A) ∩ ̺0
s-F(A)) ∪ σs-F(A) ⊂ ̺±s-F(A)∪ ∂σ(A).

Hence A satisfies (33).
Finally, since σs-F(A) ⊂ σle(A) ∩ σre(A), it follows that (32) implies (33) and

(34).

The equivalent conditions (9)–(11) and (20)–(23) imply (31): indeed, from (9)–
(11) and (20)–(23), the spectrum function is continuous at A by Theorem 2.9,
which implies (31) by Corollary 4.2.

Notice also that conditions (9)–(11) and (20)–(23) imply (33) and (34).
Finally, for any complex nonzero Hilbert space H, condition (32) is equivalent

to (33) and (34) in L(H), as σs-F(A) = σle(A) ∩ σre(A) for any A ∈ L(H).
In the case of a general Banach space, (33) and (34) do not imply (32). Indeed,

the following example shows that (9)–(11) and (20)–(23) do not imply (32) (so
that (33) and (34) plus (31) do not imply (32) either).

Example 4.9. Let B ∈ L(l∞) map (yn)n∈N ∈ l∞ into (zn)n∈N defined by
z2k = yk and z2k+1 = 0 for any k ∈ N.

Since N(Qc0B) = c0, there exists B0 ∈ L(l∞/c0) such that B0Qc0x = Qc0Bx
for any x ∈ l∞. Notice that B0 is an isometry. Set

X = {(xn)n∈N ∈ l∞ : x2k = 0 for any k ∈ N}

and

Y = {(xn)n∈N ∈ l∞ : x2k+1 = 0 for any k ∈ N} .

Then R(B0) = Qc0(Y ) and l∞/c0 = Qc0(X) ⊕R(B0). It is not difficult to verify
that ‖u+ w‖ = max{‖u‖, ‖w‖} for any u ∈ Qc0(X) and for any w ∈ Qc0(Y ).

Let A ∈ L(l∞ × (l∞/c0)) be defined by

A((xn)n∈N, y) = ((x2n)n∈N, Qc0(δnxn)n∈N+B0y) for ((xn)n∈N, y) ∈ l∞×(l∞/c0) ,

where δ2k = 0 and δ2k+1 = 1 for any k ∈ N. Then R(A) = l∞ × (l∞/c0) and
N(A) = X0 × {0}, where X0 = X ∩ c0. Hence N(A) is infinite-dimensional and
separable.

Notice that, for the norm

‖(x, y)‖ = max{‖x‖, ‖y‖} for (x, y) ∈ l∞ × (l∞/c0) ,



CONTINUITY OF SPECTRUM AND SPECTRAL RADIUS 95

the norm of A is equal to one. Consequently, σ(A) ⊂ BC(0, 1). In addition, for
any ((xn)n∈N, y) ∈ l∞ × (l∞/c0),

‖A((xn)n∈N, y)‖ = max{‖(x2n)n∈N‖, ‖Qc0 (δnxn)n∈N +B0y‖}

= max{‖(x2n)n∈N‖, ‖Qc0 (δnxn)n∈N‖, ‖B0y‖}

= max{‖(x2n)n∈N‖,dist((δnxn)n∈N,X0), ‖y‖}

= max{dist((xn)n∈N,X0), ‖y‖} ,

which is the distance from ((xn)n∈N, y) to N(A).

From [Ka1], Theorem 1 and Remark 1, it follows that λIl∞×(l∞/c0) − A is
surjective and N(λIl∞×(l∞/c0) − A) is infinite-dimensional for any λ ∈ BC(0, 1).

Thus σ(A) = BC(0, 1) and ̺∞s-F(A) = BC(0, 1). Hence A satisfies (9)–(11) and
(20)–(23) (which implies that the spectrum function is continuous at A).

Nevertheless, we prove that A does not satisfy (32).

From [GKre], Theorem 7.2, it follows thatN(λIl∞×(l∞/c0)−A) is separable for
any λ ∈ BC(0, 1). In addition, for any λ ∈ BC(0, 1) and for any ((xn)n∈N, (yn)n∈N)
∈ l∞ × l∞,

‖(λIl∞×(l∞/c0) −A)((xn)n∈N, Qc0(yn)n∈N)‖

≥ ‖λQc0(yn)n∈N −Qc0(δnxn)n∈N −B0Qc0(yn)n∈N‖

= ‖Qc0(δn(λyn − xn))n∈N + λQc0((1 − δn)yn)n∈N −B0Qc0(yn)n∈N‖

≥ ‖λQc0((1 − δn)yn)n∈N −B0Qc0(yn)n∈N‖

≥ ‖B0Qc0(yn)n∈N‖ − |λ|‖Qc0((1 − δn)yn)n∈N‖

≥ (1 − |λ|)‖Qc0 (yn)n∈N‖ .

ThusN(λIl∞×(l∞/c0)−A) ⊂ l∞×{0} for any λ ∈ BC(0, 1). Since no separable
infinite-dimensional subspace of l∞ is complemented in l∞ (see [LT], 2.a.7), it
follows that N(λIl∞×(l∞/c0) − A) is uncomplemented in l∞ × (l∞/c0) for any

λ ∈ BC(0, 1). Consequently, by [CPY], 4.3.4, σle(A) ∩ σre(A) = BC(0, 1). Hence
A does not satisfy (32).

From Example 4.9 it also follows that, generally speaking, whenX is a complex
nonzero Banach space the condition “σle(A) ∩ σre(A) has empty interior” is not
necessary for continuity of the spectrum function at A ∈ L(X).

