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Abstract. This paper provides sufficient conditions on a quasisymmetric automorphism -y
of the unit circle which guarantee the existence of the smallest positive eigenvalue of . They
are expressed by means of a regular quasiconformal Teichmiiller self-mapping ¢ of the unit
disc A. In particular, the norm of the generalized harmonic conjugation operator Ay : H —
H is determined by the maximal dilatation of ¢. A characterization of all eigenvalues of a
quasisymmetric automorphism + in terms of the smallest positive eigenvalue of some other
quasisymmetric automorphism o is given.

1. Introduction. Let us denote by Qr(K), 1 < K < oo, the class of
all homeomorphic self-mappings of the unit circle T = {z € C : |z| = 1} which
admit a K-quasiconformal extension to the unit disc A={z € C: |z| < 1} and let
Qt = Uj<gcoo Qr(K). For any homeomorphism v € Qr we set K(y) = inf{K :
v € Qr(K)}. Due to J. G. Krzyz, cf. [K], the class Qr coincides with the class of
all quasisymmetric automorphisms of the unit circle T, i.e. all sense-preserving
homeomorphisms v : T — T satisfying

k=< () Ih(I2)] <k

for each pair of adjacent closed arcs I;,Io C T of equal length: 0 < |I4]
|Io] < 7 where the constant k& depends on v only. Let us denote by Lf., 1
p < oo, the space of all functions f : T — R, p-integrable on T, ie. |f|,
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(fT |f(z)|p|dz|)1/p <ooandlet L = {f € Lrlr || flloe = supess, e | f(2)] < oo}
The space L% is a real Hilbert space with the inner product

(fr9)= [ F()9()ldz|,  f.g€ L&
T

With any function f € LL we can associate an analytic function fa : A — C
given by the formula

faz) = 5 [ f) it

u—=z

|dul

1 1 . .
:%Tff(u)!duHW;(%ff(U)u rdu|)z . sea

The space H = {f € L : [, [f4]?dS < oo and fa(0) = 0}, where f\ = (fa)',
equipped with the inner product (f,g)u = Re [, f\g'adS, f,g € H, is a real
Hilbert space, isometric with the space E?r = {f € L& : fa(0) = 0}, cf. [P1,
Theorem 1.2]. In the paper [P2] a linear homeomorphism A, of the Hilbert space
H onto itself was associated with every quasisymmetric automorphism v € Qr.
If v € Qr is sufficiently regular then the operator A, has a nice form, cf. [P2,
Theorem 1.4], given by means of a singular integral

A(f)E) = T RePV. [ Wf @ () - a (f)
T

) = (u)
for a.e. z € T and f € H where

a,(f) = % ) (i Re P.V.Tf W)f(_%dv(u))dd

is a normalization constant. If y(z) = 2z, z € T, then A, becomes the usual
harmonic conjugation operator A, see [G]. Moreover, A?v = —1 for any v € Qr,
where [ is the identity operator. Thus A, may be called a generalized harmonic
conjugation operator. For basic properties of the operator A, we refer to [P2]. Now
we quote two properties essential for our considerations. Namely, AA, : H — H
is a symmetric operator and

(1.1) A, =DB,AB,
where B, is a linear homeomorphism of the space (H, || - ||m) onto itself such that
(1.2) By(f)=fov—=(fon)a(0) onT

for every continuous function f€H. This shows that the operator A, is related
to the Neumann—Poincaré integral operator of a Jordan curve I'. More precisely,
eigenvalues of the Neumann—Poincaré kernel k, cf. [BS], [S], correspond to eigen-
values of the symmetric operator AA, : H — H where 7 is a welding homeo-
morphism of a sufficiently smooth Jordan curve I', cf. [P1], [KP]. This justifies
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introducing the notion of an eigenvalue and a spectral value of a quasisymmetric
automorphism of the unit circle, by means of the spectrum of the operator AA,,
cf. [P3], or equivalently, by means of the spectrum of the operator R, cf. [P1],
[KP], because R, =1+ AA,, cf. [P2,(2.4)]. For the reader’s convenience we quote

DEFINITION 1.1. A real number A is said to be an eigenvalue of a quasisym-
metric automorphism v € Qv if there exists a function f € H with the norm
Il flm = 1 such that

(13) (A+ DA() = (A= DA, (f).

The function f is said to be an eigenfunction of v associated with the eigenvalue .
The set of all eigenvalues of v € Qr is denoted by A7.

