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1. An introduction: about Macaulay theorem. Let P1, . . . , Pm m homo-
geneous polynomials in n+1 variables (X0, . . . , Xn) with coefficients in a subfield
F of C and respective degrees D1, . . . , Dm; assume further that m ≤ n + 1 and
that the projective variety {P1 = . . . = Pm = 0} is n−m dimensional in Pn(C).
The Chow form of the homogeneous ideal (P1, . . . , Pm) is defined as follows: if
one takes n+1−m systems of parameters U (1), . . . , U (n+1−m) in Cn+1, the set of
polynomials R in (U (1), . . . , U (n+1−m)) with coefficients in F such that R times
some power of the maximal idealM = (X0, . . . , Xn) in C[X0, . . . , Xn] is included
in

(P1, . . . , Pm, 〈U (1), X〉, . . . , 〈U (n+1−m), X〉)
is a principal ideal in F[U (1), . . . , U (n+1−m)]; a generator for this ideal is a Chow
form (or an eliminating form in the terminology of [Ph1]) for the ideal I. The
Chow form plays an important role in arithmetic intersection theory: it can be
used to “measure” the arithmetic complexity of the complete intersection cycle
D1 ∩ . . .∩Dm, where the Dj correspond to the algebraic hypersurfaces {Pj = 0}.
For example, if F = Q, one defines, as in [Ph4], the global height of I as

h(I) =
∑

p prime

lnMvp(Φ) +
∫

{‖U(1)‖=1}

. . .
∫

{‖U(n+1−m)‖=1}

ln |Φ(U)|dσ(U)

where Φ is an eliminating form for I, Mv(Φ) denotes the maximum of the v-adic
absolute values of all coefficients of Φ, and dσ is the differential form corresponding
to the product of normalized Lebesgue measures on unit spheres {‖U (j)‖=1}, j =
1, . . . , n−m+ 1. The Chow form (or some power of it) appears as a denominator
for the rational functions in U involved in the expression of multidimensional
residues. In fact, if k = (k1, . . . , km) ∈ Nm (1′ if all kj are equal to 1) and
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l = (l1, . . . , ln−m+1) ∈ Nn−m+1 (1′′ if all lj are 1), one can see, as a consequence
of the transformation law ([GH], p. 657–659) and an algorithm by Kytmanov
([Ky], p. 495, formula 3) that for any test function ϕ in D(Cn+1) and almost any
values U (1), . . . , U (n−m+1) of the parameters U ,〈
∂

(
1

P ∗(k+1′)

)
∧ ∂
(

1
〈U, ζ〉∗(l+1′′)

)
, ϕdζ

〉
=

∑
r∈Nn+1

r≤〈k+1′,D〉+|l|−m

R(k,l)
r (U)

∂|r|

∂ζr
ϕ(0)

where the R(k,l)
r are rational functions in U with common denominator a power

of the Chow form Φ, namely Φs(k,l), where s(k, l) = |k| + |l| + n + 1. To make
things more explicit, let us write down the n+ 1 relations

(1) zqkk Φ(U)

=
m∑
j=1

Ak,j(Z,U)Pj(Z) +
n−m+1∑
l=1

Ak,m+l(Z,U)〈U (l), Z〉, k = 0, . . . , n.

which are derived from the definition of the Chow form. Let ∆ be the determinant
of the n + 1, n + 1 matrix of the Ak,l. In order to simplify notations, given
(k, l) ∈ Nn+1, denote t = tk,l = |k|+ |l|, τ = τk,l = (k+1′)!(l+1′′)!; if (r1, . . . , rt)
is any element in Nt, we denote c(r1, . . . , rt) the number i0! . . . in!, where ij (for
j = 0, . . . , n) is the number of times j appears in the sequence r1, . . . , rt. We note
also q(r) the n+ 1-uplet (q0(i0 + 1), . . . , qn(in + 1)) and

Sk,l,r =
∏

1≤j≤m
k1+...+kj−1<ξ≤k1+...+kj

Arξ,j
∏

1≤j≤n+1−m
|k|+l1+...+lj−1<ξ≤|k|+l1+...+lj

Arξ,m+j

with the convention k0 = l0 = 0. Then, one can write

τk,l(Φ(U))|k|+|l|+n+1

〈
∂

(
1

P ∗(k+1′)

)
∧ ∂
(

1
〈U, ζ〉∗(l+1′′)

)
, ϕdζ0 ∧ . . . ∧ dζn

〉
=

∑
0≤r1,...,rt≤n

c(r1, . . . , rt)
(q(r)− 1)!

