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1. Here we will be concerned with the following version of the classical Markov
inequality:

(1) ‖p′‖J ≤M(deg p)r‖p‖J ,
where ‖ ‖J stands for the supremum norm on compact J , J ⊂ C, and p denotes
complex polynomials.

So we deal with a particular case of the inequality

(2) ‖Dαp‖E ≤M(deg p)r|α|‖p‖E ,
E is a compact in Rn, p is a polynomial of n real variables.

When J lies on a line in C (1) becomes exactly the one-dimensional version
of (2).

Let us start with mentioning that the description of compacts E (or J) satis-
fying (2) is not known.

Some partial results are known. W. Paw lucki and W. Pleśniak [1], [2] showed
that (2) holds whenever E is uniformly polynomially cuspidal (UPC). In partic-
ular, every subanalytic compact set E with E = intE being UPC satisfies (2).

J. Siciak gave an important sufficient condition for (2). Let us consider E ⊂
Rn ⊂ Cn. For (2) to hold, it is sufficient that the function

GE(a) = sup
{

1
deg p

log |p(z)| : p is a polynomial on Cn, deg p ≥ 1, ‖p‖E ≤ 1
}

satisfies the following estimate

(3) GE(z) ≤Md(z)m, d(z) def= dist(z, E).
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Moreover, the constants in (2) and (3) are connected by an inequality

(4) r ≤ m−1.

Siciak constructed a Cantor type set on R which satisfies (3). This shows that
the class of sets for which (2) holds is strictly larger than UPC.

Using Siciak’s implication (3)⇒(2) L. Bia las and the author showed in [4] that
standard Cantor sets on R have property (3), so (1). It is not clear how necessary
Siciak’s condition is for Markov’s inequality.

Let us remind how the inequalities (2), (1) can be applied. In [1], [2] it was
proved that Markov’s inequality is equivalent to the existence on linear continuous
right inverse to the restriction operator C∞(Rn)3 f→ f |E. Another way of ex-
pressing this is as follows. Let P` denote all polynomials of degree `. If distE(f,P`)
tends to zero faster than any `−n then f is a restriction on E of a function from
C∞(Rn). This form of Bernstein’s theorem is also proved by W. Pleśniak.

The goal of this paper is to get some estimates on m and r when J is a Cantor
repeller in C.

2. Cantor repellers. Let U,U1, . . . , Ud be topological discs with real analytic
boundaries such that Ūi ⊂ U , i = 1, . . . , d. Consider a map f :

⋃d
i=1 Ui→U which

is univalent on Ūi, i = 1, . . . , d, and is a conformal isomorphism fi : Ui → U on
each Ui. By Cantor repeller we mean the set

J = J(f) = {x ∈ C : fnx ∈ U, n = 0, 1, . . .}.
When f = p = polynomial this is a Julia set of p.

We will also need the following notations. Let G denote Green’s function of
Ω = C̃\J with pole at infinity, and let ω = ∆G denote the harmonic measure of
J . Let ∂ = dimH J ,

∂0 = inf{dimH J
′, J ′ is a Borel subset of J, ω(J ′) = 1}.

The symbol dimH denotes the Hausdorff dimension. There is a vast literature
concerning the estimates of ∂0. In particular, in [5] it is shown that always ∂0 ≤ 1.
And in [6] the estimate

(5) ∂0 < ∂

is proved for the case fi(z̄) = fi(z), Ui ∩ R 6= φ. Also (5) holds when f = p =
polynomial, see [7].

3. Main results. We are going to give some estimates of m from above and
(in the polynomial case) for r from below.

Theorem 3.1. Let (U,U1, . . . , Ud, f) define a Cantor repeller J =⋂
n≥0 f

−n(U). Let m satisfy (3) with E = J . Then the following assertions
are equivalent :

1) any such m is strictly less than ∂;
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2) any such m is strictly less than ∂0;
3) ∂0 < ∂.

