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Introduction. In the following we are concerned with 1-codimensional holo-
morphic foliations on a connected paracompact complex manifold X of dimen-
sion n.

Let U be an open subset of X and f : U→C a holomorphic submersion onto a
1-dimensional complex manifold C. f : U→C is called a regular local holomorphic
foliation of codimension one. Two regular local holomorphic foliations f1 : U1 →
C1, f2 : U2 → C2 are called compatible, if for every x ∈ U1 ∩ U2 there exist an
open neighborhood W ⊂ U1∩U2 of x and a biholomorphic mapping g : f1(W )→
f2(W ) such that f2 = g ◦ f1 on W . A (global) regular holomorphic foliation F of
codimension one on X is a system {fj : Uj → Cj : j ∈ J} of compatible regular
local holomorphic foliations of codimension one such that

⋃
j∈J Uj = X.

We identify two regular foliations F1,F2 on X if every local foliation of F1

is compatible with every local foliation of F2. In the following we assume that
every regular foliation F on X contains every local foliation which is compatible
with those of F . By a theorem of Frobenius there is a one to one correspondence
between the system of regular holomorphic foliations F of codimension 1 on X
and the system of subsheaves Ω′ of the sheaf Ω1 of holomorphic Pfaffian forms
on X such that Ω1/Ω′ is a locally free O-sheaf of rank n− 1 and ω ∧ dω = 0 for
every ω ∈ Ω′x, x ∈ X.

Let F be a regular holomorphic foliation on X of codimension 1. A subset L
of X is called a local leaf or a plaque of F , if there is a local holomorphic foliation
f : U → C of F such that L is a connected component of a fiber of f . The
relatively open subsets of the local leaves of F constitute a base of a topology
T on X. T is called the F-topology. (X, T ) is a complex manifold of dimension
n − 1. It is not connected. The connected components L of (X, T ) are called
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leaves of F . We denote by X/F the space of all leaves and by π : X → X/F
the natural projection We equip X/F with the quotient topology and the natural
ringed structure. Then π is an open morphism. In [Ho 1] Holmann has proved
the following leaf-space theorem.

Theorem H. X/F is a complex space if and only if it is Hausdorff.

If X/F is a complex space then it is a Riemannian surface. Theorem H is also
true under more general conditions, especially for foliations of higher codimension.

We are concerned with (singular) 1-codimensional holomorphic foliations on
X. Those are pairs (F ′, A′), in which A′ ⊂ X is an analytic subset of codimension
≥ 2 and F ′ is a regular holomorphic foliation of codimension 1 on X\A′. We
identify two singular foliations (F ′1, A′1), (F ′2, A′2) if F ′1 = F ′2 on X\(A′1 ∪ A′2).
If A is the smallest possible exceptional analytic subset of a singular foliation
F = (F∗, A), we call sing F = A the singular locus of F . F∗ is the maximal
corresponding regular foliation of F . It is a foliation on X∗ = X\ singF . There
is a one to one correspondence between the system of holomorphic foliations F
of codimension 1 on X and the system of coherent analytic subsheaves Ω′ of Ω1

such that Ω1/Ω′ is a O-sheaf without torsion of rank n − 1 and ω ∧ dω = 0 for
every ω ∈ Ω′x, x ∈ X. We get sing F = sing Ω1/Ω′, where sing Ω1/Ω′ is the set of
all points x ∈ X such that Ω1

x/Ω
′
x is not free. For the general theory of singular

holomorphic foliations compare [B/R].
Let F be a holomorphic foliation on X of codimension 1. Let U be an open

subset of X and f : U → C an open holomorphic mapping onto a 1-dimensional
complex manifold C. f is called an integral of F on U if f is locally constant
on U∗ = U ∩ X∗ relating to the leaf topology of F∗, i.e. if f defines a regular
local foliation belonging to F∗ on a dense open subset of U∗. If theorem H
is true the projection π : X → X/F is an integral of F . The notion of an
integral is a generalization of the notion of a local foliation. For the general theory
of integrals compare [B/R] and [Rf 2]. In [M/M] Mattei and Moussu gave a
topological description of integrability in codimension 1.

Theorem M/M. Let a ∈ X. The following statements are equivalent :

(1) There exist an open neighborhood U of a and an integral of F on U .
(2) There exists an open neighborhood V of a such that

(a) every leaf of F|V ∗ is a closed subset of V ∗ and
(b) a is cluster point of a countable number of leaves of F|V ∗ at the most.

