TOPICS IN COMPLEX ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 31
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 1995

REAL ANALYTIC MAXIMUM MODULUS MANIFOLDS IN STRICTLY PSEUDOCONVEX BOUNDARIES

ANDREI IORDAN

Université Pierre et Marie Curie Paris VI, Mathématiques 4, Place Jussieu, 75252 Paris Cedex 05, France

1. Introduction. Let D be a domain in \mathbb{C}^n . We shall denote by $A^k(D)$ the algebra of the holomorphic functions in D which have a C^k extension to \overline{D} and by $\mathcal{O}(\overline{D})$ the algebra of the holomorphic functions in a neighborhood of \overline{D} . A subset E of ∂D is locally a maximum modulus set for $A^k(D)$ ((LMA^k) for short) if for every $p \in \partial D$, there exist a neighborhood U of p and $f \in A^k(D \cap U)$ such that |f| = 1 on $E \cap U$ and |f| < 1 on $\overline{D} \cap U \setminus E$. Similarly, E is locally a peak set for $A^k(D)$ ((LPA^k) for short) if for every $p \in E$, there exist a neighborhood U of P and P are P and P and

The characterization of the subsets of the boundary of a bounded strictly pseudoconvex domain with C^{∞} boundary which are (LPA^{∞}) is well known: these are sets which are locally contained in totally real complex-tangential submanifolds of dimension n-1 ([HS] and [CC2]). In fact, these sets are also global peak sets for $A^{\infty}(D)$ [FH].

For instance, few things are known about the sets which are (LMA^k) and are not (LPA^k) . The situation is clear only for the real analytic submanifolds M of dimension n in the boundary of strictly pseudoconvex domains with real analytic boundary: M is (LMH) if and only if M is totally real and admits a real analytic foliation by complex-tangential submanifolds of codimension 1 [DS]. In general, a subset E of the boundary of a strictly pseudoconvex domain with C^{∞} boundary which is (LMA^{∞}) is locally contained in totally real submanifolds of dimension n which admit a foliation of dimension 1 which is complex-tangential at the points of E [I2]. But a set which is (LMH) is not in general a global maximum modulus set

¹⁹⁹¹ Mathematics Subject Classification: 32E25, 32F15, 32F25.

The paper is in final form and no version of it will be published elsewhere.

[DS] and a submanifold of dimension n of the boundary of a strictly pseudoconvex domain with real analytic boundary which is (LMA^2) is real analytic [NR].

Here we use the contact structure of the boundary of a strictly pseudoconvex domain to study the foliations by complex-tangential submanifolds [BI]. These methods were used in the context of interpolation sets, peak sets or maximum modulus sets in [HT], [CC1], [CC2] and [DS]. We present the results from [BS] and [DS] about real analytic submanifolds of maximal dimension of the boundary of a strictly pseudoconvex domain with real analytic boundary which are (LMH) and we use them to obtain results in lower dimension ([BI]). Finally we present an approach from [NR] (matching of holomorphic and antiholomorphic functions along maximum modulus sets) and some examples from [NR], which prove that the situation is really complicated for curves transverse to the complex-tangent space which are not real analytic.

2. Preliminaries

a) Symplectic structures. A symplectic manifold is a couple (X,Ω) , where X is a differentiable manifold of dimension 2n and Ω is a 2 closed form on X such that $\Omega^n \neq 0$ on X. A submanifold M of X is isotropic if $\Omega(\xi,\eta) = 0$ for all ξ,η tangent to M. If M is an isotropic submanifold of X, we have dim $M \leq n$ and if dim M = n we say that M is lagrangian.

We shall use the following:

Theorem 1 (Darboux-Weinstein theorem) [WEI]. Let $(X_1, \Omega_1), (X_2, \Omega_2),$ two symplectic manifolds of the same dimension, $M_1 \subset X_1, M_2 \subset X_2$, submanifolds. Let $\varphi: M_1 \to M_2$ a diffeomorphism such that $\varphi^*(\Omega_2|M_2) = \Omega_1|M_1$. Then, for every $p \in M_1$ there exist a neighborhood V_1 in X_1 , a diffeomorphism ψ on a neighborhood V_2 of $\varphi(p)$ in X_2 such that ψ is an extension of φ and $\psi^*(\Omega_2|V_2) = \Omega_1|V_1$.

Theorem 1 is also true for real analytic objects.

b) Contact structures. A contact manifold is a couple (Z, ω) , where Z is a differentiable manifold of dimension 2n+1, and ω is a 1 form on Z such that $\omega \wedge (d\omega)^n \neq 0$ on Z. There exists a unique vector field X_{ω} on Z (the characteristic vector field) such that $i(X_{\omega})\omega = 1, i(X_{\omega})d\omega = 0$, where $i(\xi)\eta$ is the left inner product of a differential form η by a vector field ξ .