DEFINITION 1.2. A real number X is said to be a spectral value or an ap-
proximate eigenvalue of a quasisymmetric automorphism v € Qg if there exist
functions f, € H, ||f,|lm =1, n =1,2,... such that

(1.4) A+ DAfn) = A= DA, (fa)la =0 as n— oo

The set of all spectral values of v € Qr is denoted by A,. From [P2, Theo-

rem 2.2] we are able to infer the following basic properties of the spectra A% and
Ay
(i
(ii A* Cc Ay

) A, =0 iff vy =Qr(1) ;
)

(iii) if A € A, then |A| > K()+1 .
)
) A
i)

K(v)-1>
(iv) for every v,n € Qr(1) Ay = Apoyon and A5 = A7, o 5
N1 =N and A*:A*_lz/lf‘ ;

iToyoir i oyoiT

1f)\€/1 then —\ € A, andlf)\e/l*then )\6/1*

(v
(v

where it(z) = 2z, z € T. For the proof of these properties cf. [P3]. A natural
question appears when is the inequality (iii) sharp, i.e. when

K(vy)+1

(1.5) inf{|A\|: A e A,} = Ko —1

This is strictly related to the problem of determining the norm ||A,| which al-
ways does not exceed K(7v), cf. [P2, Theorem 1.3]. Namely, ||A,| =K(y) iff the
equality (1.5) holds. In Section 2 of this paper we establish Theorem 2.2 giving
a sufficient condition on a quasisymmetric automorphism v € Qr which guaran-
tees the existence of the smallest positive eigenvalue A € A7 satisfying (1.5). In
particular, this implies the equality ||A,| = K(v). As a consequence we obtain
Corollary 2.3 which characterizes every positive eigenvalue A € A7 as the smallest
positive eigenvalue of some other quasisymmetric automorphism o € Q.
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2. Main results and proofs. In what follows we need the following

LEMMA 2.1 If ¢ € Qa is a quasiconformal extension of a quasisymmetric
automorphism v € Qr and there exist functions f,g € H and a constant c € C
satisfying the equality

(2.1) Rega(z) =Refaop(z)+ec, z€A,
then g = B (f).

Proof. By [P1, Theorem 1.2] CtNH is a dense subset of the space (H, |- ||m)
where the class Ct consists of all continuous real-valued functions on the unit
circle T. Thus there exist functions f,,h, € Ct NH, n € N, approximating the
functions f, g in (H, || - ||m), respectively, i.e.

(2.2) [fn=fllg—0 and |hy, —gllm—0 asn— oc.

Since a harmonic function minimizes the Dirichlet integral within the class of real
continuous functions on the closed unit disc A with given boundary values and
absolutely continuous on a.e. chord of A, parallel to the coordinate axes, setting
gn = By(fn) = fnoy—(fno7)a(0), n € N, we obtain by (2.1) that for any n € N

(2:3) Af|(gn)/A_glA|2dS
= lim_ Af [(9n)'a = (hn)'a*dS = lim_ Af ((faov)a = (hm)a)'PdS
=4 lim [ |9Re((fu 0 7)a = (hm)a)*dS
A
<4 lim [ ORe((fa)a 0@~ (hm)a)?dS =4 [ |ORe((fu)a 00— ga)[*dS
A A

=4 [|0Re((fa)aop — faop)’dS =4 [ |0Re((fn — f)ao)’dS
A A

8_1 ﬂ_lg 5_1 E—&—zg
- 2\0z  oy)’ 2\ 0z Oy

are formal derivatives. This and the K-quasi-invariance of the Dirichlet integral,
cf. [A], lead to

4 [ 10Re((fn = Flao@)?dS <4K(v) [ [0Re(fn — f)al?dS
A

where

A
= K@) [ [(fn— F)al?dS
A

:K('Y)”fn_fniﬂ_’o as n — 00.
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Hence by (2.3)
(2.4 1By(fa) = glls — 0 a5 — oo,

On the other hand, by the continuity of the operator B : (H, || - |lm) — (H, || - ||m)
and (2.2) we have

”B’Y(fn)_B'y(f)HH_’O as n — oQ.
This together with (2.4) yields g = B, (f) which ends the proof. m

The following main theorem involves the notion of a regular quasiconformal
Teichmiiller mapping. We recall that a quasiconformal self-mapping ¢ of the unit
disc A is said to be a regular Teichmiiller mapping if there exists an analytic
function ¢ : A — C and a constant k, 0 < k < 1, such that the complex
dilatation of ¢ has the form
(2.5) 00 _ 1 ¥

do Iyl
THEOREM 2.2. If f € H, ||f|lm > 0, and ¢ is a regular quasiconformal Te-
ichmiiller extension of an automorphism v € Qg to A with the complex dilatation
/
(2.6 - 3la
P I
where A, [A| > 1, is a real constant then A\ € A7 and |\| is the smallest positive
eigenvalue of vy, i.e.

