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Abstract. The problem of estimating the radius of starlikeness of various classes of close-
to-convex functions has attracted a certain number of mathematicians involved in geometric
function theory ([7], volume 2, chapter 13). Lewandowski [11] has shown that normalized close-
to-convex functions are starlike in the disc |z| < 4

√
2 − 5. Krzyż [10] gave an example of a

function f(z) = z +
∑∞
n=2 anz

n, non-starlike in the unit disc D, and belonging to the class

H = {f | f ′(D) lies in the right half-plane.}

More generally let

H∗ = {f | f ′(D) lies in some half-plane not containing 0.}

To the best of our knowledge, the radii of starlikeness of both H and H∗ are still unknown, in
spite of the fact that corresponding extremal functions can be described in a relatively simple
way (by using, for example, Ruscheweyh’s duality theory [15]).

This paper is a survey of recent results concerning the radius of starlikeness of

K = {f ∈ H | |f ′(z)− 1| < 1, z ∈ D}.

1. Introduction. Let A0 denote the set of functions f analytic in the unit
disc D = {z | |z| < 1} and normalized by f(0) = f ′(0)− 1 = 0. Let K denote the
subset of A0 whose members satisfy

|f ′(z)− 1| < 1, z ∈ D.

It is easily seen that each function f ∈ K is univalent; in fact f(D) is a close-
to-convex domain of the complex plane. The radius rK of starlikeness of K is
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defined as the radius of the largest disc centered at the origin whose image by an
arbitrary f ∈ K is a starlike domain with respect to the origin. In other words
(we refer to [4] for basic facts concerning univalent functions)

rK = sup
{
r ∈ (0, 1)

∣∣∣∣ Re
(
zf ′(z)
f(z)

)
> 0 if |z| < r and f ∈ K

}
.

The estimate 2/
√

5 ≤ rK was first obtained by MacGregor [12] and also
appeared later in several papers in the litterature (see in particular [5], [14]).
In fact most elementary approaches to the problem of estimating rK lead to
2/
√

5 ≤ rK . It was found later [5], [6] that the constant 2/
√

5 is sharp with
respect to a related problem, namely

(1)
2√
5

= sup{λ ∈ (0, 1) | f(∆) is starlike if f ∈ A0 and |f ′(z)− 1| < λ, z ∈ D}.

It follows in particular from (1) that rK < 1. Mocanu [14] also exhibited a
non-starlike function in K. The best available estimate is .974 < rK , and this
is due to V. Singh [18]. A simple compactness argument shows that there must
exist a function fK ∈ K such that the image of a disk of radius r with center at
the origin is starlike if and only if 0 < r ≤ rK . Due to the methods used in [5],
[12], [14] or [18], the exact nature of fK is not well known. The main goal of this
paper is to survey several methods leading to the fact that f ′K − 1 is a (finite)
Blaschke product. Some numerical experimentations strongly suggest that f ′K−1
is a Blaschke product of order 2 and that rK is amazingly close to one, in fact
.996 < rK < 1.

Let us introduce some more definitions. Let B denote the unit ball (in the sup-
norm) of H(D) and B0 the set of functions w ∈ B vanishing at the origin. Any
f ∈ K admits a representation f ′ − 1 = w where w ∈ B0. A simple computation
leads to

(2) rK = sup
{
r ∈ (0, 1)

∣∣∣ ∣∣∣w(r) +
1
r

r∫
0

w(t)dt
∣∣∣

+
∣∣∣w(r)− 1

r

r∫
0

w(t)dt
∣∣∣ ≤ 2, w ∈ B0

}
.

We also define for each 0 ≤ ρ ≤ 1, 0 < r < 1, |ξ| = 1, in accordance with Schwarz
lemma,

B0(r, ρ, ξ) = {w ∈ B0 | w(r) = rρξ},

I(r, ρ, ξ) =
{1
r

r∫
0

w(t)dt
∣∣∣w ∈ B0(r, ρ, ξ)

}
.