A submanifold N of Z is isotropic if $\omega|N=0$. If N is an isotropic submanifold of Z, we have dim $N \leq n$ and if dim N=n, we say that N is a Legendre manifold.

c) Levi form. Let D be a strictly pseudoconvex domain with C^2 boundary and ρ a strictly plurisubharmonic defining function for D. We denote by j the inclusion of ∂D in \mathbb{C}^n and $\omega = j^*(\frac{1}{i}\partial\rho)$. Then the complex-tangent space to ∂D is $T^c(\partial D) = \ker \omega$ and ω is a contact form on ∂D .

If ξ, η are sections of $T^c(\partial D)$, the Levi form is defined by

$$\mathcal{L}(\xi, \eta) = \partial \overline{\partial} \rho(X, \overline{Y})$$

where $X,Y \in T^c(\partial D) \otimes \mathbb{C}, \xi = \operatorname{Re} X, \eta = \operatorname{Re} Y$. The form $\mathcal{L}(\xi,\eta)$ defines a hermitian metric on $T^c(\partial D)$ and we shall say that ξ and η are \mathcal{L} -orthogonal if $\mathcal{L}(\xi,\eta) = 0$.

A submanifold M of ∂D is complex-tangential if M is an isotropic submanifold of the contact manifold $(\partial D, \omega)$. Since $\partial \overline{\partial} \rho | \partial D = -id\omega$ a complex-tangential submanifold M is totally real and dim $M \leq n-1$ [HT], [BS]. Also we have $d\omega(\xi,\eta) = -\frac{1}{2} \operatorname{Im} \mathcal{L}(\xi,\eta)$.

3. Isotropic foliations

PROPOSITION 1 [BI]. Let (X, ω) be a contact manifold of dimension 2n + 1 and M an isotropic submanifold of dimension $k, 0 \le k \le n$. Then, for every $p \in M$ there exist local coordinates (x_0, \ldots, x_{2n}) in a neighborhood of p such that $\omega = dx_0 + \sum_{1}^{n} x_i dx_{i+n}$ and $M = \{x_0 = x_{k+1} = \ldots = x_{2n} = 0\}$. In particular M is an intersection of Legendre submanifolds.

Proof. Let $p \in M$. Since the characteristic vector field X_{ω} is transverse to M, we may find a neighborhood U of p such that $Y = U/X_{\omega}$ is a manifold and the restriction of the projection $\pi: U \to Y$ to M is an diffeomorphism onto $\pi(M \cap U)$. Then (Y, σ) is a symplectic manifold, where σ is the form induced by $d\omega$ on Y. Since $\pi(M \cap U)$ is isotropic, by theorem 1 we may extend a coordinate system of $\pi(M \cap U)$ to a coordinate system $(\widetilde{x}_1, \ldots, \widetilde{x}_{2n})$ on Y such that $\pi(M \cap U) = \{\widetilde{x}_{k+1} = \ldots = \widetilde{x}_{2n} = 0\}$ and $\sigma = \sum_{1}^{n} d\widetilde{x}_i \wedge d\widetilde{x}_{i+n}$. Then, if $\widetilde{x}_i = x_i \circ \pi$, the form $\omega - \sum_{1}^{n} x_i \wedge dx_{i+n}$ is closed and we may find x_0 such that $\omega = dx_0 + \sum_{1}^{n} x_i dx_{i+n}$ and $M = \{x_0 = x_{k+1} = \ldots = x_{2n} = 0\}$.

Now, M is the intersection of the Legendre manifolds $\{x_0 = x_{k+1} = \dots = x_{k+n} = 0\}$ and $\{x_0 = x_{n+1} = \dots = x_{2n} = 0\}$.

PROPOSITION 2 [BI]. Let (X, ω) be a contact manifold of dimension 2n + 1 and M a submanifold of dimension k + 1 transverse to $\ker \omega$. Then M admits a foliation by isotropic submanifolds of codimension 1 if and only if there exist local coordinates (x_0, \ldots, x_{2n}) such that $\omega = \varphi(dx_0 + \sum_{1}^{n} x_i dx_{i+n})$, with $\varphi \neq 0$ and $M = \{x_{k+1} = \ldots = x_{2n} = 0\}$. In particular, in this case, M is intersection of n + 1 dimensional submanifolds foliated by Legendre submanifolds.

Proof. If ω is as in proposition 2, it is clear that the submanifolds $M_c = \{x_{k+1} = \ldots = x_{2n} = 0, x_0 = c\}$ give an isotropic foliation of codimension 1 of M, so we have only to prove the converse.

Let $p \in M$. By Frobenius theorem, there exist a neighborhood U of p and functions f, u on U such that $j^*(f\omega - du) = 0$ on U, where $j : M \to X$ is the inclusion. Since M is transverse to ker ω , there exists a vector field ξ tangent to M in a neighborhood of p such that $i(\xi)j^*(f\omega) = 1$.

