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1. The universal Teichmiiller space. A simply connected domain €2 of the
plane is well parametrized by its Riemman mapping, i.e. a conformal mapping
from the unit disk A onto Q. The idea of universal Teichmiiller space (UTS
for short) is to equip the set of all those conformal mappings with an (infinite
dimensional) complex structure, in order to study deformations of such domains.

In order to guess what is this complex structure, let us first define a holomor-
phic deformation of the unit disk as a family fy, A € A of conformal mappings
A — C (i.e. holomorphic and injective) such that:

(i) fo(2) = =,
(ii) Yz € A, A — fa(z) is holomorphic in A.

The complex structure on UTS should be of course such that, when restricted
to a holomorphic deformation of the disk it coincides with the A-structure. Now,
by the Koebe distortion theorem, for every Riemann mapping f on the unit disk,
the function Log f’ belongs to the Banach space B of holomorphic functions b in
A satisfying

[bl[5 = sup(1 — [2])[b/(2)]
zZEA

(more precisely, this is a complex Banach space of functions modulo constants,
which is natural in this setting—we identify two domains if they are similar).
The function A\ — Log(f}) is holomorphic from A to B and sends 0 to 0; by the
Schwarz lemma, we must have

[ Log fills < |Al.

Conversely, Nehari’s univalence criterion implies that a function b € B with
sufficiently small norm has to be of the form b = Log f’ for some conformal
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mapping f; moreover there exists a holomorphic deformation such that f = f,
with |A| ~ || Log f’||g. Thus the analytic structure has to be the structure of the
complex Banach space B. We then define

S = {Log f’; f is conformal from A to C},

the universal Teichmiiller space T'(I) being the interior of S in B.

The UTS is closely related to the theory of quasiconformal mappings; a homeo-
morphism of the plane is said to be quasiconformal if it belongs to the Sobolev
space Wy 1,.(C) and if there exists a function € L>(C), |[pfloo < 1 such that

of _ of
M) 0z~ Moz
Ahlfors and Bers [1] have shown that Log f' € T(I) iff f admits a quasi-
conformal extension to the plane; the corresponding domains f(A) are thus the
Jordan domains called quasidisks whose boundary is characterized by Ahlfors’
three points condition

(2) 3C > 0;Vz1, 22, 23 in this order on 98, |21 — 22| < C|2z1 — z3].

The deepest result in this theory is a corollary of the Riemann mesurable
theorem which asserts that given p € L*°(C), ||p/lcc < 1, there exists an (essen-
tially unique) solution of (1) which is quasiconformal in the plane. This theorem
has a long history: In this (very general) setting, it is due to Bojarski [2]. The
geometrical corollary of this theorem is that the UTS T'(I) is contractible; every
quasidisk can thus be continuously (in the B topology) deformed into a disk.

We finish this section with a last geometric property of the UTS: if (f)) is a
holomorphic deformation of the unit disk then Log f§ € T'(1) for every A in the
disk. This property, due to Mané, Sad and Sullivan [3], is called the A -lemma.

2. Deformation of rectifiable curves. This theory allows us to study how
certain quantities attached to quasidisks vary when we deform those quasidisks;
for instance, how varies the Hausdorff dimension of a quasicircle? A theorem of
Ruelle asserts that this variation is real-analytic in some holomorphic disks of the
UTS. We will return to this point in a later section.

The object of which we would like to study now the variations is an operator,
namely the Cauchy integral operator, the operator of L?(ds) defined on smooth
curves (ds is arclength measure) by

L
Q crte =pv. [ L.

where P.V. stands for principal value, z(s) is arclength parametrization, and L is
the length of the curve.

The UTS is obviously not well suited for this study since a domain has to be
rectifiable in order to give at least a meaning to this operator; but any neighbor-
hood of 0 in 7T'(I) contains domains with fractal boundary.
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We thus need a different Teichmiiller theory to handle this problem. We begin
with a result of David [4]: if ' is a rectifiable curve then the operator defined by
(3) is continuous on L?(T,ds) if and only if it satisfies the following, known as
Ahlfors-David regularity:

3C > 0; Vz €T, Vr >0, length('ND(z,r)) <Cr.

