TOPICS IN COMPLEX ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 31
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 1995

AN APPLICATION OF A THEOREM OF HUBER IN HOLOMORPHIC FOLIATION THEORY

HANS-JÖRG REIFFEN

FB Mathematik/Informatik, Albrechtstr. 28, D-49076 Osnabrück, Germany

Introduction. In the following we are concerned with 1-codimensional holomorphic foliations on a connected paracompact complex manifold X of dimension n

Let U be an open subset of X and $f:U\to C$ a holomorphic submersion onto a 1-dimensional complex manifold C. $f:U\to C$ is called a regular local holomorphic foliation of codimension one. Two regular local holomorphic foliations $f_1:U_1\to C_1,\ f_2:U_2\to C_2$ are called compatible, if for every $x\in U_1\cap U_2$ there exist an open neighborhood $W\subset U_1\cap U_2$ of x and a biholomorphic mapping $g:f_1(W)\to f_2(W)$ such that $f_2=g\circ f_1$ on W. A (global) regular holomorphic foliation $\mathcal F$ of codimension one on X is a system $\{f_j:U_j\to C_j:j\in J\}$ of compatible regular local holomorphic foliations of codimension one such that $\bigcup_{j\in J}U_j=X$.

We identify two regular foliations $\mathcal{F}_1, \mathcal{F}_2$ on X if every local foliation of \mathcal{F}_1 is compatible with every local foliation of \mathcal{F}_2 . In the following we assume that every regular foliation \mathcal{F} on X contains every local foliation which is compatible with those of \mathcal{F} . By a theorem of Frobenius there is a one to one correspondence between the system of regular holomorphic foliations \mathcal{F} of codimension 1 on X and the system of subsheaves Ω' of the sheaf Ω^1 of holomorphic Pfaffian forms on X such that Ω^1/Ω' is a locally free \mathcal{O} -sheaf of rank n-1 and $\omega \wedge d\omega = 0$ for every $\omega \in \Omega'_x, x \in X$.

Let \mathcal{F} be a regular holomorphic foliation on X of codimension 1. A subset L of X is called a *local leaf* or a *plaque* of \mathcal{F} , if there is a local holomorphic foliation $f:U\to C$ of \mathcal{F} such that L is a connected component of a fiber of f. The relatively open subsets of the local leaves of \mathcal{F} constitute a base of a topology \mathcal{T} on X. \mathcal{T} is called the \mathcal{F} -topology. (X,\mathcal{T}) is a complex manifold of dimension n-1. It is not connected. The connected components L of (X,\mathcal{T}) are called

¹⁹⁹¹ Mathematics Subject Classification: 32L30, 32H20.

The paper is in final form and no version of it will be published elsewhere.

leaves of \mathcal{F} . We denote by X/\mathcal{F} the space of all leaves and by $\pi: X \to X/\mathcal{F}$ the natural projection We equip X/\mathcal{F} with the quotient topology and the natural ringed structure. Then π is an open morphism. In [Ho 1] Holmann has proved the following leaf-space theorem.

THEOREM H. X/\mathcal{F} is a complex space if and only if it is Hausdorff.

If X/\mathcal{F} is a complex space then it is a Riemannian surface. Theorem H is also true under more general conditions, especially for foliations of higher codimension.

We are concerned with (singular) 1-codimensional holomorphic foliations on X. Those are pairs (\mathcal{F}',A') , in which $A' \subset X$ is an analytic subset of codimension ≥ 2 and \mathcal{F}' is a regular holomorphic foliation of codimension 1 on $X \setminus A'$. We identify two singular foliations (\mathcal{F}'_1,A'_1) , (\mathcal{F}'_2,A'_2) if $\mathcal{F}'_1=\mathcal{F}'_2$ on $X \setminus (A'_1 \cup A'_2)$. If A is the smallest possible exceptional analytic subset of a singular foliation $\mathcal{F} = (\mathcal{F}^*,A)$, we call sing $\mathcal{F} = A$ the singular locus of \mathcal{F} . \mathcal{F}^* is the maximal corresponding regular foliation of \mathcal{F} . It is a foliation on $X^* = X \setminus \operatorname{sing} \mathcal{F}$. There is a one to one correspondence between the system of holomorphic foliations \mathcal{F} of codimension 1 on X and the system of coherent analytic subsheaves Ω' of Ω^1 such that Ω^1/Ω' is a \mathcal{O} -sheaf without torsion of rank n-1 and $\omega \wedge d\omega = 0$ for every $\omega \in \Omega'_x$, $x \in X$. We get $\operatorname{sing} \mathcal{F} = \operatorname{sing} \Omega^1/\Omega'$, where $\operatorname{sing} \Omega^1/\Omega'$ is the set of all points $x \in X$ such that Ω^1/Ω'_x is not free. For the general theory of singular holomorphic foliations compare [B/R].