We shall consider $\omega' = \varphi \omega$ such that the restriction of $X_{\omega'}$ to M is ξ .

For this we shall prove that there exists a function g in the neighborhood of p such that g = 1 on M and $i(\xi)d(gf\omega) = 0$ on M. Indeed, since $j^*d(f\omega) = 0$ and ξ

is tangent to M, we have $i(\xi)j^*d(f\omega)=0$. It follows that $i(\xi)d(f\omega)$ is of the form

$$\sum \alpha_r du_r + u_r \beta_r$$

where α_r, β_r are 0 and respectively 1 forms defined in a neighborhood of p and $u_r = 0$ on M. We may take $g = 1 + \sum \alpha_r u_r$.

Then, by taking $\varphi = fg$, since the characteristic vector field is the unique vector field η which satisfies $i(\eta)\omega' = 1$ and $i(\eta)d\omega' = 0$, we have $X_{\omega'} = \xi$ on a neighborhood of p in M. Since $i(\eta)\omega' = 1$ and $\omega' - du|M = f\omega - du|M = 0$ there exists an extension \widetilde{u} of u such that $i(X_{\omega'})d\widetilde{u} = 1$ and we consider the foliation of X given by $\widetilde{u} = \text{constant}$.

Since $i(X_{\omega'})d\widetilde{u}=1$, there exists a diffeomorphism $x\to (t,y)$ from a neighborhood V of p to $I\times Y$, where I is a real interval and Y is the manifold of orbits, such that $X_{\omega'}$ is transformed to $\frac{\partial}{\partial t}$. Since $d\omega'$ is an absolute integral invariant of $X_{\omega'}$, (Y,σ) is a symplectic manifold, where σ is the form induced by $d\omega'$. Finally, M is identified with $I\times M'$ where M' is an isotropic submanifold of Y and we may finish the proof by applying theorem 1 in the same way as in the proof of proposition 1.

4. Maximum modulus manifolds of maximal dimension. From now on, we shall denote by D a strictly pseudoconvex domain with real analytic boundary in \mathbb{C}^n . If M is a real analytic submanifold of the boundary we shall denote by M^c a complexification of M.

PROPOSITION 3 [HS]. Let M be a submanifold of ∂ D which is (LPH). Then M is complex-tangential. In particular M is totally real and dim $M \leq n-1$.

Proof. Let $p \in M$ and let ρ be a defining function for D in a neighborhood of p. Let $z=(z_1,\ldots,z_n), z_j=x_j+iy_j$ be local coordinates in a neighborhood of p such that p=0 and $\rho(z)=x_n+O(|z|^2)$. Let f be a holomorphic function in a neighborhood U of p such that f=0 on $M\cap U$ and $\operatorname{Re} f<0$ on $\overline{D}\cap U\backslash M$. By the Hopf lemma we have $\partial\operatorname{Re} f/\partial x_n(0)\neq 0$. Since the origin is a local maximum for $\operatorname{Re} f$ we have

$$\frac{\partial \operatorname{Re} f}{\partial x_j}(0) = \frac{\partial \operatorname{Re} f}{\partial y_j}(0) = 0, \quad 1 \le j \le n - 1, \quad \frac{\partial \operatorname{Re} f}{\partial y_n}(0) = 0$$

and by the Cauchy-Riemann equations we have also

$$\frac{\partial \operatorname{Im} f}{\partial x_j}(0) = \frac{\partial \operatorname{Im} f}{\partial y_j}(0) = 0, \quad 1 \leq j \leq n-1, \quad \frac{\partial \operatorname{Im} f}{\partial x_n}(0) = 0, \quad \frac{\partial \operatorname{Im} f}{\partial y_n}(0) \neq 0.$$

It follows that $\Sigma = \{z \mid \rho(z) = \operatorname{Im} f(z) = 0\}$ is in a neighborhood of the origin a manifold of dimension 2n - 2, $T_0(\Sigma) = \{z \mid z_n = 0\} = T_0^c(\partial D)$ and since $M \subset \Sigma$, M is complex-tangential.

Theorem 2 [BS]. Let M be a real analytic totally real submanifold of dimension n-1 of ∂D . Then M is complex-tangential if and only if there exists M^c such that $M^c \cap \overline{D} = M$.

Proof. Let $p \in M$ and let $z = (z_1, \ldots, z_n)$, $z_j = x_j + iy_j$ be holomorphic coordinates in a neighborhood of p such that p = 0 and $M = \{z \mid y_1 = \ldots = y_{n-1} = z_n = 0\}$. Let ρ be a strictly plurisubharmonic defining function for D in a neighborhood of p.

