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1. Introduction. Let €2 be an open and connected set in R"; zy € €). Then
the classical Green function Gq(x,xg) is the solution to the Dirichlet problem

GQ(ZE, :Eo) =0, Ve
{ A, G(x,20) = 0gg-
In [7], Klimek introduced the pluricomplex Green function gq, that can be defined
as solution to
9a(z,29) € PSH(R)
ga(z,20) =0, Vze o
(ddZga(z, 20))" = (2m)" 0,
where Q is a domain (open, bounded, and connected set) in C"; zo € Q.
An alternative definition of gq for any domain €2 in C", zg € Q is

9o(2,20) = sup{p(2); ¢ € PSH(Q),p < 0,(2) —log [z — 20|
bounded above near z = z¢}.

It is well known that the classical Green function is symmetric: Gq(z,xo)=
Gq(xo,x). However, the pluricomplex Green function need not be symmetric.

It was shown by Bedford and Demailly [2] that there exists a strictly pseudo-
convex smooth Q such that go(z, z0) # ga(z0, 2).

2. The symmetric pluricomplex Green function. In [3], we introduced
the symmetric pluricomplex Green function Wq(z,w),

Wa(z,w) =sup{p(z,w) €2 —-PSH(Q xQ), ¢<O0,
o(z,w) <log |z — w| — log max[d(z, (), d(w,CQ)]}.
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Here, 2 — PSH (2 x Q) denotes the subharmonic functions that are also sep-
arately plurisubharmonic. The purpose of this note is to consider some basic
properties of Wg,.

DEFINITION. A domain € is said to be strongly hyperconvex if Wq(z,w) is an
exhaustion function for ) for each fixed w € Q.

Remark. Every strictly pseudoconvex set is strongly hyperconvex.

LEMMA 1. Suppose ¢ is plurisubharmonic near zero and that |¢(z) —log|z|| <
K near zero for some constant K. Then pu(0) > (2m)™ where p is the weak*-limit
of (dd® max[p,t])", t — —oo.

Proof. Let 1 > r > 0 so that ¢ is plurisubharmonic and so that
lp(z) —log(z)| < K on B(0,r).
Given 0 < € < 1, then
—1 —]_
|z| > e =log|z| > —= —elog|z| < 1= (p—log|z| > —K) =
p—loglz| > —(K +1) —elog|z| = ¢(z) > (1 —€)log|z| — (K +1).
Thus
Qe ={z€ B(0,7);0(2) < (1 —€)log|z| = (K + 1)}
is a neighborhood of zero and relatively compact in B(0,r) if e"E <
Let t < inf,cpq, (1 —€)log|z| — (K + 1) =0 < 0 and define 9 = max[p, 2t].
Then Q! = {z € B(0,7); p2 < max|(1—¢€)log|z| — (K +1),t]} is a neighbor-
hood of zero and relatively compact in B(0,r). Thus
[ (dd?¢r) > [ (dd“max[(1 — €)log|z| — K +1,£))" = (2m)"(1 — €)"
Qc Q

and since Qf € Q. € B(0,e¢),

[ (ddga)" > (2m)" (1 — )"
B(O,ef%)
So if p is the weak*-limit of (dd®pa:)™, t — —o0, then p(0) > (27)™ which proves
the lemma. m

THEOREM 1. Suppose ) is strongly hyperconvex. Then gq > Waq with equality
if and only if

7(2) = [ (dd§max[Wo(z,€), -1))" = (2m)", Vze Q.
Q

Proof (cf. [3, Prop. VIL:2). Note first that [,(ddSmax[go(z,£),t])" =
(2m)",
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vVt <0, Vz € Q and that

7(2) = [ (ddg max[Wo(z,€),1])"
Q

is independent of ¢ for all negative t. Also, it follows from definitions that g >
Weq. It follows from Lemma 1 that 7(z) > (27)™ with equality if Wo = go. =

On the other hand, assume 7(z) = (27)". Again, by Lemma 1, (dd“Wq/(z,£))"”
=0on z # & Let £ € Q be given and consider for 0 < e < 1, (1 —e)Wq(z,§).
Then (1 — €)Wq(z,£) = 0 on 99, (1 — €)Wq(z,€) > ga(z,§) for z near €. Since
(ddS(1 — e)Wq(z,€))" = 0 outside &, (1 — €)Wa(z,£) > ga(z,€) on . Letting
e\, 0, we find that Wq = gq.

