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Abstract. Let r∗n ∈ Rnn be the best rational approximant to f(x) = xα, 1 > α > 0, on
[0, 1] in the uniform norm. It is well known that all poles and zeros of r∗n lie on the negative axis
R<0. In the present paper we investigate the asymptotic distribution of these poles and zeros as
n→∞. In addition we determine the asymptotic distribution of the extreme points of the error
function en = f − r∗n on [0, 1], and survey related convergence results.

1. Introduction. Let Pn denote the set of all polynomials of degree at most
n ∈ N with real coefficients, Rmn the set {p/q | p ∈ Pm, q 6≡ 0}, m,n ∈ N, of
rational functions. The best rational approximant r∗mn = r∗mn(f, [0, 1]; ·) ∈ Rmn
to the function f on the set [0, 1] together with the minimal approximation error
Emn = Emn(f, [0, 1]) is defined by

(1.1) Emn(f, [0, 1]) := ‖f − r∗mn‖[0,1] = inf
r∈Rmn

‖f − r‖[0,1],

where ‖ · ‖[0,1] denotes the sup-norm on [0, 1]. It is well known that the best
approximant r∗n := r∗nn to the function f(x) = xα on [0, 1] exists and is unique
(see [Me], 9.1 and 9.2, or [Ri], 5.1).
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The approximation of the function xα on [0, 1] or equivalently of |x|α on
[−1, 1], α > 0, by polynomials or rational functions is a model problem for the
approximation of more general classes of functions. Much effort has been in-
vested in studying the convergence speed of the sequences {En0(|x|α, [−1, 1])}
and {Enn(|x|α, [−1, 1])} as n→∞. In the polynomial case a major was the pub-
lication of [Be1] and [Be2] by S. Bernstein in 1913 and 1938, and in the rational
case the publication of [Ne] by D. J. Newman in 1964. The papers [Be1] and [Ne]
deal with polynomial and rational best approximation of |x| an [−1, 1], which is
the most important special case of the more general problem of approximating
|x|α on [−1, 1] for α ∈ R+ \ 2N or xα on [0, 1] for α ∈ R+ \ N.

Since fα(x) = |x|α is an even function, it is an immediate consequence of the
uniqueness of best rational approximants that all best approximants r∗n, n ∈ N,
on [−1, 1], are also even functions, and therefore we have

(1.2) r∗2m+i,2m+j = r∗2m,2m = r∗2m for m ∈ N and i, j ∈ {0, 1}.
Replacing x2 by x in both functions f2α and r∗2m gives us the identity

(1.3) r∗2n(f2α, [−1, 1];x) = r∗n(fα, [0, 1];x2) for all n ∈ N.
Hence, the approximation of |x|2α on [−1, 1] and xα on [0, 1], α > 0, poses
equivalent problems.

Newman’s path breaking result in [Ne] has been improved and extended. Es-
pecially, it has been extended to the rational approximation of xα and |x|α. Im-
portant contributions can be found in [FrSz], [Bu1–2], [Go1–3], [Vy1–3], and [Ga].
Surveys are contained in [Vy3] and [St2]. The best result known presently for the
rational approximation of |x| on [−1, 1] is

Theorem 1 ([St1]). We have

(1.4) Enn(|x|, [−1, 1]) = 8e−π
√
n(1 + o(1)) as n→∞,

where o(·) denotes Landau’s little oh.

For the more general problem of approximating xα on [0, 1] the proof of the
following theorem has just been announced:

Theorem 2 ([St3]). For α > 0 we have

(1.5) Enn(xα, [0, 1]) = 4α+1| sinπα|e−2π
√
αn(1 + o(1)) as n→∞.

R e m a r k. With identity (1.3) we get as a corollary to Theorem 2 the error
formula

(1.6) Enn(|x|α, [−1, 1]) = 4α/2+1
∣∣∣ sinπα

2

∣∣∣e−π√αn(1 + o(1)) as n→∞

for α > 0. Choosing α = 1 shows that (1.4) is a special case of (1.6). Indepen-
dently of [St3] formula (1.5) has been conjectured in [VC] on the basis of high
precision calculations of the limits limn→∞ e2π

√
αnEnn(xα, [0, 1]) for the values

α = 1/8, 1/4, 3/8, 5/8, 3/4, 7/8.
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The doubly infinite array {r∗m,n}∞m,n=0 of all best approximants to xα on [0, 1]
is called the Walsh table of xα. The sequence {r∗n} is its diagonal. In [SaSt1] and
[SaSt2] the convergence behavior of off-diagonal ray sequences (i.e. sequences
{r∗mn} that satisfy m/n → c 6= 1) has been investigated. These are a bridge be-
tween diagonal sequences of rational approximants and polynomial approximants.
Consequently, their convergence behavior shows a mixture of characteristics of
booth types of approximants.

In the present paper we prove results about the asymptotic distribution of
poles and zeros of the (diagonal) approximants r∗n as n → ∞, and results about
the asymptotic distribution of the extreme points of the error function

(1.7) en(z) := zα − r∗n(z)

on [0, 1] as n→∞.
Precise knowledge (or a good guess) about the distribution of poles, zeros, and

extreme points was basic for the investigation of convergence of r∗n in [Ne], [Vy1],
[Vy2], and [Ga]. The understanding of these distributions gives insight into the
nature of the convergence process, and it can be hoped that it may be helpful in
finding new strategies for the investigation of the convergence behavior of rational
approximants to more general classes of functions than the family xα, α > 0.

In the present paper we shall prove results only under the restriction 0 < α < 1
in case of rational approximation of xα on [0, 1], and correspondingly 0 < α < 2
in case of the approximation of |x|α on [−1, 1].

All results will be formulated in the next section and immediate consequences
will also be proved there. The two main theorems will be proved in Section 3.