It follows from (2) that

(3) rK = sup{r ∈ (0, 1) | I(r, ρ, 1) ⊆ εr,ρ, ρ ∈ [0, 1]}
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where εr,ρ represents the interior of the ellipse with equation

|u− rρ|+ |u+ rρ| = 2.

For the sake of completeness we will give yet another proof of the estimate
2
√

5 ≤ rK . Any function w ∈ B0(r, ρ, ξ) admits a representation

(4) w(z) = z
z−r
1−rzW (z) + ρξ

1 + ρξ̄ z−r1−rzW (z)
, where W ∈ B

and therefore, for each fixed r ∈ (0, 1),

max
w∈B0(r,ρ,ξ)

∣∣∣∣1r
r∫

0

w(t)dt
∣∣∣∣ =

1
r

r∫
0

t
r−t
1−tr + ρ

1 + ρ r−t
1−tr

dt

is an increasing function of ρ ∈ (0, 1) bounded above by r/2. Because the minor
semi-axis of the ellipse ∂εr,ρ has length

√
1− r2ρ2, we obtain from (3)

rK ≥ sup
{
r ∈ (0, 1)

∣∣∣∣ r2 ≤√1− r2

}
=

2√
5
.

This argument shows geometrically why 2/
√

5 (∼ .89) is such a crude lower bound
for rK . It also shows why a better knowledge of the boundary points of the convex
set I(r, ρ, 1) is needed. These boundary points correspond to functions (compare
with (4)) maximizing over B the real part of a functional of the type

(5) L(W ) =
r∫

0

t
t−r
1−rtW (t) + ρξ

1 + ρξ̄ t−r1−rtW (t)
dt

This approach, conbined with results due to Cochrane and MacGregor (2), will be
exploited in section 3, in order to prove that f ′K − 1 is a finite Blaschke product.

2. On V. Singh’s estimate. The estimate rK > .974 has been obtained
in [18] as the result of elementary but clever computations. It is based on the
following inequality, valid for any w ∈ B0, r ∈ (0, 1) and t ∈ (0, 1):

(6)
∣∣∣∣w(tr)− w(r)

t(1− r2)(1− r2t2)
(1− r2t)2 − (1− t)2|w(r)|2

∣∣∣∣ ≤ t(1− t)(1− tr2)(r2 − |w(r)|2)
(1− r2t)2 − (1− t)2|w(r)|2

.

Singh obtained this inequality, which is sharp for each admissible value of t and
r, by using the Schwarz lemma. It follows from (6), for each r ∈ (0, 1), ρ ∈ [0, 1]
and ξ ∈ ∂ D, that I(r, ρ, ξ) is contained in a closed disc D(r, ρ, ξ) with center
rρξ(1− r2)

∫ 1

0
t(1−r2t2)

(1−r2t)2−(1−t)2r2ρ2 dt and radius r2(1− ρ2)
∫ 1

0
t(1−t)(1−tr2)

(1−r2t)2−(1−t)2r2ρ2 dt.
As a matter of fact Singh even claims that I(r, ρ, ξ) = D(r, ρ, ξ) for each admissible
value of r, ρ and ξ. This is easily seen to be true for example when ρ = 0 or 1,
and in principle it should be enough in order to compute rK precisely. However
Singh’s claim cannot be true in general, and we would like to explain why. By (6)
and the triangle inequality for integrals the claim amounts to the fact that, for
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any r, ρ ∈ (0, 1) and ψ ∈ [0, 2π], there must exist a function ϕ ∈ B0(r, ρ, 1) such
that

ϕ(tr) =
ϕ(r) trr (1− r2)(1− (tr)2) + eiψ trr (1− r(tr))(r2 − |ϕ(r)|2)(1− tr

r )
(1− r(tr))2 − (1− tr

r )2|ϕ(r)|2

holds for all t ∈ [0, 1]. Because ϕ is analytic, we must have

ϕ(z)
z

=
ρ(1− r2) 1−z2

(1−rz)2 − (1− ρ2) z−r1−rz e
iψ

1− ( z−r1−rz )2ρ2

for all z ∈ D. By a passage to |z| = 1, we obtain

ϕ( e
iθ+r

1+reiθ
)

eiθ+r
1+reiθ

=
ρ(1− eiθ)− (1− ρ2)ei(θ+ϕ)

