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Abstract. We shall be concerned in this paper with an optimization problem of the form:
J(f) → min(max) subject to f ∈ F where F is some family of complex functions that are
analytic in the unit disc. For this problem, the question about its characteristic properties is
considered. The possibilities of applications of the results of general optimization theory to such
a problem are also examined.

1. Introduction. Denote by C, K, A, respectively, the complex plane, the
unit disc {z ∈ C : |z| < 1} and the set of all complex functions which are analytic
in the disc K. Let further F ⊂ A be some family of complex functions that are
analytic in K.

We are going to consider the following extremal problem:

(1)
{
J(f)→ min(max)
f ∈ F

where J(·) is a real-valued functional.
It seems interesting to ask the question about the characteristic properties of

problem (1) in the light of other optimization problems and about the possibility
of applications of the results of the general theory of optimization to this problem.

The variety of problems of the form (1) is large. In view of the question
formulated above, one can distinguish three factors which prejudge the properties
of the problems under consideration as well as the possibilities of applications of
the general theory of optimization to them. The factors are:

• the topological properties of the space A,
• the way the family F is defined,
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• the regularity of the functional J .

We shall discuss successively the importance of the above factors.

2. On the influence of the space A. The space A of complex functions
analytic in the disc K bears a specific character from the point of view of topol-
ogy and functional analysis. This influences both positively and negatively the
character of problem (1) in comparison with other optimization problems.

Since K is open, the natural topology of A is the topology of uniform conver-
gence on compact subsets of K. By the results of general topology and functional
analysis (see e.g. [5], [7]), A is a locally convex linear-topological space with the
topology determined by a complete and translation-invariant metric. This means
that A is a Fréchet space. It turns out that A is not locally bounded and thus it
is not normable. Hence, although the space of analytic functions is metrizable, it
is not normable.

It is very interesting that the space A possesses the Heine-Borel property. This
is rather unusual since the Heine-Borel property characterizes finite-dimensional
normed spaces. Worth stressing are the “analyticity” features prejudging the
above properties. They are as follows:

• “almost uniform convergence preserves analyticity” (the Weierstrass theo-
rem),

• “the almost uniform boundedness of the family F is equivalent, in the topol-
ogy considered, to the local compactness of this family” (the Montel theo-
rem),

• “the modulus of an analytic function does not attain its maximum inside
the circle of convergence” (the maximum principle).

It follows from the Heine-Borel property that, for problems of the form (1), it is
relatively easy to obtain existence theorems because it is easy to get the closedness
and the almost uniform boundedness (i.e. the boundedness in the topology under
consideration) of the family F as well as the continuity of the functional J . The
relative ease in the obtaining of theorems on the existence of an optimal solution
may be regarded as a positive influence of the space A upon the character of
problem (1). The lack of the norming of this space has a negative influence and
restricts, in the essential way, the possibility of applying the results of the general
theory of optimization to problems of the form (1) since it does not allow us
to apply the results of smooth optimization. The lack of a norm in the space A
does not allow us to speak of the strong Fréchet differentiability of functionals
defined on the family F . We may only use Gateaux-differentiable functionals
as, for instance, in [2] and the directional derivatives of the functional J . When
solving problems of the form (1), we may also make use of the results concerning
differentiability in the generalized sense as in [1]. For more details concerning the
regularity of the functional J , see section 4 of this paper.
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3. On the influence of the family F . The character of problem (1) strongly
depends on the way the family F is defined. We shall comment on two opposite
cases: the easiest and the most difficult ones.

It is easiest to apply the general theory in those situations where the mem-
bership in F is expressed in an analytic way, that is, when the family of functions
possesses the so-called structural representation. Such a structural formula estab-
lishes the correspondence (in the case of certain families, it is one-to-one) between
functions of F and probability measures on the boundary of K. Many structural
representations were obtained. We mention one of such general representations
obtained in 1971 by L. Brickman, T. H. Mac Gregor and D. R. Wiken [4].

Let us denote by X any compact Hausdorff space and consider the mapping
q : K ×X → C with the following properties:

(i) for each t ∈ X, the mapping z → q(z, t) is analytic in K;
(ii) for each z ∈ K, the mapping t→ q(z, t) is continuous on X;
(iii) for each r, 0 < r < 1, there exists a number Mr > 0 such that |q(z, t)| ≤

Mr for |z| ≤ r and for t ∈ X.

Denote by P the set of probability measures defined on Borel subsets of the
space X. For µ ∈ P, let

(2) fµ(z) =
∫
X

q(z, t)dµ(t), z ∈ K.

The family F defined with the use of structural formula (2) is now determined as

(3) F = {fµ : µ ∈ P}.

The best-known example of a representation of the form (2) is the Herglotz for-
mula (see e.g. [11])

(4) p(z) =
∫
|x|=1

1 + xz

1− xz
dµ(x), |z| < 1,

for p(z) analytic in the disc K and satisfying p(0) = 1, re p(z) > 0, z ∈ K (µ(x)
is the probability measure on the boundary of K, corresponding to the function
p(z)). In this case, the mapping µ → fµ is one-to-one (cf. [11], p. 40). Many
interesting families of analytic functions possess a representation of the form (2),
where X = [a, b], a < b, while P = P(a, b) is the set of measures supported on
the segment [a, b], such that

b∫
a

dµ(t) = 1.