2. Results. In the first lemma we assemble known results about the location
of poles, zeros, and extreme points for n ∈ N fixed. These results can be found in
[SaSt2], Lemma 1.5 and Theorem 1.7.

Lemma 2.1. Let 0 < α < 1.

(a) The best rational approximant r∗n = r∗nn(xα, [0, 1]; ·) is of exact numerator
and denominator degree n.

(b) All n zeros ζ1n, . . . , ζnn and poles π1n, . . . , πnn of r∗n lie on the negative
half-axis R<0 and are interlacing ; i.e., with an appropriate numbering we have

(2.1) 0 > ζ1n > π1n > ζ2,n > π2,n > . . . > ζnn > πnn > −∞.
(c) The error function (1.7) has exactly 2n+2 extreme points η1n, . . . , η2n+2,n

on [0, 1], and with an appropriate numbering we have

(2.2) 0 = η1n < η2,n < . . . < η2n+2,n = 1,
(2.3) ηαjn − r∗n(ηjn) = (−1)JEnn(xα, [0, 1]), j = 1, . . . , 2n+ 2.

R e m a r k. If α > 1, then part (b) of Lemma 2.1 may no longer be true. It
cannot be excluded that [α] ([α] ∈ N and α− 1 < [α] ≤ α) zeros and poles of r∗n
lie outside of R<0.
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If we consider best rational approximants r∗n = r∗n(|x|α, [−1, 1]; ·) to |x|α on
[−1, 1] instead of approximants to xα on [0, 1], then we get results similar to the
of Lemma 2.1. However, now poles and zeros all lie on the imaginary axis.

Lemma 2.2. Let 0 < α < 2 and n ∈ N even.

(a) The best rational approximant r∗n = r∗n(|x|α, [−1, 1]; ·) is of exact numer-
ator and denominator degree n.

(b) Half the zeros {ζjn} and half the poles {πjn} lie on the positive imaginary
axis iR>0 and the other half on the negative imaginary axis. With an appropriate
numbering we have

(2.4) 0 <
1
i
ζ1n <

1
i
π1n <

1
i
ζ2,n <

1
i
π2,n < . . . <

1
i
ζn/2,n <

1
i
πn/2,n <∞,

(2.5) ζjn = −ζj−n/2,n, πjn = −πj−n/2,n for j = n/2 + 1, . . . , n.

(c) The error function (1.7) has exactly 2n+3 extreme points η1n, . . . , η2n+3,n

on [−1, 1], and with an appropriate numbering we have

(2.6)
0 = ηn+2,n < ηn+1,n < . . . < η1,n = 1,

ηjn = −η2n+4−j,n for j = n+ 3, . . . , 2n+ 3,

and

(2.7) |ηjn|α − r∗n(ηjn) = (−1)j+1Enn(|x|α, [−1, 1]) for j = 1, . . . , 2n+ 3.

P r o o f. Lemma 2.2 is an immediate consequence of Lemma 2.1 if we substitute
the independent variable z by z2 in each of the functions r∗n, fα(x) = xα, and en.

In the next two theorems we state the main results of the paper. We first
consider the asymptotic distribution of poles and zeros, as n→∞.

Theorem 3. Let 0 < α < 1, and let {ζjn}nj=1 and {πjn}nj=1 be the set of zeros
and poles, respectively , of the best rational approximant r∗n = r∗n(xα, [0, 1]). Then
for any interval [c, d] ⊆ R<0 with −∞ ≤ c ≤ d < 0 we have

(2.8) lim
n→∞

1√
n

card{ζjn ∈ [c, d]} =
√
α

π

|c|∫
|d|

dt

t
√

1 + t
,

and

(2.9) lim
n→∞

1√
n

card{πjn ∈ [c, d]} =
√
α

π

|c|∫
|d|

dt

t
√

1 + t
.

R e m a r k. (1) From (2.8) and (2.9) we learn that poles and zeros are asymptot-
ically dense in R<0. The number of poles or zeros on any given closed subinterval
[c, d] ⊆ R<0 grows like

√
n as n→∞. Since the total number of poles or zeros is

n, the result proves that almost all poles and zeros tend to the origin as n→∞.
(2) It is vary probable that Theorem 3 holds for all α ∈ R+ \ N. However, a

proof will become more complicated since when α > 1 there are poles and zeros of
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r∗n outside of R, which demand special attention. It seems worth mentioning that
the asymptotic distributions in (2.28) and (2.29) are independent of α except for
the factor

√
α.

If we proceed in the same way as in the transition from Lemma 2.1 to Lemma
2.2, then as a corollary we can deduce the asymptotic distribution of poles and
zeros of best approximants to |x|α on [−1, 1] from Theorem 3.

Corollary. Let n ∈ N be even, 0 < α < 2, and let {ζjn}nj=1 and {πjn}nj=1 be
the set of zeros and poles, respectively , of the approximant r∗n = r∗n(|x|α, [−1, 1]; ·).
Then for any interval [ic, id] ⊆ R\{0}, i.e. for 0 < c ≤ d ≤ ∞ or −∞ ≤ c ≤ d < 0
we have

(2.10) lim
n→∞

1√
n

card{ζjn ∈ [ic, id]} =
√
α

π

b∫
a

dt

t
√

1 + t2

and

(2.11) lim
n→∞

1√
n

card{πjn ∈ [ic, id]} =
√
α

π

b∫
a

dt

t
√

1 + t2

with a :=
√

min(|c|, |d|) and b :=
√

max(|c|, |d|).

P r o o f. From identity (1.3) it follows that ζj,2n is a zero of r∗2n(|x|2α, [−1, 1]; ·)
if and only if ζ2

j,2n is a zero of r∗n(xα, [0, 1]; ·). Note that the zeros of r∗2n(|x|2α,
[−1, 1]; ·) are mapped pairwise onto the zeros of r∗n(xα, [0, 1]). If the mapping
z 7→

√
z is applied to all variables in (2.8) and (2.9), then one arrives at (2.10)

and (2.11).

