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1. Let ∆ = {z : |z| < 1} and Γ = {z : |z| = 1}, and let M denote the set of
complex-valued Borel measures on Γ. A family denoted Fα of functions analytic
in ∆ is defined for each α ≥ 0 as follows. For α > 0, f ∈ Fα provided that there
exists µ ∈M such that

(1) f(z) =
∫
Γ

1
(1− ζz)α

dµ(ζ)

for |z| < 1. Here and elsewhere each logarithm is the principal branch. Also,
f ∈ F0 provided that there exists µ ∈M such that

(2) f(z) = f(0) +
∫
Γ

log
1

1− ζz
dµ(ζ)

for |z| < 1. Fα is a Banach space with respect to the norm defined by ‖f‖Fα =
inf ‖µ‖ where µ varies over all measures in M for which (1) or (2) holds and
where ‖µ‖ is the total variation norm of µ.

The spaces Fα have been studied in a number of recent papers and earlier
work was extensively done corresponding to the case α = 1. This paper gives a
survey of some recent results about Fα which focus on questions about radial
limits. We will summarize work contained in [3], [4] and [5]. This material was
presented in a talk by the author at the Complex Analysis Semester held at
the Banach Center in Warsaw during the fall, 1992. The author wishes to thank
the organizers for their invitation to participate in that conference and for their
hospitality, especially to Professor Jan Krzyż.
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2. The following result was proved in [3; see Theorem 1] and is one of several
relations known between Fα and other spaces.

Theorem 1. If 0 < α ≤ 1 then Fα ⊂ Hp for 0 < p < 1/α. Also F0 ⊂ Hp for
all p > 0.

Theorem 1 and classical results about Hp spaces [2] imply the following fact
about radial limits of functions in Fα: if f ∈ Fα and 0 ≤ α ≤ 1 then f(eiθ) exists
for almost all θ in [−π, π]. Here f(eiθ) is defined by f(eiθ) = limr→1− f(reiθ)
when this limit exists. We also recall the idea of a nontangential limit. Let S(θ, γ)
denote the Stolz angle in ∆ having vertex eiθ and opening γ where 0 < γ < π.
Then f has a nontangential limit at eiθ provided that limz→eiθ, z∈S(θ,γ) f(z) exists
for every γ(0 < γ < π).

Later we describe a sufficient condition for a function in Fα to have a radial
limit in a given direction. This helps to show that if f ∈ Fα and 0 ≤ α < 1 then
f(eiθ) exists off certain exceptional sets depending on α and which are generally
thinner than sets of measure zero. This involves the notion of capacity. Also we
describe what can happen when α > 1. At this point we note that to each α > 1
there exists a function f ∈ Fα which belongs to no Hp space; in fact, there exists
such f for which limr→1− |f(reiθ)| =∞ for all θ in [−π, π].

Let M̃ denote the subset ofM consisting of probability measures, and let F̃α
denote the subset of Fα consisting of functions for which (1) or (2) holds for some
µ ∈ M̃.

The next theorem gives a connection between the existence of radial limits
and that of nontangential limits.

Theorem 2. If f ∈ F̃α for some α, 0 ≤ α ≤ 1 and f(eiθ) exists, then f has
a nontangential limit at eiθ.

The proof of Theorem 2 is given in [4; see Theorem 2]. The argument consists
of noting that the kernels Fα(z) = 1/(1− z)α (when 0 < α ≤ 1) and F0(z) =
log(1/(1−z)) are convex, univalent mappings of ∆. This implies that each f ∈ F̃α
is subordinate to Fα. Thus f = F ◦ϕ for some function ϕ which is analytic in ∆
and satisfies |ϕ(z)| < 1 and ϕ(0) = 0. The existence of f(eiθ) implies the existence
of ϕ(eiθ). By a classical result about bounded analytic functions [2,p.6], ϕ has a
nontangential limit at eiθ. Therefore f has a nontangential limit at eiθ.

3. Equation (1) is equivalent to

(3) f(z) =
π∫
−π

1
(1− e−itz)α

dg(t)

where g is a complex-valued function of bounded variation on [−π, π]. Likewise,
for such a g, (2) can be rewritten

(4) f(z) = f(0) +
π∫
−π

log
(

1
1− e−itz

)
dg(t).
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Theorem 3. Suppose that the function f is defined by (3) or by (4) where g
is of bounded variation on [−π, π]. If

(5)
π∫
−π

|g(θ + t)− g(θ)|
|t|α+1

dt <∞

for some θ in [−π, π], then f(eiθ) exists.

