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Abstract. We present a survey of the Lusin condition (N) for W 1,n-Sobolev mappings
f : G→ Rn defined in a domain G of Rn. Applications to the boundary behavior of conformal
mappings are discussed.

1. Introduction. The change of the independent variable in integrals, i.e.
formula (1.1) and its absolute value counterpart (1.2), is extremely useful in
analysis and in its applications∫

D

u
(
f(x)

)
Jf (x) dx =

∫
f(D)

u(y)µ(y, f,D) dy,(1.1) ∫
A

u
(
f(x)

)
|Jf (x)| dx =

∫
f(A)

u(y)N(y, f,A) dy.(1.2)

Here Jf is the jacobian determinant of a mapping f , µ(y, f,D) is the topological
degree of the triple (y, f,D), and N(y, f,A) = #(f−1(y)∩A) is the crude multi-
plicity function. On the real line conditions for (1.1) or (1.2) are well-known and
a natural class of functions is the class of absolutely continuous functions. See the
book [S] of S. Saks for this theory. In higher dimensional spaces (1.1) and (1.2) are
problematic. In general, there are at least two conditions for the mapping f : The
jacobian determinant Jf of f : G → Rn must be integrable and f must satisfy
the Lusin condition (N). This means that if A ⊂ G and |A| = 0, then |f(A)| = 0.
Here, and in the following, |A| denotes the Lebesgue measure of a set A ⊂ Rn.
For a thorough discussion of the above conditions in connection with (1.1) and
(1.2) see [RR, pp. 363–365]; cf. also a recent article [H] by P. Haj lasz.
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For a domain G in Rn we let W 1,p(G), p ≥ 1, denote the class of mappings
f : G→ Rn such that the coordinate functions fi of f and their first distributional
derivatives ∂jfi belong to Lp(G). In Lp(G) we use the standard Lp-norm ‖ ‖p,G =
‖ ‖p and in W 1,p(G) the norm

‖f‖1,p,G = ‖f‖1,p = ‖ |f | ‖p,G + ‖ |∇f | ‖p,G
where |∇f | denotes the usual matrix norm of the n × n matrix ∇f formed by
the partial derivatives ∂jfi. Instead of W 1,p(G) the local Sobolev space W 1,p

loc (G)
could be used as well because the condition (N) has a local character. Since we
are interested in the boundary behavior of Sobolev functions, the space W 1,p(G)
is an obvious choice.

If f : G→ Rn belongs to the Sobolev class W 1,n(G), then Jf is integrable in
G. Thus this class is natural for (1.1) and (1.2). In connection with the condition
(N) the mapping f is usually assumed to be continuous: then the condition (N) is
equivalent with the property that f maps measurable sets into measurable sets.
However, in the class W 1,n(G) continuity is partly superfluous because a mapping
f ∈W 1,n(G) has an n-quasicontinuous version and this version provides a natural
redefinition of f to study the condition (N).

Continuous W 1,n(G) mappings for n ≥ 2 need not satisfy the condition
(N). Such an example was first constructed by L. Cesari [C] (and reinvented
in [MM]); somewhat simpler examples were produced by M. Reimann [Rei] and
Yu. G. Reshetnyak [Res1], see also [V]. The examples of Reimann and Reshet-
nyak are based on the Riemann mapping theorem. To be more precise, let f :
B(0, 1)→ D be a Riemann mapping function sending the unit disk onto a Jordan
domain D in R2 with |∂D| > 0. Then f has, by the Carathéodory theorem, a
homeomorphic extension to B(0, 1). Define

(1.3) f∗(z) =

{
f(z), z ∈ B(0, 1),
f
(
z
|z|2

)
, z ∈ B(0, 2) \B(0, 1).

It is not difficult to see that f∗ ∈W 1,2(B(0, 2)); note that since f is conformal∫
B(0,1)

|∇f |2 dx =
∫

B(0,1)

Jf dx = |D| <∞

and since f is bounded, f certainly belongs to W 1,2(B(0, 1)). Since |∂D| > 0,
the mapping f∗ cannot satisfy (N). This extension method can be used to study
the boundary behavior of mappings in the class W 1,2(B(0, 1)); the same method
applies to higher dimensional spaces as well.