Let \mathcal{F} be a holomorphic foliation on X of codimension 1. Let U be an open subset of X and $f:U\to C$ an open holomorphic mapping onto a 1-dimensional complex manifold C. f is called an *integral* of \mathcal{F} on U if f is locally constant on $U^*=U\cap X^*$ relating to the leaf topology of \mathcal{F}^* , i.e. if f defines a regular local foliation belonging to \mathcal{F}^* on a dense open subset of U^* . If theorem H is true the projection $\pi:X\to X/\mathcal{F}$ is an integral of \mathcal{F} . The notion of an integral is a generalization of the notion of a local foliation. For the general theory of integrals compare [B/R] and $[Rf\ 2]$. In [M/M] Mattei and Moussu gave a topological description of integrability in codimension 1.

Theorem M/M. Let $a \in X$. The following statements are equivalent:

- (1) There exist an open neighborhood U of a and an integral of \mathcal{F} on U.
- (2) There exists an open neighborhood V of a such that
 - (a) every leaf of $\mathcal{F}|V^*$ is a closed subset of V^* and
 - (b) a is cluster point of a countable number of leaves of $\mathcal{F}|V^*$ at the most.

Obviously (2) is necessary for (1). Even more, from (1) we conclude a stronger version of (b), namely

(b*) a is cluster point of a finite number of leaves of $\mathcal{F}|V^*$.

Corresponding to the conditions (2) of theorem M/M we define

0.1. DEFINITION. \mathcal{F} is called *geometrically simple* if the following conditions are satisfied:

- (a) every leaf of \mathcal{F}^* is a closed subset of X^* and
- (b) every point $x \in \text{sing } \mathcal{F}$ is a cluster point of a countable number of leaves of \mathcal{F}^* at the most.

Because of theorem M/M we may replace (b) by a stronger condition like (b*). In section 2 we prove the following theorem.

0.2. Theorem. Let \mathcal{F} be geometrically simple and X compact. Then there exists an integral of \mathcal{F} on X.

The theorem is a corollary of the following technical theorem.

- 0.3. Theorem. Let Γ be a set of leaves of \mathcal{F}^* . Assume that
- (a) every $L \in \Gamma$ is a closed subset of X^* ,
- (b) Γ is a locally finite family of subsets of X^* ,
- (c) for every $L \in \Gamma$ the space

$$(X^*/\mathcal{F}^*)\setminus\{M\in\Gamma:M\neq L\}$$

is Hausdorff,

(d) for every $x \in sing \mathcal{F}$ there exists at least one leaf L of \mathcal{F}^* , $L \notin \Gamma$, such that $x \notin \overline{L}$.

Then there exists an integral of \mathcal{F} on X.

From condition (c) in 0.3 we get integrals by theorem H. In section 1 we will combine technics to glue them together. For that purpose we use methods of hyperbolic analysis.

We call \mathcal{F} locally integrable, if for every $a \in X$ there exists an integral f of \mathcal{F} on an open neighborhood of a. By the aid of theorem M/M we get:

 \mathcal{F} is locally integrable iff \mathcal{F} is locally geometrically simple.

Let \mathcal{F} be locally integrable then we can define *local leaves*, \mathcal{F} -topology and global leaves in a similar way as in the regular case (comp. [B/R], [Rf 2]). Therefore we can also define the leaf-space X/\mathcal{F} and the projection $\pi: X \to X/\mathcal{F}$. X/\mathcal{F} is a ringed space in a natural way and π a morphism.

Using the result of [Rf 1] one can show that π is open.

An integral $f: U \to C$ of \mathcal{F} is called *simple* if all fibers of f are connected. We conclude:

Let \mathcal{F} be locally integrable. Then the following statements are equivalent:

- (1) There exists a simple integral $f: X \to C$ of \mathcal{F} .
- (2) X/\mathcal{F} is a complex space.