Obviously (2) is necessary for (1). Even more, from (1) we conclude a stronger
version of (b), namely

(b∗) a is cluster point of a finite number of leaves of F|V ∗.
Corresponding to the conditions (2) of theorem M/M we define

0.1. Definition. F is called geometrically simple if the following conditions
are satisfied:
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(a) every leaf of F∗ is a closed subset of X∗ and
(b) every point x ∈ sing F is a cluster point of a countable number of leaves

of F∗ at the most.

Because of theorem M/M we may replace (b) by a stronger condition like (b∗).
In section 2 we prove the following theorem.

0.2. Theorem. Let F be geometrically simple and X compact. Then there
exists an integral of F on X.

The theorem is a corollary of the following technical theorem.

0.3. Theorem. Let Γ be a set of leaves of F∗. Assume that

(a) every L ∈ Γ is a closed subset of X∗,
(b) Γ is a locally finite family of subsets of X∗,
(c) for every L ∈ Γ the space

(X∗/F∗)\{M ∈ Γ : M 6= L}
is Hausdorff ,

(d) for every x ∈ sing F there exists at least one leaf L of F∗, L 6∈ Γ, such
that x 6∈ L.

Then there exists an integral of F on X.

From condition (c) in 0.3 we get integrals by theorem H. In section 1 we
will combine technics to glue them together. For that purpose we use methods of
hyperbolic analysis.

We call F locally integrable, if for every a ∈ X there exists an integral f of F
on an open neighborhood of a. By the aid of theorem M/M we get:

F is locally integrable iff F is locally geometrically simple.

Let F be locally integrable then we can define local leaves, F-topology and
global leaves in a similar way as in the regular case (comp. [B/R], [Rf 2]). Therefore
we can also define the leaf-space X/F and the projection π : X → X/F . X/F is
a ringed space in a natural way and π a morphism.

Using the result of [Rf 1] one can show that π is open.
An integral f : U → C of F is called simple if all fibers of f are connected.

We conclude:

Let F be locally integrable. Then the following statements are equivalent :

(1) There exists a simple integral f : X → C of F .
(2) X/F is a complex space.

In this case we can identify C = X/F , f = π and , especially X/F is a Rieman-
nian surface.

We show in the situation of theorem 0.2 that there exists a simple integral of
F on X. Therefore we get:
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0.4. Corollary. Let F be geometrically simple and X compact. Then X/F
is a Riemannian surface.

By the way we also show in the situation of theorem 0.3 that there exists an
integral of a special type.

Let F be geometrically simple. We denote by sh F the F-saturated hull of
sing F , i.e. the union of all leaves of F cutting sing F . The following corollary of
0.3 is a generalization of theorem H in codimension 1.

0.5. Corollary. Assume that F is geometrically simple and sh F is an ana-
lytic subset of X. Then X/F is a Riemannian surface if and only if it is Hausdorff.

In the last section we will make some remarks on the proof of theorem M/M
and generalizations of theorem M/M, theorem 0.2 and corollary 0.4.

1. Some extension theorems. In this section let X,X1, X2 be arbitrary
complex manifolds and C,C1, C2 Riemannian surfaces. By O(X1, X2) we denote
the set of all holomorphic mappings f : X1 → X2. Let be D = {t ∈ C : |t| < 1}
and D∗ := D\{0}. By C̃ we denote the universal covering of C. It is well known
that C̃ is isomorphic to D, C or P1 (comp. for example [Fo]). By removing at
most three points we get a Riemannian surface C ′ from C such that C̃ ′ ∼= D.

It is well known that for a Riemannian surface C the modern notion of hy-
perbolicity coincides with the classical one, i.e. C is hyperbolic iff C̃ ∼= D (comp.
[Ko]).

In [Hu] Huber has proved the following extension theorem.

Huber Theorem. Let C be hyperbolic and f ∈ O(D∗, C). If there exists
a sequence zν in D∗ such that lim zν = 0 and lim f(zν) exists then f has an
extension f̃ ∈ O(D,C).

Huber proved his theorem using the Kobayshi-Royden length of curves in
hyperbolic Riemannian surfaces. In [Kw] Kwack generalized the theorem by re-
placing C by an arbitrary hyperbolic manifold X.

With the aid of Huber’s theorem we get:

1.1. Lemma. Let cj ∈ Cj , j = 1, 2, and ϕ ∈ O(C1\{c1}, C2\{c2}) injective. If
there exists a sequence xν in C1\{c1} such that limxν = c1 and lim f(xν) = c2
then ϕ has an extension ϕ̃ ∈ O(C1, C2).

P r o o f. We may assume that C2 is hyperbolic. Otherwise we remove some
points of C2\{c2}. Now apply Huber’s theorem.