Since a mapping f ∈ W 1,n(G) need not satisfy (N), it is natural to look for
minimal additional conditions. One condition is that f belongs to the higher
Sobolev space, i.e. f ∈ W 1,p(G) for some p > n. Then f not only satisfies (N)
but also a stronger absolute continuity condition introduced by S. Banach: For
every ε > 0 there is δ > 0 such that A ⊂ G with |A| < δ implies |fA| < ε.
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See [BI, Lemma 8.1] for a simple proof. In Sections 2 and 3 we discuss some
other conditions, in general weaker than W 1,p(G), p > n, that also guarantee
(N). Section 2 is devoted to topological methods; these methods were first used
by Reshetnyak, see [Res2], to prove that a quasiregular mapping satisfies (N). In
Section 3 we consider analytical methods. These have turned out to be the most
powerful.

Quite recently there has been a considerable interest in properties of the jaco-
bian determinant Jf of a mapping f ∈W 1,n(G). Especially, if f ∈W 1,n(G) and
if Jf ≥ 0 a.e., then by a result of Müller [Mu] Jf is not only integrable in G but
belongs locally to the Zygmund class L logL(G). It is rather surprising that this
result has little to do with the condition (N). The example in [MM] is such that
the mapping f : Rn → Rn, n ≥ 2, has the properties: (i) f ∈W 1,n(Rn)∩C(Rn),
(ii) f does not satisfy (N), and (iii) Jf = 0 a.e. in Rn.

2. Topological methods. We first recall the basic properties of the topo-
logical degree of a mapping f . Let G be a domain in Rn and let f : G → Rn be
continuous.

The topological degree µ(y, f,D) of f at y is defined whenever D b G is a
domain and y ∈ Rn \ f(∂D). The degree µ(y, f,D) is integer valued and it has
the following properties:

(i) y 7→ µ(y, f,D) is constant in each component of Rn \ f(∂D).
(ii) If y ∈ f(D) and the restriction of f to D is one-to-one, then |µ(y, f,D)|=1.
(iii) If y ∈ D and id is the identity mapping, then µ(y, id, D) = 1.
(iv) If µ(y, f,Di) is defined for i = 1, . . . , k and if D1, . . . , Dk are mutually

disjoint domains such that f−1(y) ∩D ⊂ ∪ki=1Di ⊂ D, then

µ(y, f,D) =
k∑
i=1

µ(y, f,Di).

(v) If f and g are connected with a homotopy ht, 0 ≤ t ≤ 1, such that
µ(y, ht, D) is defined for 0 ≤ t ≤ 1, then µ(y, f,D) = µ(y, g,D).

If G is a domain and if for all domains D b G and y ∈ f(D) \ f(∂D) we have
µ(y, f,D) > 0, then f is called sense-preserving. If µ(y, f,D) < 0 for all such y
and D, then f is called sense-reversing.

The standard reference for the topological degree is the monograph by Radó
and Reichelderfer [RR]. Bojarski and Iwaniec [BI] and Reshetnyak [Res2] present
a different, more analytic approach to the topological degree. If f : G → Rn is
differentiable at x0 ∈ G and Jf (x0) 6= 0, then there exists a neighborhood D of
x0 such that µ(y, f,D) = signJf (x0) for all y ∈ f(D). Thus the above definition
of a sense-preserving mapping is an extension of the more familiar case when f
is differentiable.

The basic idea for studying the condition (N) in the class W 1,n(G) is to use
approximation. Formula (1.1) certainly holds for smooth mappings and passing to
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the limit one hopes to get it for the limit mapping as well. This method was used
by Reshetnyak [Res2, pp. 179–181]. He called a continuous mapping f : G→ Rn
stable if it satisfies the following condition (S): Let D b G be a domain. Then for
every point y ∈ f(D) \ f(∂D) there is an ε > 0 such that for every continuous
mapping ϕ : D → Rn with |f(x)−ϕ(x)| < ε for all x ∈ D the set ϕ(D) contains y.

2.1. Theorem [Res2, Theorem 6.2]. Let G be a domain in Rn and f : G→ Rn
a continuous mapping of the class W 1,n(G). If f is stable, then f has the property
(N ).

Reshetnyak also presented a simple condition ensuring the condition (S). Let
f : G → Rn be a continuous mapping. Assume that for every domain D b G
and any point y ∈ f(D) not in f(∂D) the degree µ(y, f,D) is nonzero. Then f
is a stable mapping. Indeed, assume that f satisfies the given condition. Take an
arbitrary domain D b G and a point y ∈ f(D) \ f(∂D). Let ε = dist(y, f(∂D)).
Then ε > 0. Let ϕ : D → Rn be a continuous mapping such that |f(x)−ϕ(x)| < ε
for all x ∈ D. The mapping ϕ is homotopic to f as a mapping of the pair (D, ∂D)
into the pair (Rn,Rn \ {0}). The required homotopy is given by the mapping

ϕt(x) = (1− t) f(x) + tϕ(x), t ∈ [0, 1].