In this case we can identify $C = X/\mathcal{F}$, $f = \pi$ and, especially X/\mathcal{F} is a Riemannian surface.

We show in the situation of theorem 0.2 that there exists a simple integral of \mathcal{F} on X. Therefore we get:

0.4. COROLLARY. Let \mathcal{F} be geometrically simple and X compact. Then X/\mathcal{F} is a Riemannian surface.

By the way we also show in the situation of theorem 0.3 that there exists an integral of a special type.

Let \mathcal{F} be geometrically simple. We denote by sh \mathcal{F} the \mathcal{F} -saturated hull of sing \mathcal{F} , i.e. the union of all leaves of \mathcal{F} cutting sing \mathcal{F} . The following corollary of 0.3 is a generalization of theorem H in codimension 1.

0.5. COROLLARY. Assume that \mathcal{F} is geometrically simple and sh \mathcal{F} is an analytic subset of X. Then X/\mathcal{F} is a Riemannian surface if and only if it is Hausdorff.

In the last section we will make some remarks on the proof of theorem M/M and generalizations of theorem M/M, theorem 0.2 and corollary 0.4.

1. Some extension theorems. In this section let X, X_1, X_2 be arbitrary complex manifolds and C, C_1, C_2 Riemannian surfaces. By $\mathcal{O}(X_1, X_2)$ we denote the set of all holomorphic mappings $f: X_1 \to X_2$. Let be $D = \{t \in \mathbb{C} : |t| < 1\}$ and $D^* := D \setminus \{0\}$. By \tilde{C} we denote the universal covering of C. It is well known that \tilde{C} is isomorphic to D, \mathbb{C} or \mathbb{P}^1 (comp. for example [Fo]). By removing at most three points we get a Riemannian surface C' from C such that $\tilde{C}' \cong D$.

It is well known that for a Riemannian surface C the modern notion of hyperbolicity coincides with the classical one, i.e. C is hyperbolic iff $\tilde{C} \cong D$ (comp. [Ko]).

In [Hu] Huber has proved the following extension theorem.

HUBER THEOREM. Let C be hyperbolic and $f \in \mathcal{O}(D^*, C)$. If there exists a sequence z_{ν} in D^* such that $\lim z_{\nu} = 0$ and $\lim f(z_{\nu})$ exists then f has an extension $\tilde{f} \in \mathcal{O}(D, C)$.

Huber proved his theorem using the Kobayshi-Royden length of curves in hyperbolic Riemannian surfaces. In [Kw] Kwack generalized the theorem by replacing C by an arbitrary hyperbolic manifold X.

With the aid of Huber's theorem we get:

1.1. LEMMA. Let $c_j \in C_j$, j = 1, 2, and $\varphi \in \mathcal{O}(C_1 \setminus \{c_1\}, C_2 \setminus \{c_2\})$ injective. If there exists a sequence x_{ν} in $C_1 \setminus \{c_1\}$ such that $\lim x_{\nu} = c_1$ and $\lim f(x_{\nu}) = c_2$ then φ has an extension $\tilde{\varphi} \in \mathcal{O}(C_1, C_2)$.

Proof. We may assume that C_2 is hyperbolic. Otherwise we remove some points of $C_2 \setminus \{c_2\}$. Now apply Huber's theorem.

We need also the following lemma:

1.2. LEMMA. Let A be an analytic subset of X of codimension ≥ 2 and $f \in \mathcal{O}(X \setminus A, C)$. Assume that for every $a \in A$ there exists a point $c \in C$ such that a is no cluster point of $f^{-1}(c)$. Then there exists a holomorphic extension $\tilde{f} \in \mathcal{O}(X, C)$ of f.

Proof. We must extend f locally. Therefore we may assume the following:

$$X = D^n$$
, $A = D^m$, $m \le n - 2$,

there exists a point $c \in C \setminus f(X \setminus A)$.

We have $\tilde{C} \cong D$ or $\tilde{C} \cong \mathbb{C}$ or $C \cong \mathbb{P}^1$. If $C \cong \mathbb{P}^1$ we remove c. Therefore we may assume that $\tilde{C} \cong D$ or $\tilde{C} \cong \mathbb{C}$.