Let us suppose that $M^c \cap \overline{D} = M$. We have $\rho(z_1, \ldots, z_{n-1}, 0) \geq 0$ and $\rho(x_1, \ldots, x_{n-1}, 0) = 0$. In particular $\frac{\partial \rho}{\partial z_j}(x_1, \ldots, x_{n-1}, 0) = 0, j = 1, \ldots, n-1$ and M is complex-tangential.

Conversely, let M be a complex-tangential submanifold of ∂D .

We denote $z'=(z_1,\ldots,z_{n-1}), z'=x'+iy'$. Since M is complex-tangential, we have $\frac{\partial \rho}{\partial z_i}(x',0)=0, j=1,\ldots,n-1$. So

$$\rho(z',0) = \frac{1}{2} \sum_{j,k=1}^{n-1} \frac{\partial^2 \rho}{\partial y_j \partial y_k} (x',0) y_j y_k + O(|y|^3).$$

Since $\frac{\partial \rho}{\partial z_j}(x',0) = 0$, we have also $\frac{\partial^2 \rho}{\partial x_j \partial x_k}(x',0) = \frac{\partial^2 \rho}{\partial x_j \partial y_k}(x',0) = 0$, for every $j,k=1,\ldots,n-1$, so $\frac{\partial^2 \rho}{\partial y_j \partial y_k}(0) = 4\frac{\partial^2 \rho}{\partial z_j \partial \overline{z}_k}(0)$. Since ρ is strictly plurisubharmonic, there exits m>0 such that

$$\sum_{j,k=1}^{n-1} \frac{\partial^2 \rho}{\partial y_j \partial y_k} (x',0) y_j y_k \ge m|y'|^2$$

for every (x', y') in a neighborhood of the origin, so $\rho(z', 0) \ge 0$ and $\rho(z', 0) = 0$ if and only if y' = 0 for |y'| small enough.

PROPOSITION 4 [I2]. Let M be a submanifold of ∂D which is (LMH). Than M is totally real. If we suppose that M is transverse to $T^c(\partial D)$, then M admits a foliation by complex-tangential submanifolds of codimension 1.

Proof. Let $p \in M$ and f a holomorphic function in the neighborhood U of p such that |f|=1 on $M\cap U$ and |f|<1 on $\overline{D}\cap U\backslash M$. Let $z=(z',z_n),z'=(z_1,\ldots,z_{n-1}),\ z_j=x_j+iy_j$ be holomorphic coordinates in a neighborhood of p such that p=0 and p has a strictly plurisubharmonic defining function $p=x_n+h(z',y_n)$, where p vanishes to second order at the origin.

Let g = log f, with g holomorphic in the neighborhood of p and Im g(p) = 0. As in the proof of proposition 3 we have

$$\frac{\partial \operatorname{Re} g}{\partial x_{j}}(0) = \frac{\partial \operatorname{Re} g}{\partial y_{j}}(0) = \frac{\partial \operatorname{Im} g}{\partial x_{j}}(0) = \frac{\partial \operatorname{Im} g}{\partial y_{j}}(0) = 0, \quad 1 \leq j \leq n - 1,$$
$$\frac{\partial \operatorname{Re} g}{\partial y_{n}}(0) = \frac{\partial \operatorname{Im} g}{\partial x_{n}}(0) = 0, \quad \frac{\partial \operatorname{Re} g}{\partial x_{n}}(0) \neq 0, \quad \frac{\partial \operatorname{Im} g}{\partial y_{n}}(0) \neq 0.$$

So we may consider the holomorphic change of coordinates near 0 given by $w_n = g$, $w_n = u_n + iv_n$ and we have $h(z', v_n) \ge 0$ and $h(z', v_n) = 0$ if $(z', v_n) \in M$. It follows that $gradh(z', v_n) = 0$ if $(z', v_n) \in M$.

Since h(z',0) is strictly plurisubharmonic, by [HW] there exists a complex linear change of the coordinates z' such that

$$h(z',0) = \sum_{1}^{n-1} (1+\lambda_j)x_j^2 + (1-\lambda_j)y_j^2 + O(|z'|^3), \quad \text{with } \lambda_j \ge 0.$$

It follows that $\{z \mid \rho = 0, \frac{\partial \rho}{\partial x_j}(z) = 0, j = 1, \dots n-1\}$ is a totally real manifold of dimension n in a neighborhood of the origin which contains M. Suppose that M is not complex-tangential. Than the set $M_a = \{z \in M \mid \operatorname{Im} g = a\}$ is a manifold of codimension 1 in a neighborhood of the origin for every a small enough. But M_a is (LPH) for the function $F = e^{-ia}(f + e^{ia})/2$ [DS] and by proposition 3 it follows that M admits a foliation by complex-tangential submanifolds of codimension 1.