[
∂|q(r)|

∂ζ∗q(r)
(ϕ∆(·, U)Sk,l,r(·, U))

]
(0).

As seen above, we will always use the multiplicative formal notations for residue
currents: if f1, . . . , fp denote p functions and t = (t1, . . . , tp) is a p-uplet of positive
integers,

∂(1/f∗t) = ∂(1/f t11 ) ∧ . . . ∧ ∂(1/f tpp ).

A fundamental result of Macaulay [Mac] states that, when m = n + 1, and
P1, . . . , Pn+1 define the origin in Cn+1, then, for κ = D1+. . .+Dn+1−n, the ideal
Mκ is included in (P1, . . . , Pn+1); an effective version of this fact can be obtained
from a classical formula of Jacobi and gives some insight on the role played by
multidimensional residues in division problems. Before stating this result, we need
to introduce systems of Hefer divisors for P1, . . . , Pn+1, that is polynomials gj,k,
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j = 1, . . . , n+ 1, k = 0, . . . , n such that, for any j in {1, . . . , n+ 1},

Pj(ζ)− Pj(Z) =
n∑
k=0

gj,k(Z, ζ)(ζk − zk).

The result of Macaulay can be written as:

Theorem 1. Any monomial M of total degree ρ ≥ κ can be reproduced as

(2) M(Z)

=
∑

k∈Nn+1,|k|>0
〈k,D〉≤ρ

〈
∂

(
1

P ∗(k+1)

)
(ζ),M(ζ)

n+1∧
j=1

( n∑
k=0

gj,k(Z, ζ)dζk

)〉
P (Z)∗k.

S k e t c h o f p r o o f. The proof of this theorem is very simple; it involves
two basic ingredients which seem to play a crucial role in division problems in
commutative algebra. One is the Cauchy–Weil formula which gives some semilocal
representation formula for M in a neighborhhood of the origin in Cn+1; this
neighbourhood will be of the form

{|P1(ζ)| < ε1(ξ) ∼ 1/ξD1 , . . . , |Pn+1(ζ)| < εn+1(ξ) ∼ 1/ξDn+1} = Ωξ, ξ � 0.

Cauchy–Weil’s formula [Weil] provides in Ωξ the following:

M(Z) =
1

(2iπ)n+1

( ∫
Γξ

M
∧n+1
j=1 (

∑n
k=0 gj,k(Z, ζ)dζk)∏n+1

j=1 (Pj(ζ)− Pj(Z))

−
∫

Γξ

M

∧n+1
j=1 (

∑n
k=0 gj,k(Z, ζ)dζk)∏n+1
j=1 Pj

)
(Γξ is the Shilov boundary of Ωξ and the second integral in the right-hand side
above is 0 since the total degree of M is larger than κ, which corresponds to the
fact that Mκ is included in (P1, . . . , Pn+1)). We now expand the kernels in the
integrals as the Cauchy kernel in Cauchy formula, which gives in Ωξ the following
semi local division formula:

M(Z) =
∑

k∈Nn+1,|k|>0

〈
∂

(
1

P ∗(k+1)

)
(ζ),M(ζ)

n+1∧
j=1

( n∑
k=0

gj,k(Z, ζ)dζk
)〉

P ∗k(Z).