Next, we turn to the investigation of the asymptotic distribution of extreme
points. Again, we start with a result for best rational approximants to xα on
[0, 1], and deduce from that the corresponding result for approximants to |x|α on
[−1, 1] as a corollary.

Theorem 4. Let 0 < α < 1, and let {ηjn}2n+2
j=1 be the extreme points of the

error function en(x) = fα(x) − r∗n(fα, [0, 1];x), fα(x) = xα, on [0, 1]. Then for
any interval [c, d] ⊆ (0, 1] with 0 < c ≤ d ≤ 1 we have

(2.12) lim
n→∞

1√
n

card{ηjn ∈ [c, d]} =
2
√
α

π

d∫
c

dt

t
√

1− t
.

R e m a r k s. (1) Formula (2.12) shows that the extreme points are asymptot-
ically dense in [0, 1], and futher that almost all extreme points tend to the origin
as n→∞.

(2) As with Theorem 3, it seems that Theorem 4 holds for all α ∈ R+ \N, but
this will not be proved here.
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From Theorem 4 we can deduce the following analogous result for the approx-
imants r∗n = rn(|x|α, [−1, 1]; ·) to |x|α on [−1, 1].

Corollary. Let n ∈ N be even, 0 < α < 2, and let {ηjn}2n+3
j=1 be the set of

extreme points of the error function en(x) = |x|α = r∗n(|x|α, [−1, 1]; ·) on [−1, 1].
Then for any interval [c, d] ⊆ [−1, 1] \ {0}; i.e., for 0 < c ≤ d ≤ 1 or −1 ≤ c ≤
d < 0 we have

(2.13) lim
n→∞

1√
n

card{ηjn ∈ [c, d]} =
2
√
α

π

b∫
a

dt

t
√

1− t2
,

with a :=
√

min(|c|, |d|) and b :=
√

max(|c|, |d|).

R e m a r k. It has been stated in part (c) of Lemmas 2.1 and 2.2 that we have
exactly 2n + 2 extreme points in the case of the approximation of xα on [0, 1],
and 2n+ 3 extreme points in the case of the approximation of |x|α on [−1, 1].

Theorems 3 and 4 give information about the asymptotic density of zeros,
poles, and extreme points. These results are not precise enough for determining
the position of individual zeros, poles, or extreme points. In [St4] asymptotic
formulae have been proved that give the location of zeros, poles, and extreme
points in the special case of the approximant r∗n(|x|, [−1, 1]) with such a degree
of precision that the position of individual objects can be distinguished. We give
an example of this type of result. In [St4], Theorem 2.2, it has been shown that if

(2.14) Fn(y) :=
n+ 1

2
− 1
π

∞∫
y

[ √
n

t
√

1 + t2
+

1
πt

log
t

1 +
√

1 + t2

]
dt,

then

(2.15)
iFn(jn − 1/2)

ζjnn
= 1 + o

(
1√
n

)
and

iFn(jn)
πjnn

= 1 + o

(
1√
n

)
for all sequences of indices {jn ∈ {1, . . . , n/2} | n ∈ 2N} that satisfy

(2.16)
n

2
− jn = O(

√
n) as n→∞.

It can be shown that condition (2.16) is equivalent to

(2.17) 1/ζjnn = O(1) or 1/πjnn = O(1) as n→∞,
where O(·) denotes Landau’s big oh. Since the error terms are smaller than 1/

√
n

and the number of zeros and poles on a given interval grows like
√
n, it follows

that the asymptotic relations in (2.15) are precise enough to determine individual
objects. It is immediate that for the case α = 1 the estimates (2.15) imply the
asymptotic relations (2.10) and (2.11).

The proof of (2.15) is deeper and much more complicated than that of The-
orems 3 or 4, which can be given by purely potential-theoretic considerations.
However, the results of Theorems 3 and 4 are valid for approximants to xα and
|x|α, while the results in [St4] could only be proved for the approximation of |x|
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on [−1, 1] or
√
x on [0, 1]. So far it is not clear how the results of [St4] can be

extended to a more general class of functions.

3. Proofs of Theorems 3 and 4. The two proofs will be prepared by three
lemmas. We start by studying as an auxiliary function

(3.1) fn(z) :=
zα − r∗n(z)
zα + r∗n(z)

for z ∈ C \ R−,

where r∗n = r∗n(xα, [0, 1]; ·), 0 < α < 1, n ∈ N, and zα is the principal branch
with zα > 0 for z > 0. On R− := R≤0 the function fn has different boundary
values for continuation from above and below R−. These values will be denoted
by fn(z + i0) and fn(z − i0), z ∈ R−.

Lemma 3.1. (a) fn is analytic in C \ R−.
(b) fn has exactly 2n+ 1 zeros z1n, . . . , z2n+1,n in C \R−. These zeros are all

contained in (0, 1), and we have

(3.2) ηjn < zjn < ηj+1,n, j = 1, . . . , 2n+ 1,

where ηjn are the extreme points introduced in (2.2).
(c) The boundary values of fn on R− satisfy the restrictions

m := min
(

tan
π

2
α, cot

π

2
α

)
≤ |fn(z ± i0)|(3.3)

≤ max
(

tan
π

2
α, cot

π

2
α

)
=: M

for z ∈ R−.

P r o o f. It is a consequence of the alternating signs in (2.3) of Lemma 2.1
that fn has at least 2n + 1 zeros zjn, j = 1, . . . , 2n + 1, satisfying (3.2). Since
fn(zjn) = 0 implies zαjn = r∗n(zjn), we learn from the existence of these zeros
that the rational function r∗n ∈ Rnn interpolates zα at the 2n+ 1 points zjn, and
therefore r∗n is determined by this interpolation property. As a consequence we
can apply formulae from the theory of rational interpolation.