Because $X \setminus A$ is simply connected we get a mapping $g \in \mathcal{O}(X \setminus A, \tilde{C})$ such that $f = \pi o g$, π being the projection $\pi : \tilde{C} \to C$. We extend g by the classical Riemannian extension theorem and set $\tilde{f} = \tilde{g} o \pi$, \tilde{g} being the extension of g.

- **2.** The proofs of 0.2, 0.3 and 0.5. In this section let X be a connected paracompact complex manifold of dimension n and \mathcal{F} a holomorphic foliation on X of codimension 1.
- 2.1. DEFINITION. Let \mathcal{F} be locally integrable. Two leaves L, L' of \mathcal{F} are called not separable, $L \leftrightarrow L'$, if $U \cap U' \neq \emptyset$ for every neighborhood U resp. U' of L resp. L' in X/\mathcal{F} .
- 2.2. Remark and definition. Let $f: X \to C$ be an integral of \mathcal{F} . Then there exists a unique mapping $\tilde{f}: X/\mathcal{F} \to C$ such that $\tilde{f}o\pi = f$. \tilde{f} is a surjective open morphism. We get: $L \leftrightarrow M \Rightarrow \tilde{f}(L) = \tilde{f}(M)$. f is called maximally separating (m.s.) if $\tilde{f}(L) = \tilde{f}(M) \Leftrightarrow L \leftrightarrow L'$.
- Let $f: X \to C$ be a m.s. integral. Then we can identify C with the quotient $(\widetilde{X/\mathcal{F}})$ of (X/\mathcal{F}) by \leftrightarrow and f with the projection $\tilde{\pi}: X \to (\widetilde{X/\mathcal{F}})$.

A simple integral is a m.s. integral.

Proof of 0.3. In 0.3 we allow that $\Gamma = \emptyset$. Then we only have the condition, that X^*/\mathcal{F}^* is Hausdorff, and condition (d).

First assume that sing $\mathcal{F} = \emptyset$, i.e. that \mathcal{F} is a regular foliation. If $\Gamma = \emptyset$ then 0.3 follows by theorem H. Let $\Gamma \neq \emptyset$.

Let $L \in \Gamma$. Then L is a closed subset of X. By a theorem of Holman (comp. [Ho 1]) we get that L is an analytic subset of X. Because Γ is locally finite we conclude that $A = \bigcup_{L \in \Gamma} L$ is an analytic subset of X. The sets $X_0 = X \setminus A$ and $X_L = X_0 \cup L$, $L \in \Gamma$ are open subsets of X. By theorem H we can conclude that

$$C_0 = (X/\mathcal{F}) \setminus \Gamma$$
 and $C_L = C_0 \cup \{L\}, L \in \Gamma$,

are Riemannian surfaces. The natural projections $f_0 = X_0 \to C_0$, $f_L : X_L \to C_L$ are simple and therefore m.s. integrals. Now we consider the system \mathcal{I} of all m.s. integrals $f: U \to C$, in which U is an open \mathcal{F} -saturated subset of X containing X_0 . $f_0 = X_0 \to C_0$ and $f_L : X_L \to C_L$ are elements of \mathcal{I} . If we norm the m.s. integrals as described following 2.2 then we can identify every element $f: U \to C$ of \mathcal{I} with U. If $f: U \to C$, $f': U' \to C'$ belong to \mathcal{I} , $U \subset U'$, then we get $C \subset C'$ in a natural way. Therefore the inclusion of the domains of definiton of the integrals gives an ordering \leq on \mathcal{I} . The condition of Zorn's lemma is satisfied. We consider a maximal element $f: U \to C$ of \mathcal{I} .

By an indirect argument we show that U=X. Assume that there exists an element $L \in \Gamma$, $L \not\subset U$. We have $C_0 = C \cap C_L$ in a natural way. Let $S = f(U \cap A)$. There exist two alternatives.

1st case: For every $\sigma \in S$ there exist neighborhoods W of σ in C and V of L in C_L such that $W \cap C_0 \cap V = \emptyset$. Then we consider the disjoint union $C \cup C_L$ and the Riemannian surface

$$\tilde{C} := C \cup C_L/\mathrm{id}_{C_0}.$$

Let $\tilde{f}: U \cup L \to \tilde{C}$ be induced by f and f_L . It belongs to \mathcal{I} ; a contradiction.