The series in the above formula is in fact truncated, due to the second key ar-
gument of the proof, that is Jacobi’s formula ([Jac], [GH]) which states (as a
consequence of the global residue formula on the compact variety Pn(C)) that for
any polynomial S,〈

∂

(
1

P ∗(k+1)

)
(ζ), S(ζ)dζ0 ∧ . . . ∧ dζn

〉
= 0

as soon as 〈k + 1, D〉 ≥ deg(S) + n+ 2.
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In the same vein, we have the following representation formula in order to make
explicit the membership of some homogeneous polynomial Q in the homogeneous
ideal generated in C[ζ0, . . . , ζn] by (P1, . . . , Pm) (defining a complete intersection
in Pn(C)). Given n − m + 1 n + 1-uplets of parameters U (1), . . . , U (n−m+1) in
Cn+1, we will denote by Ψ(U) the differential form

Ψ(U) =
n−m+1∧
j=1

( n∑
k=0

U
(j)
k dζk

)
, U (j) = (U (j)

0 , . . . , U (j)
n )

In order to make things clearer, we will denote by G the differential form associ-
ated to systems of Hefer divisors for P1, . . . , Pm,

G(Z, ζ) =
m∧
j=1

( n∑
k=0

gj,k(Z, ζ)dζk
)
.

Then, we have the following result:

Theorem 2. Let Q be a homogeneous polynomial of degree d in n+1 variables
which lies in the complete intersection ideal(P1, . . . , Pm); then, for any Z in Cn+1,

(3) Q(Z) =
m∑
s=1

( ∑
S⊂[1,m]
#S=s

( ∑
k∈Nm,l∈Nn−m+1

〈k,D〉+|l|+
∑

j∈S
Dj≤d

ck,lS P
∗k(Z)〈U,Z〉∗l

)∏
j∈S

Pj(Z)
)

where, for any S ⊂ {1, . . . ,m}, any k in Nm and any l in Nn−m+1,

ck,lS =
〈
∂

(
1

P ∗(k+2′)

)
∧∂
(

1
〈U, ζ〉∗(l+1′′)

)
, Q
(∏
j 6∈S

(Pj−Pj(Z))
)
G(Z, ζ)∧Ψ(U)

〉
.

P r o o f. The proof of this result is based on the same two key points as
before; additionally, we profit from the fact that Weil’s formula, even written for
a system (f1, . . . , fn+1) of n+ 1 holomorphic functions defining a discrete variety
in some open subset of Cn+1, can be used to reproduce the membership of some
holomorphic function f in the ideal generated by m of the fj ’s (see for example
[BT], section 1).

In the statement of theorem 2, the coefficients of the ck,lS (considered as poly-
nomials in Z) are rational functions in U with, as a denominator, some power of
the Chow form of the ideal (the exponent being at most |k|+ |l|+n+1 if one uses
Kytmanov’s theorem ([Ky], p. 495, formula (3)). It appears in this statement that
the effectivity of division problems for the ideal (P1, . . . , Pm) is controlled by the
list R of rational functions Rk,lr , k ∈ Nm, l ∈ Nn−m+1, r ≤ 〈k + 1′, D〉+ |l| −m
already introduced above. If one thinks about an arithmetic setting (imagine for
example that the Pj have integer coefficients and that the Chow form is an inte-
gral Chow form in the sense of [Br2]), then we have a countable list of elements
in Z(U (1), . . . , U (n−m+1)) which gives us some explicit control for bounds in the
membership problem. The denominators involved in all these rational functions
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are powers of some eliminating form for the ideal with integer coefficients; we al-
ready mentioned before that such a form could be used to measure the arithmetic
complexity of the ideal (or of the corresponding cycle) in arithmetic intersection
theory. In fact, any information on the Chow form (which controls intersection
theory), such as a bound for its degree or its height, appears as some information
for the denominators in this list R of rational functions (which controls division
theory). This is the main point we would like to derive from this approach of
Macaulay’s theorem. In order to obtain estimates for the numerators involved in
the rational functions involved in (1) when the Pj have integer coefficients, one
can take advantage of the following fact: the polynomial

Φ(U)|k|+|l|+n+1τk,l

( n∏
j=0

(qj(|k|+ |l|+ 1)− 1))!
)
Rk,lr (U) = T k,lr (U)

is in Z[U ]. The estimates on the degree of this polynomial follow from the fact
that the total degrees (with respect to each block of variables U (j)) of Φ and of the
Aj,k in (1) (as polynomials in U) are bounded by D1 . . . Dm. Therefore, to get any
bound on the coefficients of this polynomial (and therefore obtain some control
on the size of quotients in division problems), it is enough to get some analytic
estimate for T k,lr (U); such an estimate will follow from two facts: first, from  Lo-
jasiewicz Nullstellen inequalities (see theorem 2 in [Br3]), there exists some poly-
nomial with integer coefficients δ(U) and some constant κ well estimated such that