Set r∗n = pn/qn, pn, qn ∈ Pn. From the theory of rational interpolants (mul-
tipoint Padé approximants) to Markov or Stieltjes functions (see [StTo], Lemma
6.1.2) we know that the interpolation error en(z) = zα−r∗n(z) can be represented
as

(3.4) en(z) =
ωn(z)

2πiqn(z)2
∮
C

qn(ζ)2ζαζ
ωn(ζ)(ζ − z)

=
sinπα
π

ωn(z)
qn(z)2

0∫
−∞

qn(x)2|x|αdx
ωn(x)(x− z)

,

where ωn is the polynomial

(3.5) ωn(z) :=
2n+1∏
j=1

(z − zjn),



336 E. B. SAFF AND H. STAHL

and C is a closed integration contour in C\R− surrounding z and all interpolation
points zjn, j = 1, . . . , 2n+1. Since qn and ωn are real polynomials, and ωn(x) 6= 0
for all x ∈ R−, it is easy to verify that

(3.6)
sinπα
π

0∫
−∞

qn(x)2|x|αdx
ωn(x)(x− z)

6= 0 for all z ∈ C \ R−.

Hence, part (b) of the lemma follows from (3.4).
Next, we consider fn on R−. We have

(3.7) fn(0) = −1, fn(∞) = 1,

and all zeros ζjn and poles πjn of r∗n are characterized by the property that

(3.8) fn(ζjn ± i0) = 1, fn(πjn ± i0) = −1 for j = 1, . . . , n.

On R− the function fn can be written as

(3.9) fn(z ± i0) =
1− e∓iπαr∗n(z)|z|−α

1 + e∓iπαr∗n(z)|z|−α
, z ∈ R−.

The values of the function r∗n(z)/|z|α run through the whole real axis R if z in
moved from 0 to π1,n or from πj,n to πj+1,n, j = 1, . . . , n − 1. By elementary
trigonometric calculations it can be verified that the mapping

(3.10) x 7→ 1− e−iαπx
1 + e−iαπx

, x ∈ R,

maps R onto the circle

(3.11) Kα :=
{
z ∈ C | |z + i cotαπ| = 1

sinπα

}
.

Hence, it follows from (3.9) that

(3.12) fn(z + i0) ∈ Kα for all z ∈ R−.
Moreover, together with (3.7) and (3.8) we deduce that arg fn(z + i0) grows by
(2n+ 1)π if z runs through R− + i0 from −∞ to 0.

For the boundary values of fn on R− from below, i.e. on R− − i0, we have

(3.13) fn(z − i0) ∈ Kα := {z | z ∈ Kα} for all z ∈ R−,
and arg fn(z − i0) grows again by (2n+ 1)π if z runs through R− − i0 from 0 to
−∞.

Since tan π
2α and − cot π2α are extremal ordinates of the circle Kα, part (c)

follows from (3.12) and (3.13).
Since arg fn grows by (2n + 1)2π along the whole boundary of C \ R−, and

since fn has exactly 2n+1 zeros in C\R−, it follows from the argument principle
that fn has no poles in C \ R−. This proves part (a) of the lemma.

In the assertions of the next lemma we summarize (3.12), (3.13), and the
immediate conclusions made in this connection.
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Lemma 3.2. We have

(3.14) fn(z + i0) ∈ Kα and fn(z − i0) ∈ Kα for all z ∈ R−.

The function arg fn(z + i0) is increasing and arg fn(z − i0) is decreasing for
z ∈ R−, and we have

(3.15) arg fn(0 + i0)− arg fn(−∞+ i0)
= arg fn(−∞− i0)− arg fn(0− i0) = (2n+ 1)π.

Let the function p be harmonic in C \ R−, continuous in C \ {0}, and let it
have the boundary values

(3.16) p(z) =
{
π for z ∈ (0, 1],
0 for z ∈ R−.

The function p is uniquely determined by these properties.

Lemma 3.3. For the function p we have the representations

(3.17) p(z) =
∫

log
1

|z − x|
d(ν − ν̂)(x) =

∫
gC\R−(z, x) dν(x),

where ν and ν̂ are positive measures defined by

dν(x)
dx

=
1

πx
√

1− x
, x ∈ (0, 1],(3.18)

dν̂(x)
dx

=
−1

πx
√

1− x
, x ∈ R−,(3.19)

where gC\R−(z, x) is the Green function with pole at x for C\R− (for the definition
see [StTo], Appendix V).

P r o o f. Consider the function

(3.20) f(z) :=
1
π
−
1∫

−∞

log
(

1
z − x

)
dx

x
√

1− x
, z ∈ C \ R−,

where the integral at x = 0 is understood as Cauchy principal value, the square
root is assumed to be positive, and the logarithm is defined in C \ R−. Differen-
tiating (3.20) yields

f ′(z) =
1
π
−
1∫

−∞

dx

(x− z)x
√

1− x
(3.21)

=
−1
iπ
−
1∫

−∞

dx

(x− z)x
√
x− 1

, z ∈ C \ R−,

where in the last integral we have assumed that
√
x− 1 > 0 for x > 1. Since by

this convention the square root is of different sign on both sides of (−∞, 1], we
can duplicate the integration path. Because of the different signs of the square
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root, we can also pass from the Cauchy principal value to an integration path
along two small halfcircles around x = 0. In this way we see that

(3.22) f ′(z) =
−1
2πi

∮
C

dζ

(ζ − z)ζ
√
ζ − 1

,

where C is a closed positively oriented integration path in C \R− surrounding z.
Cauchy’s integral formula then yields that

(3.23) f ′(z) =
−1

z
√
z − 1

, z ∈ C \ R−.