LEMMA 2. Let Q1 € C™,Qy C C™ be two open and connected sets. Then

max(Wa,, Wa,) < Wa, xq,-
Proof.

0 > max[Wq, (z1,w1), Wa, (22, ws)]
< max(log |21 — w1 | — log max[d(z;,0Q4), d(wy,C21)],
log |22 — wa| — log max[d(za, 0Qy), d(w2, C2)])
<log |(z1, 22)— (w1, ws)|—log min[d(z1, 021 ), d(w1,CQ1), d(22,0Q1), d(ws, )]

so the inequality now follows from the definition of Wq, «q, via [3, Cor. VIL:1]. =

ExXAMPLE. Denote by Cq the Carathéodory pseudodistance on 2. We give an
example of a bounded pseudoconvex set €2, such that

log tanh Cq # Wo # ga.

Let Q) ={z € (C;% < |z] < 1} and let Q9 be any strictly pseudoconvex domain
where Wq, (29, w9) < ga, (29, w8) for a point (29, w9) € Qg x Qy (by [2], such a set

exists). Note first that W, = g, and that
Wa, (z1,w1) > logtanh Cq(z1,w1), V21 w1 €

(cf. Klimek [7], p. 234-235]).

Then logtanh Cq, xq,((21, 22), (w1, 22)) < Wa, (z1,w1) < max[Wq, (z1,w1),
Wa, (22, 22)] < Wa,xa,((21,22), (w1, 22)) by Lemma 2. Thus log tanh Cq, xq, #
Wa, xa,; it remains to prove that W, xq, 7# 90, x0,- Suppose Wa, xq, = 9o, xQ,-
Since ©; and {2y are pseudoconvex, it follows from Theorem 9. 6 in [6] that
91 xQy — InaX[ng,gQQ] S0 WQ1><Q2((21722)’ (217("}2)) = 992(227w2) is plurisub-
harmonic in ws which is a contradiction to the assumption

WQz (Zg, wg) < 90, (ng wg)

by Proposition VII:2 in [3].
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3. Some estimates. If 2 is a domain in R", regular for the classical Dirich-
let problem, then for every function ¢, subharmonic near €2 we have the Riesz
representation formula:

pw)= [ G&w)Ap©) + [ ¢(©)dou(§), we
Q

o0

where G is the Green function for 2 and do,, is the harmonic measure relatively
Q and w.

Stokes theorem gives a similar formula for plurisubharmonic functions (cf.
Demailly [4], [5] and Kotodziej [10]). Suppose V,¢ and ¢ € PSH(Q2) N L>=(Q)
and define

s(r) ={zeQp(z) =rk B(r) ={z¢(z) <r}.
We assume that B(r) CC Q Vr < 0. Consider

[ Vo A (ddy)F " = (Stokes)

S(r)
= [dvadpn(ddy)t+ [ Vddop A (ddp)!
B(r)
= [dp—r)ANdVA(ddY)" "+ [ V(dd°p) A (dd“p" " = (Stokes)
B(r) B(r)
=— [ (p=r)ddV A(ddp)" " + [ Vddp A (ddp)".
B(r) B(r)
Hence
(1) [ Vidde) A (ddp)" " = [ (@ —r)ddV A (ddy)" "
B(r) B(r)
+ [ Vdo A (ddoy)" .
S(r)

We now claim that d°p A (dd)"~! is a positive measure on S(r).
For let 0 < h € C*° be given. Let € > 0 and define ¢ = max{p,r —€}. Then

[ hdo A (ddcp)" T = [ h(dpc) A (ddCap)"
S(r) S(r)

= [ dec ndh A (ddp)" ™+ [ h(dd®pc) A (ddy)" !
S(r) B(r)

= [ dpcAdhA(ddY)" M+ [ hdd g A (ddy)"

r—ele<r r—elep<r
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= [ dlge—(r—e) Ad°hA(ddY)" "+ [ hdd g A (ddy)"
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r—elep<r r—ele<r
= [ pe— = NdhA @)~ [ (pe— (r — €))dd°h A (dd*p)" "
S(r) r—e<e<r
+ [ hddpe A (ddep)Tt
r—ele<r