(4) Max |Pj(α)|pr + Max |〈U (l), α〉|pr ≥
1
κ
|δ(U)|, α ∈ (Cn+1)∗;

then, from the Bochner-Martinelli formula, we have, if ε = (−1)n(n−1)/2,

Rk,lr (U) = ε
n!(n+ |k|+ |l|)!

(2iπ)n+1k!l!
Inf
R>0

( ∫
{‖ζ‖=R}

f̄∗(k,l)
∑n+1
j=1 (−1)j−1f̄jdf̄[j] ∧ ζrdζ
‖f‖2(n+1+|k|+|l|)

)
where f = fU = (P1, . . . , Pm, 〈U (1), ζ〉, . . . , 〈U (n−m+1), ζ〉). Though δ does not
seem explicit, one may get some control on the size of the integer coefficients
involved in some identity

(5) aQ =
m∑
j=1

QjPj , a ∈ Z, Qj ∈ Z[X0, . . . , Xn]

valid for some homogeneous polynomial Q in (P1, . . . , Pm), where P1, . . . , Pm are
homogeneous polynomials with integer coefficients defining a complete intersec-
tion in Pn(C). The idea is to choose systems of integer parameters (U (j)) in order
that |Φ(U)| 6= 0 (bounds on these precise parameters are given by zero lemmas)
and to use Bochner-Martinelli formula combined with Nullstellen inequalities (see
[Ph2] or [Br2]) in order to get estimates for the numerators of the Rk,lr and there-
fore for the integer coefficients of some solution (Q1, . . . , Qm) involved in (5).
Most of the ideas we will develop to obtain results about effectivity problems in
the affine case (see the next sections) are based on the same ideas.
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2. Some effectivity results in the affine case. Sharp bounds for the de-
grees in the resolution of the Bézout identity or the membership problem for ideals
have been obtained, first from a combination of transcendental methods (namely
the theory of elimination via Chow forms, see [HP]) and analytic arguments (i.e
Skoda’s theorem [Sk] which, given polynomials P1, . . . , Pm in C[X1, . . . , Xn] and
some polynomial Q which is at every point α in Cn locally in the integral closure
of ((P1)α, . . . , (Pm)α), provides some explicit way (based on L2 estimates ) in
order to write Qinf(n,m) in (P1, . . . , Pm). Of course, Skoda’s theorem, to be effi-
cient, needs that one has some a priori growth estimates for the locally constant
function C such that

(6) |Q(Z)| ≤ C(Z)
( m∑
j=1

|Pj(Z)|2
)1/2

.

When the Pj have no common zeroes, such estimates were given by D. Brownawell
in [Br1] and one can find polynomials Qj with total degree nµD1 . . . Dµ + µD1

(D1 ≥ . . . ≥ Dm, µ = inf(n,m)) such that

(7) 1 =
m∑
j=1

PjQj

which is the so called Bézout identity.
Of course, when the projective variety associated to P1, . . . , Pm is empty, much

better bounds are known (see Macaulay’s theorem in section 1). The difficulty,
from the point of view of algebraic geometry, is to get some control on the em-
bedded components of the homogeneous ideal generated by (hP1, . . . ,

h Pm) (hP
is the homogenized version of P ); the isolated components do not contribute to
any trouble because of Bézout intersection theorem. In fact, this difficulty was
cleared by J. Kollár in [Ko]; the latest result relative to degree estimates in the
Nullstellensatz was stated by D. Brownawell [Br4], following Kollár’s argument.