Theorem 3 is proved in [4]. The argument depends on an integration by parts
and an application of the Lebesgue dominated convergence theorem. This result
shows what local behavior of g near θ implies f(eiθ) exists. As pointed out later,
this implies a global result about radial limits with suitable exceptional sets for
functions in Fα in the case 0 ≤ α < 1.

4. Next we describe a few facts about zero α-capacity. Reference [1] is a source
for information about capacity.

For 0 < α < 1 let

(6) Pα(θ) =
1

| sin 1
2θ|α

(|θ| ≤ π),

and let

(7) P0(θ) = log
1

| sin 1
2θ|

(|θ| ≤ π).

A nonempty Borel set E ⊂ [−π, π] is said to have positive α-capacity provided
that there exists a probability measure µ supported on E such that

(8) sup
θ

π∫
−π

Pα(θ − t)dµ(t) <∞ .

Otherwise E is said to have zero α-capacity and we write Cα(E) = 0. Intuitively,
E has zero α-capacity when E is so thin that no probability measure can be
distributed on E which “cancels out” the singularity of Pα. The general idea
of capacity when α = 0 corresponds to the notion of logarithmic capacity. Zero
α-capacity is a useful way to describe the fineness of exceptional sets for problems
about Fα.

A few facts about zero α-capacity are listed in the next theorem. Each asser-
tion is easy to prove.

Theorem 4. (a) If E ⊂ F and Cα(F ) = 0 then Cα(E) = 0.
(b) If Cα(E) = 0 and β > α then Cβ(E) = 0.
(c) If Cα(E) = 0 and Cα(F ) = 0 then Cα(E ∪ F ) = 0.
(d) If E is finite or countable then Cα(E) = 0 for all α.
(e) If Cα(E) = 0 for some α then the Lebesgue measure of E is zero.

The following result was proved by J. B. Twomey in [6].
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Theorem 5. Let g be a real-valued nondecreasing function on [−π, π] and let
0 ≤ α < 1. Then

(9)
π∫

0

g(θ + t)− g(θ − t)
tα+1

dt <∞

for all θ in [−π, π] except possibly for a set having zero α-capacity.

The argument for Theorem 5 depends on first showing that if

Qα(θ) ≡
π∫
−π

Pα(θ − t)dg(t) and E ≡ {θ : Qα(θ) =∞}

then Cα(E) = 0. Next it is shown that (9) holds for each θ for which Qα(θ) <∞.

Theorem 6. If f ∈ Fα for some α where 0 ≤ α < 1, then f has a non-
tangential limit at eiθ for all θ in [−π, π] except possibly for a set having zero
α-capacity.

The proof of Theorem 6 given in [4] is as follows. By appealing to the Jordan
decomposition theorem and part (c) of Theorem 4 we see that it suffices to assume
that f ∈ F̃α. Theorem 2 implies we need only treat radial limits. Because f ∈ F̃α
we have (3) or (4) where g is nondecreasing (and g(π) − g(−π) = 1). It is easy
to see that (9) implies (5). Hence Theorems 5 and 3 complete the argument for
Theorem 6.

5. When α>1 the existence of a function of f ∈Fα such that limr→1− |f(reiθ)|
=∞ for all θ on [−π, π] is only one consequence of a study about the growth of
|f | off suitable exceptional sets. This study makes sense for all α ≥ 0.

First of all, we note that if f ∈ Fα and α > 0 then (1) implies that |f(z)| ≤
‖µ‖/(1− r)α for |z| ≤ r. In other words, |f(z)| = O[1/(1− r)α] for 0 < r < 1.
This maximal growth is attained by the function represented by point mass, say at
eiθ, and where the radial growth is in the direction of θ. The next two results show
that certain smaller radial growths can be associated with suitable exceptional
sets.

Theorem 7. If f ∈ Fα and α > 0, then limr→1−(1− r)αf(reiθ) = 0 for all θ
in [−π, π] except possibly for a finite or countable set.

Theorem 8. If f ∈ Fα and α > 1, then limr→1−(1 − r)α−1f(reiθ) = 0 for
almost all θ in [−π, π].