From (3.20) and (3.23) we deduce that

(3.24) f(z) =
z∫

−∞

f ′(ζ) dζ = −
z∫

−∞

dζ

ζ
√
ζ − 1

for any integration path form −∞ to z in C \ R−. As a consequence we see that

(3.25) Re f(z ± i0) = 0 for z ∈ R<0.

Integrating along the halfcircle S = {z = εei(π−t) | 0 ≤ t ≤ π}, ε > 0, yields

(3.26) −
∫
S

dζ

ζ
√
ζ − 1

= −
π∫

0

iεei(π−t)dt

εei(π−t)
√
εei(π−t) − 1

→ −π as ε→ 0.

From (3.24) it follows that Re f is constant on (0, 1] for the same reason as it was
constant on R<0. It then follows from (3.25) and (3.26) that

(3.27) Re f(z) = π for z ∈ (0, 1].

Note that in (3.24) the integration runs in the opposite direction of that in (3.26).
From (3.25) and (3.27) we deduce that p(z) = Re f(z), which together with (3.20)
proves the first equality in (3.17).

The second equality follows from considering the difference

(3.28) d(z) :=
∫

log
1

|z − x|
d(ν − ν̂)(x)−

∫
gC\R−(z, x)dν(x).

The function d is harmonic in C \R− and continuous on C \ {0}. Since d(z) = 0
for z ∈ R−, it follows that d ≡ 0, which proves the second equality in (3.17).

Proof of Theorem 4. In this proof potential-theoretic tools play a funda-
mental role. It follows from Lemma 3.1 that

(3.29) qn(z) :=
1

2
√
αn

log
1

|fn(z)|
is superharmonic in C \R−, where fn is the function defined in (3.1). Because of
(3.3), qn is bounded on R−.

We define a positive measure µn by

(3.30) µn :=
1

2
√
αn

2n+1∑
j=1

δzjn
,
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where δz is the Dirac measure at the point z ∈ C, and the zjn are the zeros of
fn mentioned in (3.2) of Lemma 3.1. The Green potential associated with µn is
defined as

(3.31) gn(z) := g(µn; z) :=
∫
gC\R−(z, x)dµn(x),

where gC\R−(z, x) is the Green function in C \ R− with logarithmic pole at x ∈
C\R−. Since the Green function is identically zero on R−, we also have gn(z) = 0
for all z ∈ R−. From the estimate of fn on R− in (3.3) and the fact that qn and
gn have the same logarithmic singularities in C \ R−, we deduce that

(3.32)
1

2
√
αn

log
1
M

+ gn(z) ≤ qn(z)

≤ gn(z) +
1

2
√
αn

log
1
m

for all z ∈ C.

As a consequence we have

(3.33) |qn(z)− gn(z)| ≤ 1
2
√
αn

max
(

log
1
m
,− log

1
M

)
=

1
2
√
αn

logM for all z ∈ C.

In (3.33) we have used the fact that 1/m = M ; the constants m and M have
been defined in (3.3). The estimate (3.33) shows that the sequences {qn} and
{gn} have identical limits if a limit exists.

In the sequel we denote the approximation error Enn(xα, [0, 1]) by εn. From
definition (3.1) of fn we deduce that

(3.34) |fn(z)| = |en(z)|
|2zα − en(z)|

≤ εn
|2zα − εn|

for z ∈ [(εn/2)1/α, 1].

From Theorem 2 we know that

(3.35) εn = 41+α(sinαπ)e−2π
√
αn(1 + o(1)) as n→∞.

Inserting (3.35) into (3.34) yields with (3.29) that

(3.36) lim inf
n→∞

qn(z) ≥ lim inf
n→∞

1
2
√
αn

[log |2zα − εn| − log εn] ≥ π

uniformly on compact subsets of (0, 1]. For sequences of extreme points ηjn, j ∈
{1, . . . , 2n + 2}, of the error function en(z) = zα − r∗n(z) defined in Lemma 2.1,
we can prove a counterpart to (3.36). From (3.1) and (2.3) it follows that

(3.37) |fn(ηjn)| = εn
|2ηαjn − (−1)Jεn|

≥ εn
2 + εn

≥ 2εn
5
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for all n ∈ N and j ∈ {1, . . . , 2n+ 2}. With (3.29) and (3.35) this implies that

(3.38) lim sup
n→∞

qn(ηjnn) ≤ π

for any sequence {ηjnn | jn ∈ {1, . . . , 2n+ 2}, n ∈ N}.
From (3.33) we learn that the limits (3.36) and (3.38) also hold true if qn

is substituted by gn = g(µn; ·). We will determine the limit distribution of the
sequence {µn} by studding the convergence behavior of the sequence {gn}. In the
analysis the limits (3.36) and (3.38) will play a major role. However, there are
two difficulties: (i) the total mass of the measure µn tends to infinity as n→∞,
and (ii) the support of µn touches the boundary point 0 of C\R− as n→∞. In a
certain sense both phenomena have an opposite effect and compensate mutually.
But the situation demands a careful analysis.

First, we show that all restrictions µn|[a,1], 0 < a ≤ 1, are bounded as n→∞.
Let a, 0 < a < 1, be fixed, and let µ̂n be the balayage measure resulting from
sweeping µn out of the domain C\ (R−∪ [a, 1]) onto R−∪ [a, 1] (for the definition
of balayage and a summary of its properties see Appendix VII in [StTo]). Let µ̂an
and µ̌an be the restrictions of µ̂n onto [a, 1] and R−, respectively. Thus, we have
µ̂n = µ̂an+ µ̌an. Since gC\R−(z, x) = 0 for all z ∈ R−, it follows from the properties
of balayage that

(3.39) g(µ̂an; z) = g(µn; z) for all z ∈ [a, 1],

where g(µ̂an; ·) denotes the Green potential of the measure µ̂an as defined in (3.31).
From (2.2) in Lemma 2.1, we know that η2n+2,n = 1 is an extreme point of the
error function en for all n ∈ N. Therefore, we can deduce from (3.33), (3.38), and
(3.39) that

(3.40) lim sup
n→∞

g(µ̂an; 1) ≤ π.