1− e2iθρ2

for almost all θ ∈ [0, 2π]. If in particular we choose ρ =
√

2 − 1, θ = π/4 and
ψ = π/2 we obtain ∣∣∣∣ϕ( eiθ + r

1 + reiθ

)∣∣∣∣ =
∣∣∣∣ 1− i
1− iρ2

∣∣∣∣ > 1

which is of course impossible.
In spite of the fact that (6) does not seem strong enough to lead to an exact

characterization of the regions I(r, ρ, ξ), it is nevertheless strong enough to obtain
the estimate

(7) .974 ≤ rK = sup
{

0 < r < 1
∣∣∣∣ Re

1∫
0

1 + w(tr)
1 + w(r)

dt > 0 for all w ∈ B0

}
,

which is a serious improvement upon rK ≥ 2/
√

5. Moreover there is numerical
evidence that Singh’s method leads to sharp estimates for

inf
w∈B0

Re
1∫

0

1 + w(tr)
1 + w(r)

dt

for fixed r < .975. This is rather surprising, and for now we can’t explain it.

3. f ′K − 1 is a finite Blaschke product. In this section we show how some
results due to Cochrane and MacGregor [2] already imply that f ′K − 1 is a finite
Blaschke product. Assume L is a complex valued continuous functional on B.
Then L is called Fréchet differentiable at W0 ∈ B relative to B if, for any variation
W ∗ = W0 + εW̃ + o(ε) ∈ B,

(8) L(W ∗) = L(W0) + εLW0(W̃ ) + o(ε)

where LW0 is a continuous linear functional (called the Fréchet derivative) defined
over the set H(D) of all analytic functions on D. In the definition of the variation
W ∗, o(ε) represents a function of z and ε, such that limε→0 o(ε)/ε = o uniformly
as long as z is restricted to a compact subset of D. In (8) o(ε) is a quantity such
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that limε→0 o(ε)/ε = o. Cochrane and MacGregor [2](see also [9]) proved the
following

Theorem 1. Let L be a continuous functional on B, and W0 ∈ B such that

(9) ReL(W0) = max
W∈B

ReL(W ).

Assume that L has a Fréchet derivative at W0 relative to B, and that this deriva-
tive does not vanish identically over H(D). Then W0 is a finite Blaschke product.

This result is important to us because the functional L defined in (5) admits,
at any W0 ∈ B, the Fréchet derivative

LW0(h) =
r∫

0

(1− ρ2) t−r1−rt th(t)(
1 + ρξ̄ t−r1−rtW0(t)

)2 dt
which is not (except when ρ = 1) the zero functional over H(D). It therefore
follows that any function maximizing ReL is a finite Blaschke product (and this
holds trivially even if ρ = 1). It should now be clear from the discussion in our
introduction that f ′K − 1 is a finite Blaschke product. It seems however quite
difficult to use the Cochrane-MacGregor method as to obtain any bound on the
order of the Blaschke product f ′K − 1 (as a matter of fact their method can be
used, for certain types of functionals only, to obtain upper bounds on the order of
the involved Blaschke products, see [2], Theorems 1 and 2). We shall come back
to this topic in our last section.

4. f ′K − 1 is a Blaschke product, another proof. In this section we present
still another proof of the fact that the real part of the functional L in (5) is
maximized over B by a Blaschke product. Of course this is slightly weaker than
the result obtained in section 3. On the other hand our proof is self-contained and
shows a rather surprising connection between our problem and entire functions
of exponential type (we refer to [1] for appropriate definitions). We may clearly
assume that there exists a function W0 ∈ B, not vanishing identically on D, such
that (9) holds.