Example 1. Let D be the domain

$$D = \left\{ z = (z_1, \dots, z_n) \in \mathbb{C}^n \, \middle| \, \operatorname{Re} z_n + \sum_{i=1}^{n-1} (\operatorname{Re} z_i)^2 + ((\operatorname{Im} z_n + (\operatorname{Im} z_1)^2)^4 < 0 \right\}$$

and $M = \{z \mid \text{Re } z_1 = \ldots = \text{Re } z_n = 0, \text{Im } z_n = -(\text{Im } z_1)^2\}$. D is a strictly pseudoconvex domain with real analytic boundary and M is a totally real submanifold of dimension n-1 of ∂D . We have $\text{Re } z_n \leq 0$ on \overline{D} and $\text{Re } z_n = 0$ on \overline{D} if and only if and only if $z \in M$. So M is (LMH) for the function $\exp(z_n)$. But

$$T_0(M) = \{z \mid \operatorname{Re} z_1 = \ldots = \operatorname{Re} z_{n-1} = z_n = 0\} \subset T_0^c(\partial D) = \{z \mid z_n = 0\}$$

and M is transverse to $T_z^c(\partial D)$ if $\operatorname{Im} z_1 \neq 0$.

COROLLARY 1 [DS]. Let M be an n-dimensional real analytic submanifold of ∂D which is (LMH). Then M is totally real and admits a real analytic foliation of codimension 1 by complex-tangential submanifolds.

Theorem 3 [DS]. Let M be an n-dimensional real analytic totally real submanifold of ∂D . Then M is (LMH) if and only if M admits a real analytic foliation of codimension 1 by complex-tangential submanifolds.

Proof. By corollary 1 we have only to prove the converse. Let $z \in M$ and suppose that $M_a = \{z \in M \mid \varphi(z) = a\}$ give a foliation of M by complex-tangential submanifolds, where φ is real analytic in a neighborhood of z in M. Since M is totally real there exists a holomorphic extension $\widetilde{\varphi}$ of φ in a neighborhood of z in \mathbb{C}^n . Let $\Sigma = \{z \mid \operatorname{Im} \widetilde{\varphi}(z) = 0\}$. Since $d\operatorname{Re} \widetilde{\varphi}(z) \neq 0$, by the Cauchy-Riemann equations, Σ is a hypersurface in a neighborhood U of z which contains M. Also if $a \in \mathbb{R}$, $\Sigma_a = \{z \in U \mid \widetilde{\varphi}(z) = a\}$ is a complex submanifold of Σ which is a complexification of M_a . By proposition 4, we have $\Sigma_a \cap \overline{D} = M_a$, so $\Sigma \cap \overline{D} \cap U = M \cap U$. It follows that $\operatorname{Im} \widetilde{\varphi}$ has constant sign on $D \cap U$, so $M \cap U$ is (LMH) for one of the functions $\exp(\pm i\widetilde{\varphi}(z))$.

EXAMPLE 2 [DS]. Let B_2 be the unit ball in \mathbb{C}^2 , $\alpha_1, \alpha_2 \in \mathbb{R}$ such that $\alpha_1^2 + \alpha_2^2 = 1$ and $\gamma = \alpha_1^2/\alpha_2^2$ is irrational and $M = \{z = (z_1, z_2) | |z_1| = \alpha_1, |z_2| = \alpha_2\}$. M is a

totally real 2-dimensional submanifold of ∂B_2 which is foliated by the complex-tangential curves $M_c = \{z = (z_1, z_2) \mid z_1 = \alpha_1 e^{-ci\alpha_2^2 t}, z_2 = \alpha_2 e^{ci\alpha_1^2 t}\}$. Since M_c is dense in M, it follows that M is not a global maximum modulus set. But M is (LMH) for the function $f(z_1, z_2) = z_1^2 z_2^{\gamma}$.

5. Complex-tangential foliations and diagonalizable Levi form

LEMMA 1 [BI]. Let M be a k-dimensional submanifold of ∂D . Let $p \in M$ such that M is not complex-tangential in a neighborhood of p. Then $T(M) \cap T^c(\partial D)$ is a distribution of rank k-1 in a neighborhood of p.

Proof. Since M is not complex-tangential, we have $\dim T_z(M) \cap T_z^c(\partial D) < k$ for z in a neighborhood of p and since both $T_z(M)$ and $T_z^c(\partial D)$ are subspaces of $T_z(\partial D)$ we have $\dim T_z(M) \cap T_z^c(\partial D) = k-1$ for z in a neighborhood of p.

THEOREM 4 [BI]. Let M be a submanifold of ∂D and $p \in M$ such that M is not complex-tangential in a neighborhood of p. The following are equivalent:

- a) There exists a neighborhood of p where M admits a foliation by complex-tangential submanifolds of codimension 1.
- b) There exists a neighborhood U of p such that $\mathcal{L}(\xi,\eta) \in \mathbb{R}$ for any sections ξ, η over U of the bundle $T(M) \cap T^c(\partial D)$.