Since supp(µ̂an) ⊆ [a, 1], the boundedness of the sequence of Green potentials
{g(µ̂an; ·)} at the interior point 1 of the domain C \R− implies that the {‖µ̂an‖} is
bounded as n→∞. From the definition of balayage we know that µ̂an ≥ µn|[a,1].
Hence, there exists a constant c0 = c0(a) <∞ with

(3.41) µn([a, 1]) ≤ c0 for n ∈ N.

Since the sequence {µn} is bounded on each interval [a, 1], 0 < a ≤ 1, it follows
from Helly’s Theorem (the weak compactness of the unit ball of positive measures)
that any infinite sequence {µn}n∈N , N ⊆ N, contains an infinite subsequence,
denoted again by {µn}n∈N , which is weakly convergent in C\R−, i.e. there exists
a measure µ with support supp(µ) ⊆ [0, 1] and

(3.42) µn
∗→µ as n→∞, n ∈ N.

Here, ∗→ denotes the weak convergence of measures in C\R−, i.e. for each function
f continuous and having compact support in C \ R− we have

∫
dµn → fdµ as

n→∞, n ∈ N .
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In order to understand the convergence behavior of the sequence {gn =
g(µn; ·)} we split the measure µn in two parts. Let a ∈ (0, 1) be a point sat-
isfying µ({a}) = 0, and set

(3.43) gan := g(µn|[a,1]; ·) and gacn := g(µn|[0,a); ·), n = 1, 2, . . .

From (3.42) it follows that

(3.44) µn|[a,1]
∗→µ|[a,1] as n→∞, n ∈ N,

and from (3.41) we know that µ([a, 1]) is finite. Since all Green potential are
nonnegative, it follows from (3.39), (3.40), and (3.43) that

(3.45) lim sup
n→∞,n∈N

gacn (1) ≤ π.

The Green potential gacn = g(µn|[0,a); ·) is harmonic and nonnegative in C \
(R− ∪ [0, a]). From (3.45) together with Harnack’s inequality (see Appendix III
of [StTo]), the boundedness of the harmonic conjugate, and Montel’s Theorem
it follows that there exists an infinite subsequence of N , which we continue to
denote by N , such that the limit

(3.46) lim
n→∞,n∈N

gacn (z) =: gac(z)

holds locally uniformly in C \ (R− ∪ [0, a]). The function gac is harmonic in C \
R− ∪ [0, a]).

The convergence of the sequence {gan} is determined by (3.44). We have

(3.47) lim
n→∞,n∈N

gan(z) = ga(z) := g(µ|[a,1]; z)

for z locally uniformly in C\ (R−∪ [a, 1]). From the Lower Envelope Theorem for
potentials it follows that

(3.48) lim inf
n→∞,n∈N

gan(z) = ga(z) for qu. e. z ∈ [a, 1]

(cf. Appendix III of [StTo]), and for the principle of descent (cf. Appendix III of
[StTo]) if follows that for any sequence xn → x0 ∈ [a, 1] as n → ∞, n ∈ N we
have

(3.49) lim inf
n→∞,n∈N

gan(xn) ≥ ga(x0).

(The Lower Envelope Theorem and the principle of descent hold not only for
logarithmic potentials, but also for Green potentials since the Green function can
be represented by a logarithmic potential (cf. Appendix V of [StTo])).

It is possible to select a sequence am → 0 with 1 > am > 0 and µ({a}) = 0.
For each [am, 1] there exists an infinite subsequence Nm with Nm+1 ⊆ Nm and the
limits (3.46)–(3.49) hold. If one choose a diagonal sequence from (N1, N2, . . .) and
denotes this sequence by N , then the limits (3.46)–(3.49) hold for this sequence
N and for all subintervals [am, 1] ⊆ (0, 1]. This proves that the limit

(3.50) lim
n→∞,n∈N

gn(z) =: g(z)



342 E. B. SAFF AND H. STAHL

holds locally uniformly in C \ (R− ∪ [0, 1]), and if on [am, 1] the function g is
defined as g := gam + gamc with (3.46) and (3.47), then the limit

(3.51) lim inf
n→∞,n∈N

gn(z) = g(z)

holds for quasi every z in (0, 1], and for xn → x0 ∈ (0, 1] as n → ∞, n ∈ N , we
have

(3.52) lim inf
n→∞,n∈N

gn(xn) ≥ g(x0).

The function g is harmonic in C \ (R− ∪ [0, 1]), superharmonic in C \R−, and we
have g(z) = 0 for z ∈ R<0.

From (3.52) together with (3.38), which also hold for gn because of (3.33), it
follows that

(3.53) g(z) ≤ π for all z ∈
∞⋂
m=1

⋃
n≥m

{η1n, . . . , η2n+n,n} \ {0}.

The point 0 had to be excluded, since (3.38) is not available for the boundary
point 0. Since we know from (3.2) that between two adjacent extreme points ηjn
and ηj+1,n there is a zero zjn of en, it follows from (3.42) that

(3.54) supp(µ) ⊆
∞⋂
m=1

⋃
n≥m

{η1n, . . . , η2n+n,n}.

From the limit (3.51) and the asymptotic estimate (3.36), which also holds
for gn because of (3.33), it follows that g(z) ≥ π for quasi every z ∈ [0, 1]. The
function g is superharmonic in C\R− and therefore continuous in the fine topology
(for the definition see Appendix III of [StTo]). Set E := {z ∈ (0, 1] | g(z) < π},
then E is a Borel set of capacity zero. Hence, in the fine topology all points of E
are isolated, and from the continuity of g it follows that E 6= ∅, and consequently
that

(3.55) g(z) ≥ π for all z ∈ (0, 1].