Theorem 3. Let K be an arbitrary field and I an ideal in K[X1, . . . , Xn]
generated by m polynomials P1, . . . , Pm, with deg(Pj) ≤ Dj and D2 ≥ . . . ≥
Dm ≥ D1 > 0, Dm ≥ 3. If Q1, . . . ,Qr are the prime minimal ideals in the
decomposition of I in primary components, there are positive integers e1, . . . , er
such that

Qe11 . . .Qerr ⊂ I, e1 + . . .+ er ≤ D1 . . . Dµ, µ = inf(n,m).

As a consequence of this result, one can show that a sharp bound for the
degrees of the Qj in (7) (when the Pj have no common zero) is precisely D1 . . . Dµ

(with the same technical restrictions than in Theorem 3, still unavoidable at the
present point). A classical telescopic example (see [Br1]) show that these bounds
on the degrees are sharp. Since we know, from a classical example of Mayr–Meyer
([MaM], [BaS]), that the membership problem for polynomial ideals has a doubly
exponential complexity, it is interesting to give particular examples (apart from
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the classical Nullstellensatz, which appears to be equivalent to the problem of
solving Bézout identity) where the problem can be solved in subexponential time.

One of them is the case of regular sequences; ifP1, . . . , Pm define a complete
intersection in Cn, and if Q is in the ideal generated by the Pj , there are polyno-
mials Qj such that (7) holds, with

(8) Max(deg(Qj)) ≤ deg(Q) + κ(n)D1 . . . Dm.

This was proved originally using a combination of transcendental methods and
analytic ones (∂ estimates) as in [BY1]; then, it was obtained from Kollár’s ar-
gument by F. Amoroso in [Am1]; in this latest work, under a restriction on the
degrees (Dj ≥ 3), the constant κ(n) disappears in the estimates (8).

Another interesting example where the membership problem can be solved in
subexponential time is the case when the polynomials P1, . . . , Pm define a smooth
manifold in Cn [Am]; more recently, Amoroso proved in [Am4] that the member-
ship problem is also solvable with exponential bounds when P1, . . . , Pm define
an “almost complete intersection” ideal: when there exist k linear combinations
p1, . . . , pk of the Pj such that (p1, . . . , pk) = I ∩ J , where I = (P1, . . . , Pm) and J
is an unmixed ideal with rank k such that I + J = C[X1, . . . , Xn].

As we have already mentionned it, analytic methods are really adapted to the
effectiveness of Briançon–Skoda theorem. If Q is a polynomial such that there
exists a global locally constant function C such that

(9) |Q(Z)| ≤ C(Z)
( m∑
j=1

‖Pj(Z)‖2
)1/2

there is an explicit division formula

Qinf(n,m) =
m∑
j=1

PjQj .

We refer to [BGVY] for these formulas; the key point we should mention is that the
degree estimates of the Qj (as well as their definition) involves some information
about the distributions involved in the Laurent development about the origin of

λ −→
( m∑
j=1

|Pj |2
)λ−σ−1

, σ = inf(m,n+ 1)

considered as a meromorphic valued function of λ, with values in D′(Cn) (see
[At]). Very little is known at the moment about such distributions; nevertheless,
there is a very new result (due to Amoroso in [Am2], when P1, . . . , Pm define a
curve, or in [Am3] in general) which asserts the following: given Q satisfying (9)
with respect to polynomials P1, . . . , Pm (with the same restrictions on the degrees
than in the statement of theorem 3), there are polynomials Qj such that, if

η(n) =
3
8

(3n − 1) +
(n− 1)2

4
+ 1
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then

Qη(n) =
m∑
j=1

QjPj , deg(QjPj) ≤ η(n) deg(Q) +D1 +D1 . . . Dµ.

Of course, the exponent 3n seems to be an avatar of Kollár’s method, which at
the moment provides this result. What is very curious here is that the exponent
η(n) does not depend on the degree of the Pj (which is the case in the algebraic
Nullstellensatz). This result, obtained by means of geometric methods, gives some
indication that analytic methods should provide “economic formulas” with respect
of degree bounds in algebraic division problems. We refer at the moment to [BY4]
and [BY5] for some hints about how to attack such questions.