In [5], it is proved that if the simply connected domain €2 has an Ahlfors-David
regular boundary, then, if f: A — Q is the Riemann mapping, Log f’ belongs to
the space BMOA(D) of functions f € H?(A) such that

10~ (7 / fudu)

Moreover, if (fy) is a holomorphic deformation of the unit disk such that
fa(0A) is AD-regular for every A € A then, by the A-lemma f\(A) is also a
quasidisk for A € A and it can be shown very easily that the curves satisfying both
Ahlfors regularity condition and the 3-points condition are exactly the Lavrentiev
curves, i.e. the curves I' satisfying

3C > 0; Vz,( €T, length(v(z,¢)) < Cl|z — (],

where v(z,() is the smallest subarc of I' with extremities z,{. A theorem of
Pommerenke asserts that f(A) is a Lavrentiev domain if Log f’ has a small norm
in BMOA(A).

The right analogue of the UTS appears then to be

L ={Log f' € S; f(A) is a Lavrentiev domain},

1 2
3C > 0; VI interval C A, i Il du| < C.
I

the ambient space being here the complex Banach space BMOA(A). In [5] it is
proved that £ is the interior in BMOA(A) of

R = {Log f' € S;0f(A) is AD-regular}.

Next we recall the fundamental result of Tukia: The Lavrentiev domains are
exactly the images of the unit disk under bilipschitz homeomorphisms of the
plane, i.e. homeomorphisms ® for which there exists C' > 0 such that:

Vz,(€C, C7z— ¢l <|®(2) - ®(Q)] < Clz —¢.

This shows a very nice parallel between the two theories; the UTS is the space
associated to the geometry of quasiconformal mappings, while £ deals with the
bilipschitz geometry. Unfortunately the parallel has a limit; first of all, the set R
is not a good analogue of S because it is not closed in BMOA(A); secondly there
is no (known) analogue of the Riemann mesurable theorem in the bilipschitz case:
It is not known if £ is contractible, or even if it is connected.

Certainly completely new tools are to be invented to prove (or disprove) that £
is contractible. Before this theory exists, we modestly present here a compromise
between the two theories which yields to (we hope) interesting new results.
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Before doing this let us conclude this section as it began; in [5] it is shown
that the Cauchy operator varies analytically in L.

3. Universal Teichmiiller space and BMOA. The compromise between
the two theories merely consists in defining

S = SN BMOA(A)

and 7 (I) as the interior of ¥ in BMOA(A), or, equivalently, as T(I)NBMOA(A).
If g is a continuous fonction R — R and Q = {y > g(x)}, then the Riemann
mapping f from A onto Q satisfies Log f* € BMOA(A) (this follows easily from
the fact that Arg f is bounded) and thus Log f’ € ¥ does not imply that 9f(A) is
rectifiable. The principal drawback of this theory is thus that the space comprises
non-rectifiable curves but, as we shall see, the domains under consideration are
not so far from being rectifiable.

Anyhow, the lost is counterbalanced by a very nice parallel with the classical
theory of the UTS.

Before we present it, let us recall the notion of conformal welding: If €2 is a
quasidisk in the plane and if ¢, v are the conformal mappings from A to € and A
to °Q respectively, the conformal welding associated to € is then defined as h =
1 o ; it is a homeomorphism of A and by results of Ahlfors, Bers, Beurling,
this homeomorphism satisfies the following condition, known as quasisymmetry
(we shall say that h € Q (T)):

30> 0; V2 €0A, Yw € (~mm), (™) — h(2)| < Clh(z) — h(ze™ ™).

The importance of this concept lies in the fact that conversely for every h €
Q(T) there is a unique (up to Md&bius transformation) quasidisk whose welding
is precisely h. The set Q(T) can thus be seen as a way of parametrizing T'(]).