In the next step of the proof we show that the inequality (3.53) holds every-
where on (0, 1]. Set S := {z ∈ C \ R− | g(z) > π}. Since g is superharmonic in
C \ R−, the set S is open. If S = ∅, then (3.53) is proved for all z ∈ (0, 1]. We
assume that

(3.56) S 6= ∅.

From (3.53) and (3.54) we know that g(z)≤π on supp(µ) \ {0}. Therefore, S 6=∅
implies that 0 ∈ S. The superharmonicity of g in C \ R− and the minimum
principle imply that the set S is simply connected. Since S is symmetric with
respect to R it further follows that

(3.57) S ∩ [0, 1] = (0, a) for some a ∈ (0, 1].
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From g(z) > π for all z ∈ (0, a) and (3.53) we deduce that the set {ηjn | j ∈
{1, . . . , 2n2}, n ∈ N} has no limit points in (0, a). Hence, we can select a sequence
of indices {fn}n∈N with

(3.58) ηjnn → 0 and ηjn+1,n → a as n→∞, n ∈ N.
Note that a ∈ supp(µ) or a = 1 because of the superharmonicity of g in C \ R−.
The sequence N is the same as that in the definition of g in (3.50).

Before we continue with the main investigation, we have to introduce an aux-
iliary function. Let D denote the domain C \ (R− ∪ {|z| ≤ 1}) and let h be the
function harmonic in D with boundary values

(3.59) h(z) ≤
{

1 for |z| = 1, z 6= −1,
0 for z ∈ (−∞,−1).

By elementary considerations one can verify that

(3.60) h(z) ≤ c√
|z|

for z ∈ C \ {0}

with an appropriate constant c < ∞. It is not difficult to verify that the Green
function gC\R−(z, x), x ∈ R+, behaves monotonically on half-circles around the
origin. We have gC\R−(reit, x) ≤ gC\R−(reit

′
, x) for 0 ≤ t′ ≤ t ≤ π and x ∈ R+.

As a consequence we have

(3.61) g(µn; reit) ≤ g(µn; reit
′
) for 0 ≤ t′ ≤ t ≤ π, r > 0,

and a corresponding behavior for 0 ≥ t′ ≥ t ≥ π.
We continue with the main investigation: Let gn = g(µn; ·) be broken down

into

(3.62) gn(z) = g̃n(z) + g(µn|(ηjnn,1]
; z),

which is similar to the decomposition used in (3.43). Because of the non-negativity
of Green potentials we have

(3.63) 0 ≤ g̃n(z) ≤ gn(z) ≤ gn(ηjn,n)h(z/ηjnn) for |z| ≥ ηjnn.
The last inequality in (3.63) follows from (3.61) and (3.59) together with the
maximum principle for harmonic functions.

From (3.29), (3.35), (3.33), (3.60), and (3.63) we then deduce that for z ∈
C \ R− we have

g̃n(z) ≤ 1
2
√
an

(
log

1
M

+ log
2
5

+ log εn

)
c
√
ηjnn√
|z|

(3.64)

= O(
√
ηjnn) = o(1) as n→∞, n ∈ N.

This implies that

(3.65) lim
n→∞,n∈N

g̃n(z) = 0

locally uniformly in C \ R−.
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Because of (3.2) in each open interval (ηjnn, ηjn+1,n) there can be at most one
of the zeros used in the definition (3.30) of the measure µn. Its contribution to
the weak limit (3.42) is negligible. It follows therefore from (3.58) that the limit
measure µ has no mass in the open interval (0, a). From (3.42) we deduce that

(3.66) µn|(ηjnn,1]
∗→µ|[a,1] as n→∞, n ∈ N,

and we have µ|(0,1] = µ|[a,1]. From (3.62), (3.65), and (3.66) it then follows that

(3.67) lim
n→∞,n∈N

gn(z) = lim
n→∞,n∈N

g(µn|[a/2,1]; z) = g(z)

locally uniformly in C \ (R− ∪ [0, 1]). The last limit in (3.67) holds even locally
uniformly in C \ (R− ∪ [a, 1]). From (3.67), (3.53), (3.54), and the first maximum
principle (see Appendix III of [StTo]) it then follows that

(3.68) g(z) ≤ sup
x∈supp(µ)∩[a,1]

gn(µn|[a/2,1]; z) ≤ π for all z ∈ C \ {0}.

These inequalities contradict assumption (3.56), which implies that g(z) > π on
S ∩ [0, 1]. Consequently, we have proved that S = ∅ and

(3.69) g(z) ≤ π for all z ∈ (0, 1].

Since g(z) = 0 for z ∈ R<0, we learn from the inequalities (3.55) and (3.69)
that g is identical with the function p introduced in (3.16). Hence, the measure µ
is also identical with the measure ν described in (3.18) of Lemma 3.3. This proves
that

(3.70)
dµ(x)
dx

=
1

πx
√

1− x
, x ∈ (0, 1].

The description of µ in (3.70) is independent of the special selection of the sub-
sequences N ⊆ N that have been used at several steps of the analysis. We can
therefore conclude that the limit (3.42) holds not only for N , but also for the
full sequence N. From (3.2), (3.30), (3.42), and (3.70) it then follows that for
0 < c ≤ d ≤ 1 we have

(3.71)
1√
n

card{ηjn ∈ [c, d]} → 2
√
αµ([c, d]) =

2
√
α

π

d∫
c

dt

t
√

1− t
,

which proves Theorem 4.