2nd case: There exist a point $\sigma \in S$ and a sequence x_{ν} in C_0 such that $x_{\nu} \to \sigma$ in C and $x_{\nu} \to L$ in C_L . Applying 1.1 we get an element $\tilde{f}: U \cup L \to C$ of \mathcal{I} ; a contradiction.

Theorem 0.3 is proven in the regular case. We got a m.s. integral.

Now let sing $\mathcal{F} \neq \emptyset$. There exists a m.s. integral $f^*: X^* \to C$ of \mathcal{F}^* on X^* . Because of condition (d) we can apply 1.2 and get an integral $f: X \to C$ of \mathcal{F} . It is a m.s. integral.

Proof of 0.5. We set $\Lambda = X^*/\mathcal{F}^*$, $S = \operatorname{sing} \mathcal{F}$. Let $L \in \Lambda$. Then L is a closed subset of X^* and therefore an analytic subset of X^* . By Thullen's extension we conclude that the closure \overline{L} of L is an analytic subset of X because of dim $S \leq n-2$. We call L singular if $\overline{L} \cap S \neq \emptyset$, otherwise we call it regular. The set of all singular leaves we denote by Γ .

If $L \in \Gamma$ then there exists an irreducible component S' of S such that $S' \subset \overline{L}$. If S' is an irreducible component of S then the number of leaves $L \in \Gamma$ such that $S' \subset \overline{L}$ is greater than zero, but finite.

We need these considerations for proving 0.2 and 0.5. Now we start with the proof of 0.5. Let X/\mathcal{F} be Hausdorff. We show that Γ satisfies the conditions of 0.3. (a), (c) and (d) are trivial. Because the sets \overline{L} , $L \in \Gamma$, constitute the irreducible components of sh \mathcal{F} , also (b) is valid.

Let $f: X \to C$ be a m.s. integral of \mathcal{F} . Then we can identify $C = (\widetilde{X/\mathcal{F}}) = X/\mathcal{F}$.

Proof of 0.2. We use the same procedure as in the proof of 0.5 and show that Γ satisfies the conditions of 0.3. (a) and (d) are trivial.

Because S is compact it only has a finite number of irreducible components. Therefore Γ is finite and (b) is true.

We prove (c). Let be $X_0 := \bigcup_{L \in \Lambda \backslash \Gamma} L$. X_0 is an open \mathcal{F}^* -saturated connected subset of X^* and \mathcal{F} induces a 1-codimensional regular foliation on X_0 with compact leaves. Therefore every $L \in \Lambda \backslash \Gamma$ is stable, i.e. every leaf $L \in \Lambda \backslash \Gamma$ has a fundamental system of open \mathcal{F} -saturated neighborhoods (comp. [Ka], [Ho 2]). Now consider $L, M \in \Lambda$, $L \not\in \Gamma$. If $M \not\in \Gamma$ then there exist disjoint open neighborhoods of L resp. M in Λ . Let be $M \in \Gamma$ and assume that there are no disjoint open neighborhoods of L resp. M in Λ .

Consider a distance d on X defining the topology of X and consider the space $\mathcal{A}(X) := \{Y \subset X : Y \text{ non-empty and closed}\}$. We equip $\mathcal{A}(X)$ with the Hausdorff distance δ . Then $(\mathcal{A}(X), \delta)$ is a compact metric space.

By our assumption we get a sequence $L_{\nu} \in \Lambda \backslash \Gamma$ converging in $\mathcal{A}(X)$ such that $L \cup M \subset \lim L_{\nu}$. Because L is stable we conclude that $\lim L_{\nu} = L$, L = M; a contradiction.

The conditions of 0.3 are satisfied.

Let $f: X \to C$ be a m.s. integral of \mathcal{F} . We show that f is simple. f is constant on the leaves of \mathcal{F} . We show that f separates different leaves of \mathcal{F} . We argue indirectly. Let $L, M \in \Gamma$. By \tilde{L}, \tilde{M} we denote the leaves of \mathcal{F} defined by L resp. M. Assume that $\tilde{L} \neq \tilde{M}$, but $f(\tilde{L}) = f(\tilde{M})$. Because f is open there exists a converging sequence $L_{\nu} \in \Lambda \backslash \Gamma$ such that $L \cup M \subset \lim L_{\nu}$. Because $\lim L_{\nu}$ is connected and $\tilde{L} \neq \tilde{M}$ we can find a point $a \in X_0 \cap \lim L_{\nu}$. Let N be the leaf passing through a. Then we get $\lim L_{\nu} = N$, L = M = N; a contradiction.