We need also the following lemma:

1.2. Lemma. Let A be an analytic subset of X of codimension ≥ 2 and f ∈
O(X\A,C). Assume that for every a∈A there exists a point c∈C such that a is
no cluster point of f−1(c). Then there exists a holomorphic extension f̃ ∈O(X,C)
of f .
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P r o o f. We must extend f locally. Therefore we may assume the following:

X = Dn, A = Dm, m ≤ n− 2,

there exists a point c ∈ C\f(X\A).
We have C̃ ∼= D or C̃ ∼= C or C ∼= P1. If C ∼= P1 we remove c. Therefore we

may assume that C̃ ∼= D or C̃ ∼= C.
Because X\A is simply connected we get a mapping g ∈ O(X\A, C̃) such

that f = πog, π being the projection π : C̃ → C. We extend g by the classical
Riemannian extension theorem and set f̃ = g̃oπ, g̃ being the extension of g.

2. The proofs of 0.2, 0.3 and 0.5. In this section let X be a connected
paracompact complex manifold of dimension n and F a holomorphic foliation on
X of codimension 1.

2.1. Definition. Let F be locally integrable. Two leaves L, L′ of F are called
not separable, L↔ L′, if U ∩U ′ 6= ∅ for every neighborhood U resp. U ′ of L resp.
L′ in X/F .

2.2. Remark and definition. Let f : X→C be an integral of F . Then there
exists a unique mapping f̃ : X/F → C such that f̃oπ = f . f̃ is a surjective open
morphism. We get: L ↔ M ⇒ f̃(L) = f̃(M). f is called maximally separating
(m.s.) if f̃(L) = f̃(M)⇔ L↔ L′.

Let f : X → C be a m.s. integral. Then we can identify C with the quotient˜(X/F) of (X/F) by ↔ and f with the projection π̃ : X → (X̃/F).
A simple integral is a m.s. integral.

P r o o f o f 0.3. In 0.3 we allow that Γ = ∅. Then we only have the condition,
that X∗/F∗ is Hausdorff, and condition (d).

First assume that sing F = ∅, i.e. that F is a regular foliation. If Γ = ∅ then
0.3 follows by theorem H. Let Γ 6= ∅.

Let L ∈ Γ. Then L is a closed subset of X. By a theorem of Holman (comp.
[Ho 1]) we get that L is an analytic subset of X. Because Γ is locally finite we
conclude that A =

⋃
L∈Γ L is an analytic subset of X. The sets X0 = X\A and

XL = X0 ∪L, L ∈ Γ are open subsets of X. By theorem H we can conclude that

C0 = (X/F)\Γ and CL = C0 ∪ {L}, L ∈ Γ,

are Riemannian surfaces. The natural projections f0 = X0 → C0, fL : XL → CL
are simple and therefore m.s. integrals. Now we consider the system I of all m.s.
integrals f : U → C, in which U is an open F-saturated subset of X containing
X0. f0 = X0 → C0 and fL : XL → CL are elements of I. If we norm the m.s.
integrals as described following 2.2 then we can identify every element f : U → C
of I with U . If f : U → C, f ′ : U ′ → C ′ belong to I, U ⊂ U ′, then we get
C ⊂ C ′ in a natural way. Therefore the inclusion of the domains of definiton of
the integrals gives an ordering ≤ on I. The condition of Zorn’s lemma is satisfied.
We consider a maximal element f : U → C of I.
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By an indirect argument we show that U = X. Assume that there exists an
element L ∈ Γ, L 6⊂ U . We have C0 = C∩CL in a natural way. Let S = f(U∩A).
There exist two alternatives.

1st case: For every σ ∈ S there exist neighborhoods W of σ in C and V of L
in CL such that W ∩ C0 ∩ V = ∅. Then we consider the disjoint union C ∪ CL
and the Riemannian surface

C̃ := C ∪ CL/idC0 .

Let f̃ : U ∪ L→ C̃ be induced by f and fL. It belongs to I; a contradiction.

2nd case: There exist a point σ ∈ S and a sequence xν in C0 such that xν → σ
in C and xν → L in CL. Applying 1.1 we get an element f̃ : U ∪ L→ C of I; a
contradiction.

Theorem 0.3 is proven in the regular case. We got a m.s. integral.
Now let sing F 6= ∅. There exists a m.s. integral f∗ : X∗ → C of F∗ on X∗.

Because of condition (d) we can apply 1.2 and get an integral f : X → C of F .
It is a m.s. integral.