Proof of Theorem 3. While in the proof of Theorem 4 the measure µ in
(3.42) was of central importance, now the measure µ̂ derived from µ by balayage
will play a principal role. The measure µ̂ describes the asymptotic distribution
of zeros ζjn and poles πjn of the approximants r∗n.

Let µ̂n and µ̂ be the measures that result from balayage of the measures µn
and µ out of the domain C \ R− onto R− (for the definition of balayage see
Appendix VII of [StTo]). The measures µn have been defined in (3.30) and µ in
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(3.42). It follows from (3.42) that

(3.72) µ̂n
∗→ µ̂ as n→∞, n ∈ N.

(The subsequence N ⊆ N is the same as that in (3.42).) The measures µ̂n and µ̂
are positive and supp(µ̂), supp(µ̂n) ⊆ R−, n = 1, 2, . . .

Let q∗n be the harmonic conjugate of qn in C \ [−∞, 1] with q∗n(∞ + i0) = 0.
The function qn has been defined in (3.29). Since fn(x) > 0 for x > 1, we have

(3.73) q∗n(x) = 0 for x ∈ (1,∞].

By g∗n we denote the conjugate function of the Green potential gn = g(µn : ·)
with g∗n(∞+ i0) = 0. The function gn was introduced in (3.31). Again we have

(3.73) g∗n(x) = 0 for x ∈ (1,∞].

It follows from (3.29) that

(3.75) q∗n(z) =
−1

2
√
αn

arg fn(z).

From Lemma 3.2 we know that q∗n(x+i0) is decreasing and q∗n(x−i0) is increasing
for −∞ ≤ x ≤ 0. In the same way we learn from the definition (3.31) of the Green
potential gn that g∗n(x+i0) is decreasing and g∗n(x−i0) increasing for−∞ ≤ x ≤ 0.

Since µ̂n is the measure generated by balayage of µn out of the domain C\R−,
it follows from (3.31) that

(3.76) gn(z) =
∫
gC\R−(z, x)dµn(x) =

∫
log

1
|z − x|

d(µn − µ̂n)(x).

The harmonic conjugate of log(1/|z − x|) is − arg(z − x), and therefore we have

(3.77) g∗n(z) =
∫

arg(z − x)d(µ̂n − µn)(x) + const. for z ∈ C \ R−.

We assume that arg(·) is defined in C\R−. It follows from (3.74) that the constant
in (3.77) has a value such that the boundary values of g∗n on R− are given by

(3.78) g∗n(x+ i0) = πµ̂n([−∞, x]) for x ∈ R−.
Since we have seen in (3.70) that µ is identical to the measure ν in Lemma 3.3,
it follows from (3.19) that

(3.79)
dµ̂(x)
dx

=
−1

πx
√

1− x
, x ∈ R<0.

From (3.78) we know that the function g∗n(x+ i0)/π, x ∈ R−, is the distribution
function of the measure µ̂n. Therefore we have

(3.80) lim
n→∞,n∈N

g∗n(x+ i0) = g∗(x+ i0) = −
x∫

−∞

dt

t
√

1− t

for almost all x ∈ R−.
We now return to the functions q∗n considered in (3.73) and (3.75). Since the

functions q∗n(x + i0) are monotonic for x ∈ R−, it follows from Helly’s selection
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theorem that there exists a subsequence of N , which we continue to denote by
N , such that

(3.81) lim
n→∞,n∈N

q∗n(x+ i0) =: q∗(x+ i0) for almost x ∈ R−.

The difference g∗n − q∗n is the harmonic conjugate to gn − qn satisfying (g∗n −
q∗n)(x) = 0 for x ∈ [1,∞] because of (3.73) and (3.74). It follows from (3.33) and
the Schwarz representation formula for conjugate functions that

(3.82) lim
n→∞,n∈N

(g∗n − q∗n)(z) = 0 locally uniformly in C \ R−.

The function (g∗n− q∗n)(z) is harmonic in C \R− and solves the Dirichlet problem
in C \ R− for the boundary function (g∗n − q∗n)(x ± i0), x ∈ R<0. Taking the
monotonicity of g∗n(x ± i0) and q∗n(x ± i0) on R− into consideration, it follows
from (3.82) that

(3.83) lim
n→∞,n∈N

(g∗n − q∗n)(x± i0) = 0 for all x ∈ R−.

From (3.80), (3.81), and (3.82) it follows that

(3.84) q∗n(x+ i0)→
x∫

−∞

dt

t
√

1− t
as n→∞, n ∈ N, and x ∈ R−.

Since the right-hand side of (3.84) is independent of the set selection of the sub-
sequence N ⊆ N, the limit (3.84) holds for the full sequence N.

From Lemma 3.2, (3.8), and (3.50) we know that for two adjacent zeros ζjn
and ζj+1,n of r∗n we have

(3.85) |q∗n(ζj+1,n + i0)− q∗n(ζjn + i0)| = 2π
2
√
αn

=
π√
αn

.

For arbitrary −∞ ≤ c ≤ d < 0 it therefore follows that

(3.86)
∣∣∣∣ card{ζjn ∈ [c, d]} −

√
αn

π
|q∗n(c+ i0)− q∗n(d+ i0)|

∣∣∣∣ ≤ 2,

and consequently it follows from (3.84) that
(3.87)

1√
n

card{ζjn ∈ [c, d]} →
√
α

π

∣∣∣∣ d∫
c

dt

t
√

1− t

∣∣∣∣ =
√
α

π

|c|∫
|d|

dt

t
√

1 + t
as n→∞,

which proves the first assertion of Theorem 3. The second assertion follows in
exactly the same way if we start instead of (3.85) from

(3.88) |q∗n(πj+1,n + i0)− q∗n(πjn + i0)| = 2π
2
√
αn

=
π√
αn

,
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which again follows from Lemma 3.2, (3.8), and (3.75). This completes the proof
of Theorem 3.
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