It will appear that 7(I) can be similarly parametrized; but while the ele-
ments of Q(T) may be wildly singular, the weldings corresponding to 7 (I) are
very strongly absolutely continuous. More precisely let us define a strongly qua-
sisymmetric homeomorphism of A (this terminology is due to Semmes [6] and
the set will be denoted by SQ(T)) as a homeomorphism h such that

Ve > 0, 36 > 0; VI interval C A, VE C I mesurable,
|E| < 6|I| = |n(E)| < e[h(I)].

Before stating the main theorem, we must introduce the concept which will
be crucial for our purposes; if €2 is a domain of the plane, a positive measure v
defined in € is called a Carleson measure if it satisfies

3C > 0; V2 € 0Q, Vr >0, v(QND(z1r)) <Cr.

Let us now consider an element Log f’ of T'(I) and denote by h the corre-
sponding welding. The main result is the following
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THEOREM 1. The following are equivalent:

(1) Log f" € T(1),

(2) he SQ (T),

(3) f admits a quasiconformal extension to C with dilatation p satisfying

2
(|||'u|1)d:1:dy is a Carleson measure in “A.
Z [R—

(For the proof, we refer to [7]).
The domains satisfying one of the equivalent conditions of the theorem have
been completely characterized by Bishop and Jones. They are the domains satis-

fying:
(BJ) 3C > 0; Vz € Q 3Q, C Q “centered” at z, (92, NIN) > C dist(z,IN).

In this statement, €2, is a Lavrentiev domain with constant < C and “cen-
tered” at z means that 0.01 < d(z,012,)/ diam(€2,) < 100.

An interesting corollary of this characterization is that the class 7(I) is in-
variant under bilipschitz mappings. Let us also notice that in a neighborhood of
the disk, the three conditions are equivalent to being a Lavrentiev domain with
small constant.

This theorem is part of a long story which started in a paper by Carleson [§]
giving a sufficient condition on the dilatation of a quasiconformal self-mapping
of the disk to have an absolutely continuous boundary value. Later Dahlberg [9]
found the right Carleson measure condition which was generalized by Fefferman,
Kenig and Pipher [10] who proved (in different terms) (3)=-(2). The Carleson
measure condition in (3) has been first introduced in this context by Semmes [6]
who proved (3)=-(2) in the case of small norm; his method is completely different
and uses operator theory.

This theorem also shows that the problem of finding conditions either on
the welding or on the dilatation of the extension equivalent to rectifiability is
much harder. Actually it puts some light on the disproof by Semmes and later
by Bishop of the conjecture of Jerison and Kenig [11] that welding in SQ (T) =
curve rectifiable; using the equivalence (1)< (2), every quasidisk for which the
conformal mapping f satisfies Log f’ € BMOA(A) is a counterexample (if not
rectifiable). By a remark already made, the domain {y > f(z)} where f is the

Weierstrass function
oo

3 n
fla) = Z sm(;1 x)
n=0

will do (the fact that it is a quasidisk follows from the fact that the function f is
in the Zygmund class).

The main corollary of theorem 1 is the result that 7 (I) is contractible as an
open subset of BMOA. The idea to connect Log f’ € 7 (I) to 0 is the standard one
in Teichmdiller theory: Using (3), we extend f to be qc in the plane with dilatation
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o satisfying the Carleson measure condition. The path is then ¢ — Log f; where
fi solves the Beltrami equation

Of = tudfy.
To conclude this section we finally observe that the problem of the connected-
ness of the set of Lavrentiev domains L is still open but at least theorem 1 shows
that one can connect every Log f' € L to 0 by a continuous path in 7 (I).

4. Mostow, Bowen, Ruelle. We start this section with an observation
made by Poincaré more than a century ago: let I' be a cocompact Fuchsian
group, that is, a discrete group of automorphisms of the disk without fixed point
such that the quotient A/I' is compact and let us deform the generators of I" into
Mobius transformations in such a way that the group relations are preserved;
we obtain in this way a new discrete group whose limit set is a Jordan curve
(such a group is called quasifuchsian). Poincaré claimed that this limit set, if it is
not a circle, must be a very “wild” Jordan curve in the sense that it should have
tangents nowhere. A way (in fact the only one) to produce such deformations is by
geometry; let us consider two homeomorphic copies of the Riemann surface A/T°
and ¢ a homeomorphism between the two surfaces; it lifts to a homeomorphism of
the sphere which conjugates I' to such a deformation and moreover the restriction
of the lifted homeomorphism to the circle is precisely the welding of the limit set
of the quasifuchsian group.