The problems which remain unsolved and not completely understood concern
height estimates in division formulas. In the last section, we will explain in more
detail the notion of height for arithmetic cycles in Pn = Proj(Z[X0, . . . , Xn])
which has been introduced by Faltings [Fa], Gillet–Soulé ([BGS1], [BGS2]); let us
just mention that, when P is a prime homogeneous ideal in Q[X0, . . . , Xn] and
X the corresponding arithmetic cycle in Pn, then the height of X (in the sense
of Faltings) differs from the global height of P (defined with respect of the Chow
form of P in the sense of Philippon, as seen in section 1) by some quantity one
can estimated by

κ(n) deg(X )
(where deg(X ) denotes the algebraic degree of X (C) in Pn(C)). Arithmetic in-
tersection theory provides an arithmetic version of Bézout theorem [BGS1], as
follows: if X1, X2 are two arithmetic cycles in Pn of respective dimension in Pn,
e1 + 1, e2 + 1 which intersect properly, then

(10) h(X1 ∩ X2) ≤ h(X1) deg(X2) + h(X2) deg(X1) + κ(e1, e2) deg(X1) deg(X2)

where κ(e1, e2) = inf(θ(e1), θ(e2)), and

θ(d) = −1
2

( d∑
k=1

k∑
j=1

1
j

+
n−d−1∑
k=1

k∑
j=1

1
j

)
+
n+ 1

2
ln(2).

This is the key reason why one can get estimates for denominators in the solution
of the Bézout identity: if P1, . . . , Pm are polynomials with integer coefficients
without any common zero in Cn, there exist polynomials Q1, . . . , Qm with integer
coefficients and some non-zero integer a such that

(11) a =
m∑
j=1

PjQj , ln(|a|) ≤ κ(n)hDσ

(
1
h

+
σ∑
j=1

1
Dj

)
where σ = inf(m,n + 1) and h denotes the maximum of “näıve” logarithmic
heights of the Pj , the näıve height h(P ) of P ∈ Z[X1, . . . , Xn] being defined as
Max(ln |ξ|), where the Max is taken over all non zero coefficients of P . The result
we quote here is due to P. Philippon in [Ph3] and was obtained from the algebraic
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version of Briançon–Skoda theorem, that is Lipman–Teissier result [LT]: if A is a
local regular ring with dimension k and I any ideal in A, then, if I denotes the
integral closure of I, one has I

k ⊂ I. Unfortunately, if the bounds on the degrees
of the Qj in (11) are almost sharp (deg(PjQj)(n+2)D1 . . . Dµ, µ = inf(n,m)), the
bounds for the näıve height of their coefficients are just the bounds provided by
a linear algebra argument, that is ∼ κ(n)h(Dn)n; this does not fit with what we
claimed in section 1, that is that both intersection and division should be controled
by the same tool, for example the multidimensional Grothendieck residue for
regular sequences. Of course, we are far away from optimal results, but the first
proposition we can get in this direction is the following:

Theorem 4 (Berenstein, Elkadi, Yger). Let P1, . . . , Pm be m polynomials
with respective degrees D1 ≥ D2 ≥ . . . ≥ Dm and coefficients in Z; let h be
the maximum näıve logarithmic height of their coefficients; assume that the Pj
have no common zeroes in Cn; there exists a positive integer a, some polynomials
Q1, . . . , Qm in Z[X1, . . . , Xn] such that

a =
m∑
j=1

PjQj , Maxj(deg(Qj)) ≤ n(2n+ 1)D1 . . . Dµ,

Max(ln |a|, h(Qj)) ≤ κ(n)D4
1(D1 . . . Dµ)8(h+ ln(m) +D1ln(D1)).(12)

This result, in its primitive form, was obtained in [BY2]; a careful look at the
method (which has been simplified in [BY3], where appear the two key ingredients
mentioned in section 1, that is Cauchy–Weil and Jacobi formulas) shows that one
can separate the degrees as in the above statement; this was the contribution of
M. Elkadi. We will not say anything here about the proof, just reminding that
it consists mainly in plotting down a formula which is obtained as follows. First,
choose n linear combinations of the Pj ’s, p1, . . . , pn defining a system in normal
position in C[X1, . . . , Xn] (every subsequence defines a complete intersection);
this is the only non-explicit step in the construction of the formula. Then, find n
linear forms L1, . . . , Ln with coefficients in Z such that, after a convenient change
of variables, the columns of the matrix of these coefficients are in very steep
geometric progression (taking into account a priori bounds depending on h, m
and the Dj ’s). For any N > 1, such linear forms satisfy( n∑