Proof. By Frobenius theorem a) is valid if and only if the distribution defined by $T(M) \cap T^c(\partial D)$ is integrable. With the notations of 1c) this happens if and only if $j^*(d\omega) = \varphi \wedge j^*(\omega)$. Since $d\omega(\xi, \eta) = -\frac{1}{2} \operatorname{Im} \mathcal{L}(\xi, \eta)$ for any sections ξ, η of ker ω we obtain the result.

By theorem 2, proposition 2 and theorem 3 we obtain:

COROLLARY 2 [BI]. Let M be a real analytic totally real submanifold of ∂D which is not complex-tangential at any point. Then M is (LMH) if and only if $\mathcal{L}(\xi,\eta) \in \mathbb{R}$ for every ξ,η sections of $T(M) \cap T^c(\partial D)$. This is always true if $\dim M \leq 2$.

COROLLARY 3 [BI]. Let M be a real analytic totally real n-dimensional submanifold of ∂D . M is (LMH) if and only if for every $p \in M$ there exists a complex \mathcal{L} -orthogonal frame of $T^c(\partial D)$ in a neighborhood of p which generates $T(M) \cap T^c(\partial D)$ over \mathbb{R} .

EXAMPLE 3 [I1]. Let $D = \{z = (z_1, z_2, z_3) \in \mathbb{C}^3 \mid 2 \operatorname{Re} z_3 + |z_1|^2 + |z_2|^2 + |z_3|^2 < 0\}$ and $M = \{z \in \partial D \mid \operatorname{Re} z_2 = 2 \operatorname{Im} z_1, \operatorname{Re} z_1 = \operatorname{Im} z_2\}$. D is isomorphic with the unit ball in \mathbb{C}^3 and M is a real analytic totally real submanifold of dimension 3 of ∂D . The vector space $T_0(M) \cap T_0^c(\partial D)$ is generated by

$$\xi = \operatorname{Re}\left[\left(\frac{\partial}{\partial z_1}\right)_0 - i\left(\frac{\partial}{\partial z_2}\right)_0\right] \quad \text{and} \quad \eta = \operatorname{Re}\left[2\left(\frac{\partial}{\partial z_2}\right)_0 - i\left(\frac{\partial}{\partial z_1}\right)_0\right].$$

We see that $\mathcal{L}_0(\xi, \eta) \notin \mathbb{R}$, so M does not admit a foliation by complex tangential submanifolds.

Theorem 4 [BI]. A real analytic submanifold M of ∂D is (LPH) if and only if M is complex-tangential.

Proof. If dim M = n-1, it follows by proposition 2 that M is the leaf of an n-dimensional submanifold M' of ∂D which admits a foliation by complex-tangential submanifolds. By theorem 3 M' is (LMH) and by the proof of proposition 4 it follows that M is (LPH). The general case follows by applying proposition 2.

6. Real analyticity for smooth maximum modulus manifolds

Theorem 5 [NR]. Let D be a strictly pseudoconvex domain with real analytic boundary and E a (LMA^2) . Then, for every $\zeta \in E$, there exist a neighborhood U of ζ and a C^1 map G on U, holomorphic in $D \cap U$, such that $G(z) = \overline{z}$ on E.

Proof. Let us suppose that in a neighborhood V of z we have $D \cap V = \{z \in V \mid \rho(z) < 0\}$ where ρ is strictly plurisubharmonic on V. Let $\Sigma = \{(z, \xi) \in \mathbb{C}^n \times \mathbb{CP}^{n-1} \mid z \in \partial D \cap V, \xi = [\partial \rho(z)]\}$ where \mathbb{CP}^{n-1} is the complex projective space of dimension n-1, and $[\partial \rho(z)]$ is the point in \mathbb{CP}^{n-1} which has homogeneous coordinates $(\partial \rho/\partial z_1, \ldots, \partial \rho/\partial z_n)$. By [WEB] it follows that Σ is a real analytic totally real submanifold of dimension 2n-1 of $\mathbb{C}^n \times \mathbb{CP}^{n-1}$. We denote by $\chi = (\chi_1, \chi_2)$ the antiholomorphic reflection across Σ .

Let $z \in E$ and f a holomorphic function in a neighborhood U of $z, U \subset V$, such that |f| = 1 on $E \cap U$ and |f| < 1 on $\overline{D} \cap U \setminus E$. By the Hopf lemma we have $[\partial \rho(z)] = [\partial f(z)]$ for every $z \in E$. We denote $G(z) = \overline{\chi_1(z, [\partial f(z)])}$. Since χ is antiholomorphic and $\chi(\Sigma) = \Sigma$ it follows that G is a C^1 map on U, holomorphic in $D \cap U$, and if $z \in E$, we have

$$G(z) = \overline{\chi_1(z, [\partial f(z)])} = \overline{\chi_1(z, [\partial \rho(z)])} = \overline{z}.$$

COROLLARY 4 [NR]. Let D be a strictly pseudoconvex domain with real analytic boundary in \mathbb{C}^n and M a C^1 submanifold of dimension n of ∂D which is (LMA^2) . Then M is real analytic.