There are at least two possible measurements of “wildness” of curves, all of
them concerning more or less rectifiability.

The first one is by the welding; by the classical F. and M. Riesz theorem, any
rectifiable Jordan curve has an absolutely continuous welding. Conversely, if the
welding is singular, it can be shown that the set of points where the curve has a
tangent has zero one-dimensional Hausdorff measure.

In this setting, the 2-dimensional version of Mostow rigidity theorem exactly
says that in this situation, the welding of the limit set of the quasifuchsian group
is either a Mobius transformation (in which case the curve is a circle) or else
is totally singular. We reformulate this property by saying that a cocompact
Fuchsian group is rigid.

Let us consider more generally a Fuchsian group I' of the first kind, i.e. such
that its limit set is the whole unit circle. We can deform such a group as before
except that we now restrict to quasiconformal deformations, and it makes sense
to say that I' is rigid. Agard [12] has generalized Mostow’s theorem by proving
that I" is rigid if it is of divergence type which is equivalent to saying that the
surface A/T" has no Green function (or is of class O¢g). Our theorem 2, which is
a corollary of theorem 1, says that this result is best possible:

THEOREM 2. Let I' be any Fuchsian group of convergence type; then there
exists a quasifuchsian group conjugate to I' whose limit set is a Lavrentiev curve.
In particular a group of convergence type is never rigid.
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Idea of proof. We first use the observation that if I' is of convergence
type, then the orbit of 0 under the group is an interpolation sequence; let now v
be an L*° function with norm less than one and supported in a small disk around

0 and define
Vi
n= Z tv o 7%.
vel
This is the dilatation of a qc automorphism of the disk conjugating I" to a quasi-
fuchsian group and the interpolating property of I' implies that the Carleson
condition (3) is satisfied; if one is careful enough in the choice of v, one can be
sure that the boundary value of f is not a Mobius transform, and we conclude by
using (3)=(2) of theorem 1 for ¢ small enough (actually we only use the small
norm implication, due to Semmes).
The second way of measuring how wild is a curve is Hausdorff dimension.
A theorem of Bowen [13] asserts that the dimension of the limit set of a quasi-
fuchsian group conjugated to a cocompact Fuchsian group is > 1 unless this limit
set is a circle. The immediate parallel with the preceeding section leads to the
following interesting open problem:

QUESTION. Is this property still true for groups of divergence type?

Of course theorem 2 shows that this property never holds for groups of conver-
gence type. We nevertheless mention this new approach because of the following
result of Ruelle:

If T is a Fuchsian group, a holomorphic deformation of T' is every family (I';)
of quasifuchsian groups together with a family (®;) of isomorphisms from I' onto
I'; such that:

(i) ®¢ = 1d,

(ii) Vy € T', t — ®4(7) is holomorphic in ¢t € A.

Ruelle’s result [14] is then that if (I';) is a holomorphic deformation of T’
cocompact, then ¢t — Hausdorff dimension of (I'y) is real-analytic in A.

Our last result consists in exhibiting a large class of Fuchsian groups for which
this property does not hold.

A Denjoy domain is the complement in C of a closed set K CR; such a domain
is said to satisfy the Carleson property if

de > 0; Vo € K, Vt <diam(K), |KN(x—t,x+1t)| > et,

where | | stands for Lebesgue measure of R.

Suppose now that €2 is a Carleson-Denjoy domain such that K is totally
disconnected. Then 2 ~ A /T where I" is a Fuchsian group of the first kind (and
of convergence type) and we have (see [15])

THEOREM 3. There exists a holomorphic deformation of such a group T for
which HD(L(Ty)) > 1 for t near 1 and = 1 for t close to 0. A fortiori, Ruelle’s
property does not hold for this group.
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