j=1

|LND
′
1...D

′
µ

j pj(Z)|2
)1/2

≥ γN‖Z‖(N−1)D′1...D
′
µ , ‖Z‖ � 0

for some γN > 0 (here D′j = max(Dj , 3)). If (g(N)
j,k )1≤j,k≤n is a matrix of Hefer

divisors for LN∆
1 p1, . . . , L

N∆
n pn (∆ = D′1 . . . D

′
µ), and pn+1 a linear combination

of the Pj ’s non vanishing on the set of common zeroes of L1p1, . . . , Lnpn, with
(gn+1,k)1≤k≤n a system of Hefer divisors for pn+1, we have, for N large enough
(∼ cn2)
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1 =
〈
∂

(
1

LN∆
1 p1

)
∧ . . . ∧ ∂

(
1

LN∆
n pn

)
,∣∣∣∣∣∣∣∣∣∣

g
(N)
1,1 (Z, .) . . . gn+1,1(Z, .)

. . . . .

. . . . .
g

(N)
1,n (Z, .) . . . gn+1,n(Z, .)

LN∆
1 p1(Z) . . . pn+1(Z)

∣∣∣∣∣∣∣∣∣∣
dζ1 ∧ . . . ∧ dζn

pn+1

〉

After clearing denominators, this formula provides the conclusion of the theo-
rem.

In fact, the membership problem in the case of complete intersection can be
solved using the same kind of arguments; the proof of the following result is similar
to the proof of theorem 2 we gave in section 1.

Theorem 5 (M. Elkadi [Elk1]). Let P1, . . . , Pm be m polynomials with integer
coefficients defining a complete intersection in Cn; let Q be a polynomial with
integer coefficients lying in the ideal generated by the Pj’s in Q[X1, . . . , Xn]; there
is an integer a ∈ N∗, polynomials Q1, . . . , Qm in Z[X1, . . . , Xn] such that

aQ =
m∑
j=1

QjPj , deg(Qj) ≤ 2 deg(Q) + κ(n,m)D1 . . . Dm,

ln |a|, ln(h(Qj)
≤ κ(n)[D4

1(D1 . . . Dm)5(deg(Q) +D1 . . . Dm)3(h+D1 ln(D1)) + h(Q)].

In fact , one has

κ(n,m) = 3n(n+ 1)(2n+ 1)mn + 3mn+ 10n+ 9m− 5.

The proof of this theorem is based as before on the construction of linear
combinations of the Pj ’s defining a system in normal position; then, we introduce
affine forms L1, . . . , Ln such that, for any N > 1, there exists a strictly positive
constant γN such that( m∑

j=1

|LN(D1...Dm)
j pj(Z)|2 +

n∑
j=m+1

|LN(D1...Dm)
j (Z)|2

)1/2

≥ γN‖Z‖(N−1)D1...Dm

for ‖Z‖ � 0. Once this is done, we recover the membership of

(L1 . . . Lm)3D1...DmQ

in the ideal generated by the L3∆
j pj , ∆ = D1 . . . Dm with a formula derived from

Weil’s and Jacobi’s formula as in section 1. The conclusion of the theorem relies
on the fact that one can use sufficiently many families (in fact n+ 1) of n affine
forms, in order that the different products of all forms in the same family have
no common zeroes in Cn. Once this is done, we use an easy Bézout identity for
all these products (see all the details in [Elk2]).
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3. Conclusion; Green currents and intersection theory. In order to
conclude this short survey, we would like to take the opportunity to mention how
Green’s equation ddc(T ) = δX (for X some analytic or algebraic cycle), or “half
Green’s equation”, that is ∂T = R, R being some residue current relative to the
ideal defining X (when it exists), plays some role in intersection (or division)
theory even in an arithmetic context.