3. Remarks. For the following we refer to [Rf 3]. A more official publication will be made by G. Bohnhorst.

Again we consider a connected paracompact complex manifold of dimension n and a holomorphic foliation \mathcal{F} on X of codimension 1.

Using the convergence techniques of the proof for 0.2 and using a local stability theorem of Bohnhorst one can give a new geometrical proof for theorem M/M.

In a similar way and using an idea of Milnor ([Mi]) and techniques of semianalytic geometry ([Lo]) one can prove a semiglobal generalization of theorem M/M (theorem 0.2 in [Rf 3]):

- 3.1. THEOREM. Assume that \mathcal{F} is geometrically simple and let K be a compact subset of a leaf of \mathcal{F} . Then there exist an open neighborhood U of K in X and an integral f of \mathcal{F} on U.
- In 3.1 we can choose U connected and f simple. Then $U/(\mathcal{F}|U)$ is a Riemannian surface.

Modifying the proof of 0.2 a little bit one can show (corollary 0.5 in [Rf 3]):

3.2. Theorem. Let \mathcal{F} be geometrically simple and $\operatorname{sh} \mathcal{F}$ an analytic subset of X. Assume that every regular leaf of \mathcal{F}^* is compact. Then X/\mathcal{F} is a Riemannian surface.

Applying theorem 3.1 and 3.2 we get the following result (corollary 0.6 in [Rf 3]):

3.3. Theorem. Let \mathcal{F} be geometrically simple. Assume that all leaves of \mathcal{F} are compact. Then X/\mathcal{F} is a Riemannian surface.

This is a generalization of Satz 3 in [Ka] resp. proposition 6.2 in [Ho 2] and of course of our corollary 0.4.

References

- [B/R] G. Bohnhorst und H.-J. Reiffen, *Holomorphe Blätterungen mit Singularitäten*, Math. Gottingensis, Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Heft 5, 1985.
 - [Fo] O. Forster, *Riemannsche Flächen*, Heidelberger Taschenbücher 184, Springer, Berlin, 1977.
- [Ho 1] H. Holmann, Holomorphe Blätterungen komplexer Räume, Comment. Math. Helv. 47 (1972), 185–204.
- [Ho 2] —, On the stability of holomorphic foliations with all leaves compact, in: Variétés analytiques compactes, Colloque Nice, 1977, Lecture Notes in Math. 683, Springer, 1978.
 - [Hu] H. Huber, Über analytische Abbildungen Riemannscher Flächen in sich, Comm. Math. Helv. 27 (1953), 1–73.
 - [Ka] B. Kaup, Ein geometrisches Endlichkeitskriterium für Untergruppen von Aut (ℂ, 0) und holomorphe 1-codimensionale Blätterungen, Comment. Math. Helv. 53 (1978), 295−299.
 - [Ko] Sh. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math. 2, Marcel Dekker, New York, 1970.
- [Kw] M. H. Kwack, Generalization of the big Picard Theorem, Ann. of Math. 90 (1969), 9-22
- [Lo] S. Lojasiewicz, Ensembles semianalytiques, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, 1965.
- [M/M] J. F. Mattei et R. Moussu, *Holonomie et intégrales premières*, Ann. Sci. École Norm. Sup. (4) 13 (1980), 469–523.
 - [Mi] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton University Press and the University of Tokyo Press, 1968.
- [Rf 1] H.-J. Reiffen, Einfache holomorphe Funktionen, Math. Ann. 259 (1982), 99–106.
- [Rf 2] —, Leaf spaces and integrability, in: Holomorphic Dynamics, Proceedings of the Second International Colloquium on Dynamical Systems, Mexico, 1986, Lecture Notes in Math. 1345, Springer, 1988.
- [Rf 3] —, Integrals for holomorphic foliations of codimension one, Osnabrücker Schriften zur Mathematik, Reihe M, Heft 11, 1992.