We recall that the map

L(X) ∋ T 7→ ̺±s-F(T ) ∈KC ∪ {∅}

can be proved to be lower semi-continuous on L(X) for any Banach space X, by
using similar arguments to the ones in [CM1], 1.4. Then the arguments used in
the proof of [Zh], Theorem 5, can be repeated in order to derive the following
result.
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Theorem 4.10. Let X be a complex nonzero Banach space and let A ∈ L(X).
If A satisfies both (31) and the equivalent conditions (33) and (34), then the
spectrum function is continuous at A.

From Theorems 4.8 and 4.10 it follows that (31) plus (32) are sufficient for
continuity of σ at A ∈ L(X) also in the case of a general Banach space X.

The result below can be found in [Zh]. In this case, the Hilbert space is
understood to be separable, as the proof appeals to results in [CM1].

Theorem 4.11 ([Zh], Theorem 6). Let H be a complex nonzero separable
Hilbert space and let A ∈ L(H). Then the spectrum function is continuous at A
iff A satisfies both (31) and (33).

We recall (see comments following Theorem 3.9) that for any complex nonsep-
arable Hilbert space H there exists A ∈ L(H) such that the spectrum function is
continuous at A, ̺±s−F(A) = ∅ and σ(A) = S(A), so that A does not satisfy (33).
Thus (33) and (34) are not necessary for continuity of spectrum at a point of
L(H) if H is a nonseparable Hilbert space.

Notice also that the separable Hilbert space cannot be replaced by a separable
Banach space in Theorem 4.11: e.g. (see again comments following Theorem 3.9),
if X,Y ∈ {c0} ∪ {lp}p∈[1,∞), and X 6= Y , then there exists A ∈ L(X × Y ) such

that ̺±s-F(A) = ∅ and σ(A) = S(A), so that A does not satisfy (33) and (34), and
yet the spectrum function is continuous at A by Theorem 3.4.

More precisely, since S(A) ⊂ ̺±s-F(A) ∪ σs-F(A) for any Banach space X and
for any A ∈ L(X), from the remarks above it follows that the condition “σs-F(A)
has empty interior” is not necessary for continuity of spectrum at A ∈ L(X) for
a general Banach space X. The condition “σ(A) ∩ ̺0

s-F(A) has empty interior”,
instead, is necessary for continuity of σ at A also in the general Banach space
case, as we are going to show.

Theorem 4.12. Let X be a complex nonzero Banach space and suppose that
the spectrum function is continuous at A ∈ L(X). Then σ(A)∩̺0

s-F(A) has empty
interior.

P r o o f. Suppose that σ(A)∩̺0
s-F(A) has nonempty interior. Then from [Ka2],

IV, 5.31, it follows that there exist λ0 ∈ σ(A) ∩ ̺0
s-F(A), ε0 > 0 and n ∈ Z+ such

that BC(λ0, ε0) ⊂ σ(A)∩̺0
s-F(A) and dim(N(λIX −A)) = dim(X/R(λIX −A)) =

n for any λ ∈ BC(λ0, ε0). Consequently, by [Ze3], Theorem 2, for any ε > 0 there

exists Kε ∈ K(X) (so that BC(λ0, ε0) ⊂ ̺0
s-F(A + Kε) in view of stability of

semi-Fredholm operators under compact perturbations) such that ‖Kε‖ < ε and

dim(N(λIX −A−Kε)) = dim(X/R(λIX −A−Kε)) = 0 for any λ ∈ BC(λ0, ε0).

Hence for any ε > 0 we have BC(λ0, ε0) ⊂ ̺(A + Kε), and consequently
λ0 6∈ (σ(A + Kε))ε0

. Since limε→0(A + Kε) = A and λ0 ∈ σ(A), it follows that
the spectrum function is not lower semi-continuous, and hence not continuous,
at A.
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Theorem 4.12 is proved in [CM1], 3.2, in the separable Hilbert space case, as
a consequence of the characterization of the points of continuity of σ provided in
[CM1], 3.1.

Finally, we extend [CM1], 2.19, to the general Banach space case.

Theorem 4.13. Let X be a complex infinite-dimensional Banach space, and
let A ∈ L(X) be such that the spectral radius function is continuous at QK(X)(A).
Then the spectral radius function is continuous at A.

P r o o f. Suppose that r(A) = r(QK(X)(A)). Let (An)n∈N be a sequence
in L(X) such that An → A as n → ∞. Since the spectral radius function is
continuous at QK(X)(A) we have

lim inf
n→∞

r(An) ≥ lim
n→∞

r(QK(X)(An)) = r(QK(X)(A)) = r(A) .

Hence the spectral radius function is lower semi-continuous at A. Conse-
quently, by Corollary 1.2, it is continuous at A.

Suppose now that r(A) > r(QK(X)(A)). Then we can proceed as in the second
part of the proof of [CM1], 2.19. Indeed, if λ ∈ σ(A) is such that |λ| = r(A), then
λ ∈ ∂σ(A) \ σe(A) ⊂ σ0

p(A). It follows that δ(A) = r(A), and consequently r is
continuous at A by Theorem 1.8.

To conclude the paper, we recall that there exists an infinite-dimensional Ba-
nach space X such that the spectrum function is continuous on the whole Banach
algebra L(X). Indeed, Gowers and Maurey ([GM]) have recently constructed a
complex infinite-dimensional Banach space X, separable and reflexive, such that
σ(A) is at most countable for any A ∈ L(X). It follows that νL(X) = L(X), and
consequently the spectrum function is continuous at every A ∈ L(X).
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cific J. Math. 56 (1975), 321–324.
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