First, when P1, . . . , Pm define a system in normal position, all currents which
are involved in the quotients (if one refers to the analytic membership problem
solution) Q1, . . . , Qm in Q =

∑
PjQj are currents T such that ∂T = ∂(1/f),

where f is a system of monomials in (P1, . . . , Pm).
Parallelly, the equation that seems to be crucial in arithmetic intersection

theory on Pn = Proj(Z[X0, . . . , Zn]) is the following

(13) ddc(T ) + δX =
m∧
j=1

cj(Dj)

where the cj(Dj) are the first Chern classes of the fiber bundles [D1], . . . , [Dm].
The p arithmetic Chow group

(CHp)∧(Pn)

is precisely defined as the quotient group of the group of Chow pairs (X , G) (X
being a codimension p arithmetic cycle in Pn, and G a Green current for X , that
is a (p − 1, p − 1) current on Pn(C) such that ddc(G) + δX is a smooth form)
by the subgroup generated by elements (0, ∂u + ∂v), or (div(f),−i∗ ln |f |2), f
being some element in Q(Y)∗, where Y is an irreducible codimension p− 1 cycle
in Pn and i the inclusion Y −→ X ([BGS2], 3.3). When X (C) is defined by a
regular sequence (P1, . . . , Pm) of homogeneous polynomials in Z[X0, . . . , Xn], the
p Chow class which admits a representative (X , T ), where T satisfies (13) and
is orthogonal to harmonic forms, plays an important role in the definition of the
arithmetic height proposed for example by Faltings [Fa]. That is the reason why it
seems to be interesting to solve directly (13) in terms of the generators P1, . . . , Pm.
This can be done if one uses the meromorphic D′(Pn(C))-valued function

(λ1, . . . , λm) −→
m∏
j=1

(
|Pj(X)|2

‖X‖2 deg(Pj)

)λj
.

To construct such a solution for (13) (see [Y]), the idea is to profit from the
factorisation of the integration current over a complete intersection in some open
domain ω in Cn; this factorisation involves the multidimensional residue current,
and can be written

(14) δ{f1=...=fm=0} = ∂(1/f) ∧ df1 ∧ . . . ∧ dfm.

The analytic continuation of distributions appears when, using the basic ideas
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from [BGY] and [BGVY], one writes (14) as

〈δ{f1=...=fm=0}, ϕ〉 =
( ∫ ( m∧

j=1

∂

(
|fj |tjλ

fj

)
∧ dfj

)
∧ ϕ
)
λ=0

(t = (t1, . . . , tm) ∈ (R+∗)n and ϕ being a (n−m,n−m) smooth test form in ω).
Using such ideas, one can solve equation (13) in the complete intersection

case as well as in the case when P1, . . . , Pm define an irreducible cycle in Pn (the
homogeneous ideal (P1, . . . , Pm) being prime in Q[X0, . . . , Xn]). There remains
the crucial point of finding some analog (based on multiplications of distributions
performed with meromorphic continuation) of the product

(CHp)∧(Pn)× (CHp)∧(Pn) −→ ((CHp+q)∧(Pn))Q

introduced by Gillet–Soulé. This would provide some explicit computation for the
height (in the sense of Faltings) which is defined as

h(X ) = ln(order of Γ(Z0,OZ0)) +
1
2

∫
Pn(C)

Gn

where (Z0, Gn) is any representative in the n+ 1 Chow group of

X̂ .(ĉ1(Pn))n+1−p

(where ĉ1(Pn) is the Chow class of any pair (div(L),− ln |L|2), L being any generic
hyperplane in Pn). Unfortunately, the only height which is computable at this
point (since the work of Stoll [St]) is the height of a linear subspace in Pn.

We tried to emphasize in this conclusion (as in this whole survey) the role
of multidimensional residues in intersection or division problems in algebraic ge-
ometry. If anything about degrees estimates seems to be well understood (apart
from questions related to Briançon–Skoda effectiveness, as seen in section 2), a
lot of questions remain about size estimates where the arithmetic nature of the
problem is involved. The roles of algebraic geometry and complex analysis appear
to be complementary.
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de Géométrie Analytique, Paris VII, 1992, Travaux en Cours, Hermann, Paris, to
appear.