R e m a r k. The author believes that ∂0 < ∂ for any Cantor repeller. How-
ever, let us remind that (5) is still proved only for f = polynomial [7] and for
symmetric f [8], or “linear” f [11].

For polynomial case one can give the estimate not only for m but also for r.

Theorem 3.2. Let J be a Julia set of a polynomial p. Then the Markov’s
inequality (1) holds only with

(6) r ≥ 1
∂0
.

R e m a r k. Let us note that J is not assumed to be a Cantor repeller.

Next is considered a “standard Cantor set” situation. And we illustrate how
one can easily see that m < ∂0.

Theorem 3.3. Let J = J(f), f = (f1, . . . , fd); |f ′i(z)| ≡ l, z ∈ Ui, i = 1, . . . , d.
Then

(7) m < ∂0.

4. Gibbs measures. It will be convenient to use the notion of special class
of ergodic measures, namely the class of Gibbs measures in what follows. The
reader may refer to [8] for the theory of these measures.

Let J = J(f), f = (f1, . . . , fd) be a Cantor repeller and let f∗ denote the
pushing forward of the measures on J . What we mean is the following. Let ν be a
measure on J . Then f∗ν is defined on J ∩Ui as (f∗ν)(E) = ν(fiE). A measure ν
will be called quasi-invariant if ν is mutually absolutely continuous with respect
to f∗ν. For any quasi-invariant measure ν on J let us consider its Jacobian

Gν(x) =
df∗ν

dν
(x), for ν-a.e. x ∈ J,

which is the derivative of f with respect to ν. The function ϕν(x) def= − log Gν(x)
will be called the potential of ν. Generally speaking Gibbs measures are those
having Hölder potentials. Let us state the definition and some properties of Gibbs
measures.

1) By a Gibbs measure on J(f) we mean an f -invariant µ with Hölder potential
ϕµ = − log Gµ.

2) If ν is an f -quasi-invariant measure with Hölder potential, then there exists
a unique f -invariant µ absolutely continuous with respect to ν. Also µ is a Gibbs
measure and log dν

dµ is Hölder continuous.
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3) For any Hölder continuous ϕ there exists a unique measure µ which provides
the maximum for the functional

(8) Lϕ(ν) = hν +
∫
J

ϕdν, ν is f -invariant, probabilistic

(here hν denotes the entropy). This measure µ is Gibbs. Any other Hölder
function ψ defines the same µ if and only if

(9) ϕ− ψ = γ ◦ f − γ + C,

where C is a constant and γ is Hölder continuous.
Equation (9) is called the homologous equation. If we define P (ϕ)=maxLϕ(ν)

(called pressure of ϕ) then the constant C in (9) is P (ϕ)− P (ψ).
4) If µ is a Gibbs measure on J , then Xn(x) = {i : fnx ∈ Ui} form the

sequence of exponentially independent random variables on (J, µ), in particular

(10) |EXnXn+k − EXnEXn+k| ≤ Cqk, q ∈ (0, 1).

The property 4) will be used soon. We need the following corollary of (1).

Theorem 4.1. Let ξ be a Hölder continuous function on J . Let µ be a Gibbs
measure

∫
ξdµ = 0 and let {Yn} denote the sequence of random variables on (J, µ)

defined as follows

Yn = ξ(fnx), x ∈ J, n = 0, 1, . . .

Then {Yn} are exponentially independent. In particular the limit

(11) σ2 = lim
1
n

E(Y1 + . . .+ Yn)2

exists and if σ > 0 the law of iterated logarithm (LIL) holds for {Yn}, namely

(12)
µ{x : Y1 + . . .+ Yn < −

√
2σ2n log log n for infinitely many n} = 1,

µ{x : Y1 + . . .+ Yn > +
√

2σ2n log log n for infinitely many n} = 1.

Theorem 4.1 can be found in [9].
At the same time a result of Ibragimov [10] describes the cases when σ = 0.