Let ϕ ∈ B such that |W0(z)| ≤ |ϕ(z)|, z ∈ D. For each real ψ, the function
ϕ(eiψz)W0(z)

ϕ(z) belongs to B, and the differentiable mapping

ψ → ReL
(
ϕ(eiψz)

W0(z)
ϕ(z)

)
admits a local maximum at ψ = 0. After simple computations we obtain that

(10)
r∫

0

t t−r1−rtW0(t)(
1 + ρξ̄ t−r1−rtW0(t)

)2 tϕ′(t)ϕ(t)
dt is real

for each admissible φ. In a similar manner and for each fixed real θ the mapping

x→ ReL
(

ϕ(z) + xeiθ

1 + xe−iθϕ(z)
W0(z)
ϕ(z)

)
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admits a local maximum at x = 0, when x is restricted to a small interval around
the origin. Because θ is arbitrary we obtain

(11)
r∫

0

t t−r1−rt
W0(t)
ϕ(t)(

1 + ρξ̄ t−r1−rtW0(t)
)2 dt =

r∫
0

t t−r1−rtW0(t)ϕ(t)(
1 + ρξ̄ t−r1−rtW0(t)

)2 dt,
whenever ϕ dominates W0.

We now use a factorizationW0(z) = B(z)e−F (z) where B is a Blaschke product
and F has positive real part over D with F (0) ≥ 0. By Herglotz formula

F (z) = F (0)
2π∫
0

1 + zeiθ

1− zeiθ
dµ(θ)

for some increasing function µ over [0, 2π] with µ(0) = µ(0+) = 0 and µ(2π) = 1.
We assume F (0) > 0. For each continuous function c(θ) satisfying 0 ≤ c(θ) ≤
F (0) over [0, 2π], let

Fc(z) =
2π∫
0

1 + zeiθ

1− zeiθ
c(θ)dµ(θ).

Clearly |W0(z)| ≤ |e−Fc(z)| for z ∈ D and by (10)

(12)
2π∫
0

(
Im

r∫
0

t t−r1−rtW0(t)(
1 + pξ̄ t−r1−rtW0(t)

)2 teiθ(
1− teiθ

)2 dt)c(θ)dµ(θ) = 0.

Remark that (12) holds for all monomials c(θ) = F (0)( θ
2π )n, and therefore it

also holds for an arbitrary real-valued continuous function over [0, 2π]. We define

U(z) =
∫ r

0

t t−r1−rtW0(t)

(1+ρξ̄ t−r1−rtW0(t))2
tz

(1−tz)2 dt; this function is analytic in the closed unit

disc, U(0) = 0, and U is non-constant since W0 6≡ 0. If µ̃(θ =
∫ θ

0
Im(U(eit))dµ(t),

then µ̃ has bounded variation over [0, 2π] and by (12),
∫ 2π

0
c(θ)dµ̃(θ) = 0 for any

continuous function c(θ) over [0, 2π]. Therefore ([13], page 230) µ̃ is constant,
µ̃(0) = 0, and we obtain

(13)
θ2∫
θ1

Im(U(eit))dµ(t) = 0 if 0 ≤ θ1 ≤ θ2 ≤ 2π.

It can be seen from (13) that µ is a step-function, and that Im(U(eit)) vanishes
at each point of discontinuity of µ. Because U is non-constant and analytic in D,
there can only be a finite number of such discontinuities. In other words, we may
assume

F (z) = F (0)
n∑
j=1

λj
1 + zeiθj

1− zeiθj

where F (0) > 0, 0 < λj and
∑n
j=1 λj = 1.
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For each x ∈ (0, F (0)), let

Fx(z) = λ1x
1 + zeiθ1

1− zeiθ1
.

Let also E be defined by

E(z) =
r∫

0

t t−r1−rtW0(t)

(1 + ρξ̄ t−r1−rtW0(t))2
e

1+teiθ1

1−teiθ1
z
dt.

E is an entire function of exponential type. An application of (10) with ϕ(z) =
e−Fx(z) shows that, x being arbitrary in (0, F (0)),

E(z) = E(−z), for all z ∈ [0, F (0)λ1].