P r o o f o f 0.5. We set Λ = X∗/F∗, S = sing F . Let L ∈ Λ. Then L is a
closed subset ofX∗ and therefore an analytic subset ofX∗. By Thullen’s extension
we conclude that the closure L of L is an analytic subset of X because of dim
S ≤ n− 2. We call L singular if L ∩ S 6= ∅, otherwise we call it regular. The set
of all singular leaves we denote by Γ.

If L ∈ Γ then there exists an irreducible component S′ of S such that S′ ⊂ L.
If S′ is an irreducible component of S then the number of leaves L ∈ Γ such that
S′ ⊂ L is greater than zero, but finite.

We need these considerations for proving 0.2 and 0.5. Now we start with the
proof of 0.5. Let X/F be Hausdorff. We show that Γ satisfies the conditions of 0.3.
(a), (c) and (d) are trivial. Because the sets L, L ∈ Γ, constitute the irreducible
components of sh F , also (b) is valid.

Let f : X → C be a m.s. integral of F . Then we can identify C = ˜(X/F) =
X/F .

P r o o f o f 0.2. We use the same procedure as in the proof of 0.5 and show
that Γ satisfies the conditions of 0.3. (a) and (d) are trivial.

Because S is compact it only has a finite number of irreducible components.
Therefore Γ is finite and (b) is true.

We prove (c). Let be X0 :=
⋃
L∈Λ\Γ L. X0 is an open F∗-saturated connected

subset of X∗ and F induces a 1-codimensional regular foliation on X0 with com-
pact leaves. Therefore every L ∈ Λ\Γ is stable, i.e. every leaf L ∈ Λ\Γ has a
fundamental system of open F-saturated neighborhoods (comp. [Ka], [Ho 2]).
Now consider L,M ∈ Λ, L 6∈ Γ. If M 6∈ Γ then there exist disjoint open neigh-
borhoods of L resp. M in Λ. Let be M ∈ Γ and assume that there are no disjoint
open neighborhoods of L resp. M in Λ.
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Consider a distance d on X defining the topology of X and consider the space
A(X) := {Y ⊂ X : Y non-empty and closed}. We equip A(X) with the Hausdorff
distance δ. Then (A(X), δ) is a compact metric space.

By our assumption we get a sequence Lν ∈ Λ\Γ converging in A(X) such that
L ∪M ⊂ limLν . Because L is stable we conclude that limLν = L, L = M ; a
contradiction.

The conditions of 0.3 are satisfied.
Let f : X → C be a m.s. integral of F . We show that f is simple. f is

constant on the leaves of F . We show that f separates different leaves of F . We
argue indirectly. Let L,M ∈ Γ. By L̃, M̃ we denote the leaves of F defined by L
resp. M . Assume that L̃ 6= M̃ , but f(L̃) = f(M̃). Because f is open there exists
a converging sequence Lν ∈ Λ\Γ such that L ∪M ⊂ limLν . Because limLν is
connected and L̃ 6= M̃ we can find a point a ∈ X0 ∩ limLν . Let N be the leaf
passing through a. Then we get limLν = N , L = M = N ; a contradiction.

3. Remarks. For the following we refer to [Rf 3]. A more official publication
will be made by G. Bohnhorst.

Again we consider a connected paracompact complex manifold of dimension
n and a holomorphic foliation F on X of codimension 1.

Using the convergence techniques of the proof for 0.2 and using a local stability
theorem of Bohnhorst one can give a new geometrical proof for theorem M/M.

In a similar way and using an idea of Milnor ([Mi]) and techniques of semian-
alytic geometry ([ Lo]) one can prove a semiglobal generalization of theorem M/M
(theorem 0.2 in [Rf 3]):

3.1. Theorem. Assume that F is geometrically simple and let K be a compact
subset of a leaf of F . Then there exist an open neighborhood U of K in X and an
integral f of F on U .

In 3.1 we can choose U connected and f simple. Then U/(F|U) is a Rieman-
nian surface.

Modifying the proof of 0.2 a little bit one can show (corollary 0.5 in [Rf 3]):

3.2. Theorem. Let F be geometrically simple and shF an analytic subset of
X. Assume that every regular leaf of F∗ is compact. Then X/F is a Riemannian
surface.

Applying theorem 3.1 and 3.2 we get the following result (corollary 0.6 in
[Rf 3]):

3.3. Theorem. Let F be geometrically simple. Assume that all leaves of F
are compact. Then X/F is a Riemannian surface.

This is a generalization of Satz 3 in [Ka] resp. proposition 6.2 in [Ho 2] and
of course of our corollary 0.4.
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Math. Gottingensis, Schriftenreihe des Sonderforschungsbereichs Geometrie und Anal-
ysis, Heft 5, 1985.
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