Theorem 4.2. Let σ = 0. Then

Y = u ◦ f − u,

where u ∈ L2(J, dµ).

5. Proof of Theorem 3.1. Let G be Green’s function of C\J (that trivially
coincides with Siciak’s function defined before (3)). It is proved in [6] that the
harmonic measure ω = ∆G of J is f quasi-invariant and has Hölder potential
ϕω = − log Gω. According to Section 4 there exists a Gibbs measure µ0 equivalent
with ω.
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Let ϕ denote the Hölder function log Gµ0 , ψ def= log |f ′| which is certainly
Hölder. Finally

ξ
def= ϕ−mψ, Yk = ξ ◦ fk.

Lemma 5.1. Let Un(x) denote the component of f−nU containing x ∈ J . Then

diamUn(x) � |(fn)′(x)|−1; d(z, J) � diamUn(x), z ∈ ∂Un(x),
µ0(Un(x)) � sup

z∈Un(x)

G(z).

This is proved in [6].

Lemma 5.2. | logµ0(Un(x)) +
∑n
k=1 ϕ(fkx)| ≤ C.

This follows immediately from the fact that ϕ is the potential of µ0 and from
the Hölder continuity of ϕ. On the other hand, one can derive Lemma 5.2 from
the alternative description of Gibbs measures in [8].

Now we may rewrite (3) as

(13)
n∑
1

Yk =
n∑
1

ϕ(fkx)−m
n∑
1

log |f ′(fkx)| ≥ C1.

We use Lemmas 5.1, 5.2 to obtain (13) from (3).
On the other hand

∫
J

(ϕ − ∂0ψ)dµ0 = 0. This is just the form of writing
Manning’s formula for the dimension of the f -invariant measure µ0:

(14) ∂0 = dimµ0 =
hµ0∫

J
log |f ′|dµ0

=
∫
ϕdµ0∫

log |f ′|dµ0
.

Thus if ∂0 were equal to m we would have

EYk =
∫
ξdµ =

∫
(ϕ−mψ)dµ0 =

∫
(ϕ− ∂0ψ)dµ0 = 0.

this would bring us under the conditions of Theorem 4.1, 4.2. But (13) contradicts
LIL of Theorem 4.1. We conclude that σ2 = limn→∞

1
nE(Y1+. . .+Yn)2 = 0 which

means that

(15) log Gµ0 − ∂0 log |f ′| = ϕ−mψ = u ◦ f − u.
In particular, using (9) we obtain

P (−∂0 log |f ′|) = 0.

But by Bowen’s theorem the unique ∂ such that P (−∂ log |f ′|) = 0 is the Haus-
dorff dimension of J . Thus ∂0 = ∂. The implication 3)⇒2) is proved.

This was the most difficult implication. Clearly m ≤ ∂0 ≤ ∂ ((3) shows that
Hm−ε(E) =∞ as soon as ω(E) > 0⇒ ∂0 = dimω ≥ m− ε). So 2)⇒1) is trivial.

The implication 1)⇒3). This repeats the consideration in [6]. If ∂0 = ∂ then
Manning’s formula (14) gives

hµ0 − ∂
∫

log |f ′|dµ0 = 0.
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So µ0 is the measure giving the maximum P (−∂ log |f ′|) = 0 to the functional
L∂ log |f ′|(ν) = hν−∂

∫
log |f ′|dν. We see that µ0 is the Gibbs measure constructed

by means of −∂ log |f ′|. Now using (9) we come to the homologous equation (15)
with Hölder u. Lemma 5.1 shows that G(z) ≤ Md(z)∂ . This contradicts 1) and
1)⇒3) is proved together with Theorem 3.1.

Let m0 = sup{m : (3) is satisfied with a certain M = M(m) < ∞}. Then
clearly

m0 = lim
z→J

logG(z)
log d(z)

.