Proof. Let $p \in E$. By theorem 5 there exist a neighborhood U of p and a C^1 map G on U, holomorphic on $D \cap U$ such that $G(z) = \overline{z}$. Then G is a C^1 diffeomorphism in a neighborhood of p and the maps G(z) and $F(z) = \overline{G^{-1}(\overline{z})}$ are extensions of the restriction of \overline{z} to M. But F and G are holomorphic on opposite wedges with edge M, so by the edge of the wedge theorem for C^1 manifolds [R], it follows that the restriction of \overline{z} to M has a holomorphic extension $\Phi = (\Phi_1, \ldots, \Phi_n)$ to some neighborhood of p. Then from the 2n equations

$$\operatorname{Re} \Phi_j = \operatorname{Re} z_j, \quad \operatorname{Im} \Phi_j = -\operatorname{Im} z_j, \quad j = 1, \dots, n$$

we can extract n independent equations which define the n dimensional manifold M.

EXAMPLE 4 [NR]. This example will give a smooth curve transverse to the complex-tangent space in the boundary of the unit ball B_2 in \mathbb{C}^2 which is locally a maximum modulus set for $A^{\infty}(B_2)$ and it is not real analytic.

Let D be the unit disk in \mathbb{C} , $h \in A^{\infty}(D)$, such that h(z) - (1-z) vanishes to infinite order at 1 but h(z) - (1-z) does not vanish identically. If $\varepsilon > 0$ is small enough, the set $\Gamma_{\varepsilon} = \{(z_1, z_2) \in \partial B_2 \mid \overline{z}_2 = \varepsilon h(z_1)\}$ is a smooth curve in ∂B_2 which has contact to infinite order at (1,0) with the circle $\{|z_1| = 1, z_2 = 0\}$. So, Γ_{ε} is not real analytic. The curve Γ_{ε} can be parametrized by $(z_1, \theta(z_1))$ where z_1 belongs to a smooth simple closed curve γ_{ε} in the z_1 plane. We consider a smooth extension of θ to the bounded component Ω_{ε} of $\mathbb{C}\backslash\gamma_{\varepsilon}$ that we still denote by θ and we shall denote $\Omega = \{(z_1, \theta(z_1)) \mid z_1 \in \Omega_{\varepsilon}\}$. Let us consider the holomorphic vector field

$$Z = \frac{-\varepsilon h(z_1)}{1 - \varepsilon z_2 h(z_1)} \frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2}.$$

Since $\overline{z}_2 = \varepsilon h(z_1)$ and $\overline{z}_1 = (1 - z_2 \varepsilon h(z_1))/z_1$ on Γ_{ε} , Z is tangent to ∂B_2 along Γ_{ε} and it defines a holomorphic foliation of the ball near (1,0). For ε small enough, Z is close to $\partial/\partial z_2$, so we may consider new real variables (x_1, y_1, x_2, y_2) in a neighborhood of (1,0) such that $Z = \partial/\partial x_2 + i\partial/\partial y_2$.

Since for ε small the change of variables is close to the identity and Z is tangent to ∂B_2 at the points of Γ_{ε} , the points in Ω may be parametrized by (x_1, y_1) , so each leaf of the foliation defined by Z has a unique point of intersection with Ω . So there exists a retraction G of the neighborhood of (1,0) in \overline{B}_2 in a neighborhood of (1,0) in $\overline{\Omega}$ such that the points in $\overline{B}_2 \backslash \Gamma_{\varepsilon}$ correspond to points in Ω . Using G, we can define an almost complex structure J on $\overline{\Omega}$ induced by the complex structure in \mathbb{C}^2 . This structure is integrable because of the complex dimension 1. So there exists a conformal transformation f from (Ω, J) to D which extends smoothly to \overline{D} . Then in a neighborhood of (1,0), we have $|f \circ G| < 1$ on $\overline{B}_2 \backslash \Gamma_{\varepsilon}$ and $|f \circ G| = 1$ on Γ_{ε} .

EXAMPLE 5 [NR]. We shall give an example of a smooth curve Γ in the boundary of the unit ball B_2 in \mathbb{C}^2 such that the restriction of \overline{z} to Γ has a holomorphic extension to B_2 , but Γ is not (LMA^2) .