This implies that y 6∈ ϕ(∂D) and µ(y, ϕ,D) = µ(y, f,D) 6= 0, and allows us to
conclude that y ∈ f(D), which is what was required to prove. See (v).

Since every sense-preserving (or sense-reversing) mapping satisfies the above
condition, we have

2.2. Corollary. Every sense-preserving mapping f : G → Rn of the class
W 1,n(G) satisfies (N ).

Every homeomorphism f : G→ Rn is either sense-preserving or sense-revers-
ing. Hence Corollary 2.2 yields

2.3. Corollary [Res2, Corollary 1, p. 182]. Every homeomorphism f : G→
Rn of the class W 1,n(G) satisfies (N ).

Note that Corollary 2.3 is not true for homeomorphisms in the class W 1,p,
p < n. See [P].

The approximation method was strengthened in [MZ]. Let f : G → Rn be a
mapping with partial derivative a.e. We say that f satisfies Sard’s condition (SA)
if Jf = 0 a.e. in an open set A ⊂ G implies |fA| = 0.

2.4. Theorem [MZ, Theorem 3.12]. Suppose that f ∈ W 1,n(G) is continuous
with Jf ≥ 0 a.e. Then the conditions (N ) and (SA) are equivalent.

2.5. Corollary [MZ, Corollary 3.13]. If f ∈ W 1,n(G) is continuous with
Jf > 0 a.e., then f satisfies (N ).

Either Corollary 2.2 or Theorem 2.4 can be used to prove that every contin-
uous, discrete, and open mapping f ∈W 1,n(G) satisfies (N). In particular, every
quasiregular mapping has the property (N), see [Res2, p. 182].
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It seems that the approximation method is difficult to use to study the con-
dition (N) for mappings whose jacobian determinant may change sign. However,
using a special property of the plane Martio and Ziemer [MZ] showed that every
continuous and open mapping of the class W 1,2 in the plane has the property
(N). For the general result in this direction see Corollary 3.2 below.

3. Analytical methods. In [MM] it was observed that analytical methods,
Gehring’s lemma (Lemma 3.3 below) and certain covering arguments, provide a
proper tool to study the condition (N) for mappings with arbitrary sign of the
jacobian determinant. There are two main results, Theorems 3.4 and 3.6 below.

A continuous mapping f : G→ Rn is called M -pseudomonotone if for all balls
B(x, r) b G

diam
(
fB(x, r)

)
≤M diam

(
f∂B(x, r)

)
.

3.1. Theorem [MM, Theorem A]. Suppose that f : G→ Rn is a pseudomono-
tone mapping of the class W 1,n(G). Then f satisfies (N ).

Since every continuous and open mapping is 1-pseudomonotone, Theorem 3.1
yields

3.2. Corollary [MM, Corollary B]. A continuous and open mapping of the
class W 1,n satisfies the condition (N ).

The proof of Theorem 3.1 is based on Gehring’s lemma, which is a version
of Sobolev’s imbedding theorem on (n − 1)-dimensional spheres. For n = 2 this
lemma is immediate.

3.3. Gehring’s lemma [G], [Res2, Lemma 4.3]. Suppose that f : G → Rn is
a W 1,n(G)-mapping. Then for each x ∈ G and a.e. r > 0

diam
(
f∂B(x, r)

)n ≤ cr ∫
∂B(x,r)

|∇f(y)|n dS(y)

whenever B(x, r) b G. The constant c depends only on n.

Since smooth mappings satisfy (N), and even W 1,p-mappings, p > n, have the
same property, it is natural to ask which additional smoothness conditions for
W 1,n-mappings imply (N). It is rather surprising that Hölder continuity suffices.

3.4. Theorem [MM, Theorem C]. Every locally Hölder continuous W 1,n-
mapping satisfies the condition (N ).

Here the local Hölder continuity of a mapping f : G → Rn is understood
in the weakest possible sense: For each compact set K ⊂ G there is α > 0 and
M <∞ such that

|f(x)− f(y)| ≤M |x− y|α

for all x, y ∈ G.
The proof of Theorem 3.4 uses Theorem 3.6 below and a recent result of

J. Malý:
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3.5. Theorem [M]. Let g ∈W 1,n(Rn), ε > 0 and 1 < p < n. Then there exist
a Hölder continuous mapping h ∈W 1,n(Rn) and a set E such that Cap1,pE < ε
and g = h in Rn \ E.