Therefore E(z) cöıncides with E(−z) for all real values of z, and for z < 0

|E(z)| ≤ r max
t∈[0,r]

∣∣∣∣ t t−r1−rtW0(t)

(1 + ρξ̄ t−r1−rtW0(t))2

∣∣∣∣e− 1−r
1−r |z|.

The last estimate is also valid for z > 0. In other words E(z) tends to zero
exponentially as z tends to infinity along the real axis. By a known result ([1],
page 69) we have E(z) ≡ 0. Because W0 does not vanish identically, we must
conclude that F (0) = 0, and W0 is a finite Blaschke product. Blaschke products
being extreme points of B (see [3]), we may conclude that the functional L from
(5) has its real part maximized over B by a unique Blaschke product.

5. A conjecture of St. Ruscheweyh. As indicated in section 3, there
does not seem to exist a general theory of extremal problems capable of predicting
what may be the order of the finite Blaschke product f ′K−1. We shall now use an
idea due to St. Ruscheweyh (private communication) to deal with this problem.

Let H denote the set of analytic functions F (z), satisfying F (0) = 1, with real
part greater than 1/2 over the disc D. By Herglotz formula, H can be identified
with the set of probability measures µ over [0, 2π] via the representation

(14) F (z) =
2π∫
0

1
1− zeiθ

dµ(θ), z ∈ D.

For a given fixed z ∈ D\{0}, let us define Hz as the set of all mappings of the
type

h(ξ) =
F (z)
F (ξz)

, ξ ∈ D, F ∈ H.

We now consider a linear functional L defined over H(D). Ruscheweyh’s conjec-
ture asserts that ReL can be maximized over the set Hz by functions h of the
type

h(ξ) =
λ

1−eiθ1z + 1−λ
1−eiθ2z

λ
1−eiθ1ξz + 1−λ

1−eiθ2ξz
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where each θj is real and λ ∈ [0, 1]. Here we assume that ReL is not constant
over Hz. The truth of this conjecture implies that f ′K − 1 can be thought of
as Blaschke product of order 2; this can be understood most easily from the
equivalent definition of rK given in (7) and the fact that functions F in H, whose
representation (14) is given by a two-step function µ, correspond to Blaschke
products of order 2 under the mapping

w → 1
1− w

which transforms B0 onto H.
Numerical computations suggest that the conjecture may be true. The con-

jecture is also reminiscent of a result due to Ruscheweyh [16] concerning the
variability region of a quotient of linear functionals over the class H. We end this
paper by proving a weaker form of the conjecture. Let L and z as above, and
F0 ∈ H such that

(15) max
F∈H

ReL
(
F (z)
F (ξz)

)
= ReL

(
F0(z)
F0(ξz)

)
.

We shall prove that

(16) F0(ξ) =
n∑
j=0

λj
1− eiθjξ

, θj real, n ≥ 1, 0 < λj < 1 and
n∑
j=1

λj = 1.

This means again of course that f ′K − 1 is a finite Blaschke product!
According to (15) and the convexity of H, we obtain for any t ∈ (0, 1) and

F ∈ H

(17) ReL
(

(1− t)F0(z) + tF (z)
(1− t)F0(ξz) + tF (ξz)

)
= ReL

(
F0(z)
F0(ξz)

)
+ tReL

(
F (z)F0(ξz)− F (ξz)F (ξz)F0(z)

F0(ξz)2

)
+ o(t)

≤ ReL
(
F0(z)
F0(ξz)

)
.

We define a continuous linear functional L∗ over H(D) by

L∗(F ) = L

(
F (z)F0(ξz)− F (ξz)F0(z)

F0(ξz)2

)
.

By (17), ReL∗(F ) ≤ 0 = ReL∗(F0). It can also be checked that ReL∗ is not
constant over H because ReL is not constant over Hz. It therefore follows from
a Theorem of Hallenbeck and MacGregor [8] concerning the so-called support
points of H that F0 must be of the form prescribed by (16). Finally, note that
another proof of this fact can be obtained by using directly the measures µ in
(14) and the Toeplitz representation [17] of linear functionals over H(D).
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