Let D be the unit disk in \mathbb{C} and $h \in A^{\infty}(D)$ such that h vanishes to infinite order at (1,0). Let $\Gamma = \{(z_1,z_2) \in \partial B_2 \mid \overline{z}_2 = 2z_2 + h(z_1)\}$. Since Γ has contact to infinite order at (1,0) with $\{(z_1,z_2) \mid |z_1| = 1, z_2 = 0\}$, it follows that Γ is not real analytic. On Γ we have

$$\overline{z}_1 = \frac{1 - 2z_2^2 - z_2 h(z_1)}{z_1}$$

so the restriction of \overline{z} to Γ has a holomorphic extension in a neighborhood of (1,0).

Let us suppose that there exist a neighborhood U of (1,0) and $F \in A^2(B_2 \cap U)$ such that |F| = 1 on $\Gamma \cap U$ and |F| < 1 on $(\overline{B}_2 \setminus \Gamma) \cap U$. Using the Hopf lemma as in the proof of proposition 3, we have $\frac{\partial F}{\partial z_1}(1,0) \neq 0$, $\frac{\partial F}{\partial z_2}(1,0) = 0$ and $(\frac{\partial F}{\partial z_2}(z), -\frac{\partial F}{\partial z_1}(z)) \in T_z^c(\partial B_2)$ if $z \in \Gamma$. So, if $z \in \Gamma$, we have

$$\frac{\frac{\partial F}{\partial z_2}}{\frac{\partial F}{\partial z_1}} = \frac{\overline{z}_2}{\overline{z}_1} = \frac{z_1(2z_2 + h(z_1))}{1 - 2z_2^2 - z_2h(z_1)}.$$

Let $\lambda(t) = (\lambda_1(t), \lambda_2(t))$ be the solution of the Cauchy problem

$$\frac{d\lambda}{dt} = \left(-\frac{\frac{\partial F}{\partial z_2}}{\frac{\partial F}{\partial z_1}}(\lambda(t)), 1\right), \quad \lambda(0) = (1, 0).$$

By the form above of $\frac{\partial F}{\partial z_2}/\frac{\partial F}{\partial z_1}$, since Γ is not real analytic, we have $\lambda_1(t)=1-t^2+o(t^2)$. Since $\lambda_2(t)=t$, we have $|\lambda(t)|<1$ for t small enough, $t\neq 0$, so λ is a curve in \overline{B}_2 through (1,0) and $\lambda(t)\in B_2$ if $t\neq 0$. But $\frac{d}{dt}(F\circ\lambda)=0$, so F is constant on λ . It follows that |F|=1 for some points in the ball, which is a contradiction.

References

- [BI] L. Boutet de Monvel et A. Iordan, Sur les feuilletages C-tangents des sousvariétés du bord d'une variété complexe, Astérisque 217 (1993), 39–52.
- [BS] D. Burns and E. L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J. 43 (1976), 391–404.
- [CC1] J. Chaumat et A. M. Chollet, Ensembles pics pour $A^{\infty}(D)$, Ann. Inst. Fourier 29 (3) (1979), 171–200.
- [CC2] —, —, Caractérisation et propriétés des ensembles localement pics de $A^{\infty}(D)$, Duke Math. J. 47 (1980), 763–787.
- [DS] Th. Duchamp and E. L. Stout, Maximum modulus sets, Ann. Inst. Fourier 31 (3) (1981), 37–69.
- [FH] J. E. Fornaess and B. S. Henriksen, Characterisation of global peak sets for $A^{\infty}(D)$, Math. Ann. 259 (1982), 125–130.
- [HS] M. Hakim et N. Sibony, Ensembles pics dans des domaines strictement pseudoconvexes, Duke Math. J. 45 (1978), 601-617.
- [HW] F. R. Harvey and R. O. Wells Jr., Zero-sets of non-negative strictly plurisubharmonic functions, Math. Ann. 201 (1973), 165–170.
- [HT] G. M. Henkin and A. E. Tumanov, Interpolation submanifolds of pseudoconvex manifolds, in: Proc. Seventh Winter School, Drogobych 1974, Theory of functions and functional analysis, Central. Ekonom.-Mat. Inst. Akad. Nauk SSSR, Moscow, 74–86 (1976); English transl. in Amer. Math. Soc. Transl. 115 (2) (1980), 59–69.
- [I1] A. Iordan, A characterisation of totally real generic submanifolds of strictly pseudoconvex boundaries admitting a local foliation by interpolation submanifolds, Math. Ann. 288 (1990), 505–510.
- [I2] —, Maximum modulus sets in pseudoconvex boundaries, J. Geometric Anal. 2 (4) (1992), 327–349.
- [NR] A. Nagel and J. P. Rosay, Maximum modulus sets and reflection sets, Ann. Inst. Fourier 41 (2) (1991), 431–466.
- [R] J. P. Rosay, A propos de wedges et d'edges et de prolongements holomorphes, Trans. Amer. Math. Soc. 297 (1986), 63–72.
- [WEB] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26–28.
- [WEI] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, R.I., 1977.