Note that usually mappings in the class W 1,n(G) are defined up to the set of
Lebesgue measure zero. However, there is always an n-quasicontinuous represen-
tative, see [HKM, Ch. 4], which is defined up to the set of (1, n)-capacity zero. In
Theorem 3.5 such a representative for g is used. Cap1,p refers to the usual Sobolev
p-capacity, i.e.

Cap1,pE = inf
∫

Rn

(|u|p + |∇u|p) dx

where the infimum is taken over all real valued functions u ∈W 1,p(Rn) such that
u ≥ 1 a.e. in a neighborhood of E.

Since the condition (N) does not hold for W 1,n-mappings, it is natural to ask
in which extent it fails. For example, if f : G→ Rn is a W 1,n(G)-mapping, is it
possible to pick a small set A ⊂ G such that f |G \ A satisfies (N)? An example,
see [JM], shows that the set A cannot be chosen to be of (1, n)-capacity zero.
However, the following two results show that a slightly larger set A suffices.

3.6. Theorem [MM, Theorem 6]. Let f : G → Rn be a mapping of the class
W 1,n(G). Then there is a set A⊂G of Hausdorff dimension zero such that f |G\A
satisfies (N ).

In Theorem 3.6 we again use the n-quasicontinuous representative for f . If no
such representative is used, then Theorem 3.6 still implies the following result of
P. Haj lasz:

3.7. Corollary [H, Theorem 2]. Suppose that f ∈ W 1,n(G). Then we can
redefine f on a set of Lebesgue measure zero in such a way that the new mapping
satisfies (N ).

In Corollary 3.7 it suffices to assume that f ∈W 1,1(G), see [H, p. 94].
Another criterion for the smallness of an exceptional set A can be expressed

in capacitary terms.
Let G be a domain in Rn and let C be a relatively closed subset of G. For

x ∈ G and 0 < r < d(x, ∂G) we write

capn(x,C, r) = capn
(
C ∩B(x, r), B(x, 2r)

)
where

capn(F,A) = inf
u

∫
A

|∇u|n dx

is the usual n-capacity of the condenser (F,A), i.e. the infimum is taken over
all functions u ∈ C∞0 (A) such that u ≥ 1 on F . We say that C has the lower
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n-capacity density zero in G if

lim
r→0

capn(x,C, r) = 0

for all x ∈ G.

3.8. Theorem [MM, Theorem F]. Suppose that f : G → Rn is a continuous
mapping of the class W 1,n(G). If A is a relatively closed subset of G with |A| = 0,
then there are closed subsets Ci, i = 1, 2, . . ., of A such that each Ci has the lower
n-capacity density zero in G and

|f(A \ ∪Ci)| = 0.

The proof for Theorem 3.8 uses the following result: If f ∈ C(G) ∩W 1,n(G),
then there is a relatively closed subset C of G such that

|f(G \ C)| ≤ c
∫
G

|∇f |n dx

and C has the lower n-capacity zero in G; the constant c depends only on n. This
result is based on Gehring’s lemma, Lemma 3.3.

4. Applications. We consider the boundary behavior of conformal mappings
in the unit disk.

If f : B(0, 1)→ R2 is a bounded conformal mapping of the unit disk into R2,
then f has a finite Dirichlet integral, i.e.∫

B(0,1)

|∇f |2 dx =
∫

B(0,1)

|f ′|2 dx =
∫

B(0,1)

Jf dx = |fB(0, 1)| <∞.

Consequently f belongs to W 1,2
(
B(0, 1)

)
and using (1.3) we see that f has a

W 1,2
(
B(0, 2)

)
-extension f∗. In general, f∗ need not be continuous but if ∂fB(0, 1)

is a Jordan curve or if f is Hölder continuous, then f∗ is continuous.
The behavior of f∗ on ∂B(0, 1) has been studied a lot. We consider two

results.

4.1. Theorem [NP]. If f : B(0, 1) → R2 is a Hölder continuous conformal
mapping , then |f∗∂B(0, 1)| = 0.

4.2. Theorem [JM]. If f : B(0, 1) → R2 is a conformal mapping , then
there is a set A ⊂ ∂B(0, 1) such that the Hausdorff dimension of A is zero and
|f∗
(
∂B(0, 1) \A

)
| = 0.

The proof of Theorem 4.1 is based on the modulus method and Theorem 4.2
follows from careful estimates for harmonic measure. These estimates also provide
a proof for Theorem 4.1, see [JM].

Now Theorem 3.4 and Theorem 3.6 together with the extension method (1.3)
show that Theorems 4.1 and 4.2 hold for arbitrary W 1,2-mappings. These results
have immediate extensions to higher dimensional euclidean spaces as well as to
analytic functions with a finite Dirichlet integral, see [MM].
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