(2.7) Al = mindlpul g€ A3} = min|u] : j € A, ).
Moreover,
A+ 1
2. A = K =
(2.8) [ Al () A1
and
(2.9) A+ DA(f) = (A= 1A (f).
Proof. Let G be a complex function in the unit disc A such that
(2.10) Goyp=fa—Afa.

Differentiating both sides of this equality with respect to z and Z we get the
simultaneous equations

(0G) 0 9 + (9G) 0 0% = —AfL,

(0G) 0 pdp + (9G) 0 0P = fi.
Since dpdp — pdp = 6@%—5@% = |0p|? — |0p|?> > 0 a.e. in A, (2.6) implies
that 0G = 0 a.e. in A. This way G is an analytic function in A, cf. [A]. Moreover,

by the quasi-invariance of the Dirichlet integral we derive from the equality (2.10)
that
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[1G'1?dS =4 [ [0Re((fa — Afa) o~ h)[*dS
A A

<AK(e 1= [ [0Re fa?dS = K(@)|1 = AP [ |f4[?dS < oo.
A A

Thus there exists a function g € H such that G(z) = ga(z) + G(0), z € A, and
by the equality (2.10) we get on A

Regaop+ReG(0) = (1 —A)Re fa,
Imgaop+ImG(0) =—(1+ X)) Im fa.

Hence, by the definition of the harmonic conjugation operator A and Lemma 2.1
we obtain

By(g) =1 =A)f and B,(A(g)) = —(1+ N)A(f).
This gives by (1.1)
(L+NA(f) = (A= 1)ByABTH(f) = (A = 1A, (f)

which proves the equality (2.9). This means that A € AZ. It follows from the
assumption of Lemma 2.1 that ¢ is a K-quasiconformal regular Teichmiiller ex-
tension of the automorphism v on A with K = (J]A\| +1)/(|A| —1). Thus

(2.11) |4, < K(7) < K.

If A < —1 then by the property (vi) [\| = —\ € A7 as well. Therefore there exists
h € H, ||h|lm = 1, satisfying

(AT +DA(R) = (A = 1) Ay (R).

Hence
IA[+1
1Ay (P)ler = [|AA (B) [l = e
because A? = —I and A is an isometry of the space (H, | - ||m) onto itself, cf.

[P2, Theorem 1.3]. Thus ||A,|| > K. This together with (2.11) gives the equality
(2.8) which yields the equality (2.7) because of the properties (ii) and (iii). This
completes the proof. m

Remark. This result seems to be closely related to that in [Kii, p. 302].
The equality (2.8) states additionally that the mapping ¢ in Theorem 2.2 is the
extremal quasiconformal extension of v to the unit disc A, i.e. an extension with
the smallest maximal dilatation. This way we have proved, by the way, Strebel’s
theorem, cf. [St1], [St2], [L], in the case when the function % in (2.5) is a square
of some analytic function, square integrable on A.

The smallest positive eigenvalue of a quasisymmetric automorphism ~ of the
unit circle plays a particularly important role among other eigenvalues of ~.
Namely, every positive eigenvalue A € A% can be expressed as the smallest positive
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eigenvalue of some other quasisymmetric automorphism o € Q. This interesting
fact is the subject of the following corollary to Theorem 2.2.

COROLLARY 2.3. If A € A%, A > 0 is any eigenvalue of an automorphism
v € Qr then there exists an automorphism o € Qr such that

(2.12) (Al = min{|u| - p € Ag} = min{|p|: p € A5}
and

A+1
(2.13) K(o) = 146l = 3=

Moreover, the automorphism o € Qr(K) admits a K(o)-quasiconformal exten-
sion @ to the unit disc A with a complex dilatation

dp _ Lfy
(2.14) 9 NPl
where
(2.15) (A+DA) = (A =1DA(f).

Proof. Assume A € A7, A > 0 is an eigenvalue of an automorphism v € Q.
Then there exists a function f € H, || f||m = 1 satisfying (1.3). It follows from the
mapping theorem, cf. [LV; p. 194], also [B1], [B2], [LK] that there exists a solution
¢ of the Beltrami equation (2.14) being a K-quasiconformal self-mapping of A
with K = (A+1)/(A—1). It is well known that ¢ has a continuous extension to
T as a quasisymmetric automorphism o € Qr, cf. [LV]. Then the assumptions
of Theorem 2.2 are satisfied for the automorphism o € Qr which satisfies the
equalities (2.12), (2.13) and (2.15). This ends the proof. m
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