The proof of Theorem 7 given in [4] is quite simple. It depends on the Lebesgue
bounded convergence theorem and the fact that for a Borel measure µ 6= 0 the
set E ⊂ [−π, π] for which µ({eiθ}) 6= 0 is either empty, finite or countable.

A proof of Theorem 8 was first given in [3]. A second proof was obtained in
[4]. The second argument relies on the following local result. Theorem 8 is an
immediate consequence of this result and the fact that a function of bounded
variation is differentiable almost everywhere.
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Theorem 9. Suppose that g is a function of bounded variation on [−π, π]
and α > 1, and let f be defined by (3). If g is differentiable at θ then
limr→1−(1− r)α−1f(reiθ) = 0.

There are additional conclusions obtained in [4] and [5] showing how the local
behavior of the function g near θ or the measure µ near eiθ affects the radial
growth of f in the direction eiθ. In particular, in [5] this leads to the following
theorem concerning growths which are intermediate to those described in Theo-
rems 7 and 8.

Theorem 10. Suppose that f ∈ Fα for some α > 0, 0 < β < 1 and β < α.
Then limr→1−(1− r)α−βf(reiθ) = 0 for all θ in [−π, π] except possibly for a set
having zero β-capacity.

Several of the results quoted above which are stated in terms of radial limits
were proved in a more general form for suitable nontangential limits. Also there
are results which correspond to the cases where α = 0 and, in Theorem 10, where
β = 0.

6. The next theorem describes how large min|z|=r |f(z)| can be for sequences
{rn} where rn → 1, f ∈ Fα and α > 1.

Theorem 11. Let α > 1 and let ε be a real-valued nonincreasing function on
(0, 1) such that limr→1− ε(r) = 0. Then there exists f ∈ Fa such that

(10) lim
r→1−

{
(1− r)α−1

ε(r)
min
|z|=r

|f(z)|
}

=∞.

Theorem 11 asserts that for any “growth” less than o[ 1
(1−r)α−1 ] there is f ∈ Fα

such that the exceptional set for that growth is all of [−π, π]. In particular, for
suitable choices of ε, (10) implies that limr→1− |f(reiθ)| =∞ for all θ.

We outline the proof of Theorem 11 given in [3]. Let the sequence {An(α)} be
defined by 1/(1− z)α =

∑∞
n=0An(α)zn. It is easy to see that f ∈ Fα if and only

if g ∈ F1 where f and g are related by f(z) =
∑∞
n=0 anz

n, g(z) =
∑∞
n=0 bnz

n and
bn = an/An(α) for n = 0, 1, . . . Let {λn} be an increasing sequence of positive
integers and let g(z) =

∑∞
n=1

1
n2 z

λn and f(z) =
∑∞
n=1

1
n2Aλn(α)zλn for |z| < 1.

Clearly g is bounded in ∆ and hence Cauchy’s formula gives g ∈ F1. Therefore
f ∈ Fα. Let α and ε satisfy the assumptions in Theorem 11. Then {λn} can be
chosen so that

(11) λk+1 ≥ [k + 1]3/(α−1)λk

and

(12) ε(1− 1/λk) ≤ 1/k2

for k = 1, 2, . . . The existence of {λn} which satisfies (11) is easy to verify induc-
tively and (12) is possible to satisfy simultaneously since ε(r) → 0 as r → 1−.
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For k = 1, 2, . . . let rk = 1− 1/λk,

Pk(z) =
k−1∑
n=1

1
n2
Aλn(α)zλn , Qk(z) =

1
k2
Aλk(α)zλk

and

Rk(z) =
∞∑

n=k+1

1
n2
Aλn(α)zλn

for |z| < 1. Then f(z) = Pk(z)+Qk(z)+Rk(z). A technical but elementary argu-
ment shows that the condition (11) implies that |Pk(z)| ≤ 1

4 |Qk(z)| and |Rk(z)| ≤
1
4 |Qk(z)| for |z| = rk and for all large values of k. Hence |f(z)| ≥ 1

2 |Qk(z)|. There-
fore, for |z| = rk and for all large k, we have |f(z)| ≥ 1

2
1
k2Aλk(α)rλkk . There is a

positive constant C(α) such that An(α) ≥ C(α)nα−1 for n ≥ 1. Hence (12) and
rλkk →

1
e imply that

|f(z)| ≥ C(α)
6

ε(rk)
(1− rk)α−1

for |z| = rk and for all large k. This inequality implies the theorem.
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