Here, the last term is nonnegative so

[ hdce A (ddeap)™!
S(r)

z—e‘ fddch/\(ddcw)"_l‘—e [ 1ddn A (ddop)" | =0, €0

B(r)
which proves the claim.
ExAMPLE. Let 0 <V € PSH(Q),v¢ € PSHNL*> () and
pr = max[W(z,§), —t].
Then (1) gives
[ V(ddeo) A (ddp)" "t = [ (or = r)dd°V A (ddy)" !
B(r) B(r)
+ [ Vdtp, A (ddey)m
s(r)
Letting » — 0 we get

f —QOtddCV/\ (ddcw)n—l < f VddCQOt A (ddc’l/J)n_l
Q Q

<supV [ ddp; A (ddyp)"!
Q

Q
so if we choose ¢ = 37, |z;|* then
(i J —WEOAV <V [ AW (2,),
Q Q
if we choose 1 =V, then
() [ - W EAVE)" < Vil [ ddEW(z,€)(dd V)™,
Q Q

and finally if ¥ = ¢4,
[ = @uddV A (ddp)" ! < [ V(ddogr)"
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and so

(iii) [ = W(z80)ddV A (ddW)" ™ < [ V(ddgW (2,)".

4. Integrability of plurisubharmonic functions. Suppose p is a positive
measure on 2. How do we know there is a ¢ € PSH ﬂLf(‘;C(Q) with (dd°p)™ = u?
Here is a necessary condition.

PROPOSITION 1. Let R > 1 fized, B the unit ball. Then there exists a constant
c such that

f —(ddu)" < ¢ f — @dV
B B
for all0 > ¢ € PSH(RB) and —1 <u <0, uw € PSH(RB).
Proof. See [3, Prop. VI:2]. m

Let now 2 be hyperconvex with exhaustion function . Let u be a positive
measure and assume 0 > V € PSHNL>(Q), (dd°V)™ = p. For m > 0, define
Vi = max(V, my). Then, by (1),

[ Vin(ddey)" f »dd Vi, A (dd )"~
<= f Vindd Vi A (ddy)" 1 < ... <

n

0< f Y(dd V)" <m" [ =V (ddp)t <m"Hsup—V(2)) [ (ddy)".

z€Q
If 7(2) = (2m)"™, we take ¥(§) = W( ,€) and get
@2m)" m" Vo (2) < [ W(2,)(ddVi)" < 0.

If supp i is compact, then V,,, = V near the support of y for m large enough and
therefore

0< [ =W(z8)du(&) <m"™ [ V(¢ dch(z,f))”§m”_1(21618—W)7'(z)).

We are thus led to consider the pluricomplex potential Q32— [W (z, &)du(€)
for positive measures . We have just proved

THEOREM 2. Suppose —1 < u < 0,u € PSH(SY) and that Q is strongly hyper-
convexr. Then

0< — [ Wo(z,&)(dd" max[u(€), mWa(n, £)])"
<=m"! [ max(u(€), mWa(n,€))(ddiWa(z, )" <m"'7(z), z€Q neQ
5. A metric defined by W. It is known that g gives rise to an infinitesimal

Finsler pseudometric, cf. [1], [8] and [9]. We show here that W also defines an
infinitesimal Finsler pseudometric.
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DEFINITION. Let w € ,& € C™. We define

T(w.6) = Tim Wo(w +16) ~Tog |
leC
PROPOSITION 2. T'(w, &) is upper semicontinuous on £ x C™.

Proof. Note that (w,&,1) — Wa(w+1€,w)—log|l|, I # 0 is upper semicontin-
uous and subharmonic in [, for w,w+1§ € Q. Also, for w, £ fixed Wo(w+1§,w) <
c+log |l|. Therefore Wo(w+1¢,w)—log|l| has a uniquely determined subharmonic
extension over [ = 0. Also

T(w,§&) = lllliimoWQ(w +1&w) —log|l| = @Wg(w + &, w) —logr.

By the mean value property for subharmonic functions,
27
1 )
— | Wa(w+re?,w) —logr|dd \, T(w,€), r\,0.

2
0

Note that for » > 0 fixed the left hand side is upper semicontinuous in (w, &)
and since it decreases in r, the proposition follows.

Furthermore, expT'(w,t§) = |t|expT(w,&), t € C so expT(w,§) defines an
infinitesimal Finsler pseudometric.
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