Question 1. Is always m0 < ∂0?

6. A simple estimate for m0 from above. Let us consider the following
expression in which supremum is taken over all ergodic measures on J :

r1
def= sup

µ

∫
log |f ′|dµ∫
log Gωdµ

.

Let ν provide “almost” supremum to this expression. Then by the ergodic theorem
we get that

ω(Un(x)) ≥ C(diamUn(x))
1

r1
+ε, for ν-a.e. x.

Using Lemma 5.1 we derive immediately the estimate

(16)
1
m0
≥ r1.

7. Polynomial case. For f = p = polynomial we can write r1 as follows:

r1 =
1

log d
sup
µ

∫
log |p′|dµ def=

supχµ
log d

.

Let us introduce r0 = inf{r : (1) is satisfied}.

Lemma 7.1. 1
m0
≥ r0 ≥ r1.

P r o o f. The first inequality is a trivial consequence of (4). To prove the second
let us introduce

χp(x) = lim
n→∞

1
n

log |(pn)′(x)| and rs =
supx∈J χp(x)

log d
.

The functions fn = 1
n log |(pn)′(x)| are bounded from above (but maybe not

from below if p′ vanishes on J) and so for them lim
∫
fn ≤

∫
limfn. So∫

log |p′|dµ =
1
n

∫
log |(pn)′|dµ = lim

∫ 1
n

log |(pn)′|dµ

≤
∫

lim
1
n

log |(pn)′|dµ ≤ sup
x∈J

χp(x).
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Thus

(17) r1 ≤ rs.
On the other hand (1) shows that

|(pn)′(x)| ≤M(dn)r0+ε

and so for each x ∈ J
χp(x) ≤ (r0 + ε) log d

which means that rs ≤ r0. Combining this with (16) we complete the proof of
Lemma 7.1.

Let us introduce

χorb
p = sup{χp(x) : x is a periodic point of p}.

Lemma 7.2. supµ χµ ≤ χorb
p ≤ supx∈J χp(x), where the first supremum is

taken over all ergodic measures.

We will not use this refinement of (16) and we cite this fact about Lyapunov
exponents only for the sake of completeness.

8. Proof of Theorem 3.2. Just choose µ = µ0 to estimate r1. Then

r ≥ r1 ≥
∫

log |p′|dµ0

log d
=

1
∂0
.

The last equality is (14).

Now [7] and Theorem 3.1 show that either 1
m > r or r > 1

∂0
.

9. Proof of Theorem 3.3. Here to prove (7) we will need the following:

Lemma 9.1. Let ϕ be a Hölder function on J such that ϕ is not homologous
to a constant. Let αt be the Gibbs measure for tϕ; α = α1. Then( ∫

ϕdαt −
∫
ϕdα

)
(1− t) > 0.

P r o o f. We use 3) of Section 4 to write

hα −
∫
ϕdα > hαt

−
∫
ϕdαt

hαt − t
∫
ϕdαt > hα −

∫
ϕdα.

Subtracting these two lines we get the result.

Now let ϕ = log Gµ0 and α = µ0. This ϕ is not homologous to a constant [6].
Now Lemma 9.1 gives us an ergodic measure αt such that∫

log Gµ0dαt <
∫

log Gµ0dµ0 = hµ0 .

Thus
1
m
≥ r1 ≥

log l∫
log Gµ0dαt

>
log l∫

log Gµ0dµ0
=
∫

log |f ′|dµ0

hµ0

=
1
∂0
.
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Question 2. In the polynomial case, is it true that r > 1
∂0

for any r satisfying
Markov’s inequality (1) unless p = zk?

Question 3. In the polynomial case, is it true that r0 > 1
∂0

or even r1 >
1
∂0

unless p = zk?

R e m a r k. The inequality r1 > 1
∂0

means that harmonic measure on J(p)
does not provide the maximum for the functional ν →

∫
log |p′|dν among ergodic

measures.
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