Applying general optimization theory to problems concerning the family (3),
one uses the following properties of this family ([4]):

(a) each function of F is analytic in K,
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(b) the mapping µ → fµ is continuous (under the weak-*-topology induced
from C(X)∗ and under the topology of almost uniform convergence on F),

(c) the set F is compact and it is a closed convex hull of the set of functions
{z → q(z, t) : t ∈ X},

(d) the functions z → q(z, t), t ∈ X, are the only possible vertical points of
F . If t0 ∈ X and the condition

q(z, t0) =
∫
X

q(z, t) dµ(t), z ∈ K,

holds only for µ = δt0 , where δt0 denotes the Dirac measure at t0, then the
function z → q(z, t0) is a vertical point of the set F . In particular, if µ → fµ is
one-to-one, each function z → q(z, t), t ∈ X, is some vertical point of F .

Using the above properties when applying some general optimization method,
say the extremum principle of [6], to problem (1), one comes to the inequality of
the form

(5)
∫
X

w(t) dµ(t) ≤
∫
X

w(t) dµ∗(t)

valid for any measure µ ∈ P and some measure µ∗ ∈ P. L. Miko lajczyk and
S. Walczak ([9], th. 2, p. 150) proved that inequality (5) characterizes completely
the extremal measure µ∗, namely, µ∗ must be supported on the set E where

E = {τ ∈ X : w(τ) = max
t∈X

w(t)}.

The function f which is a solution of problem (1) is the one that corresponds
to the measure µ∗ via formula (2). In most extremal problems considered in the
theory of complex functions, the set E contains only a finite number of points.
This enables us to obtain a form of the optimal solution f∗.

The reasoning presented above seems the simplest and most efficient way of
applying the results of general optimization theory to extremal problems regard-
ing families F of the form (3), see, for instance, [1], [3], [9].

Let us now turn to the case of families F of univalent functions. This is the
most difficult case from our point of view. Univalence is a property strongly con-
nected with the domain of definition of a function; the larger the domain is, the
fewer univalent functions on it. Locally, any analytic function f(z) for which
f ′(z0) 6= 0 is univalent, whereas in the whole plane only functions of the form
az + b, a 6= 0, are univalent. Univalence strongly influences the behaviour of a
function on the boundary of the disc K. The influence of this property upon
the coefficients of an analytic function is also very essential. It should also be
emphasized that one does not know the analytic conditions, equivalent to univa-
lence, which could be included in general optimization considerations. The basic
algebraic operations, such as the sum, the convex combination, do not preserve
univalence. The structure of the majority of families of univalent functions is
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therefore highly nonlinear . In other words, linear disturbances are not admissible
in families of univalent functions.

These properties of families of univalent functions make it impossible or very
difficult to apply the general optimization methods to problems of form (1).

Let us mention that, in the case of families of univalent functions, the so-called
variational methods are widely applied (see, for instance, [8]), consisting in the
construction of a sufficiently general disturbance which preserves univalence and
in obtaining some information about the extremal function by the comparison
with functions that are “close” to it. However, the variational methods fall out of
the general theory of optimization and are treated as special extremal methods.

We can summarize our remarks concerning families of univalent functions by
the statement: “The question of how to apply optimization theory to extremal
problems in univalent families still remains open”.

4. On the influence of the functional J . As we have already mentioned
in Section 2, because of the lack of a norm in the space A, we cannot speak of the
Fréchet differentiability of the functional J . What we may only use is a sufficiently
regular directional derivative J ′(f0; f1) of the functional J : A → R, defined as
the limit

J ′(f0; f1) = lim
λ↓0

J(f0 + λf1)− J(f0)
λ

.

If the function J ′(f0; ·) : A → R is linear, i.e. if the functional J is Gateaux-
differentiable, then one may apply certain general optimization methods, for in-
stance, the extremum principle or the Dubovitskĭı–Milyutin method (cf. e.g. [10],
[2], [3]). From the point of view of applications, the class of Gateaux-differentiable
functionals is too narrow, for instance, the functional

(6) J(f) = max[re a1(f), re a2(f)],

where f(z) = a0(f) + a1(f)z + a2(f)z2 + · · ·, z ∈ K, is not differentiable in the
sense of Gateaux.

In our opinion, the most appropriate class of functionals to be considered in
problem (1) is the essentially wider class of regularly locally convex functions,
introduced in [6]. We recall the corresponding notions.

1) A functional J : A→ R is said to be uniformly differentiable at the point
f0 in the direction f1 if, for any ε > 0, there are a neighbourhood U of f1 and a
number λ0 > 0, such that∣∣∣∣J(f0 + λf)− J(f0)

λ
− J ′(f0; f1)

∣∣∣∣ < ε

for any f ∈ U and 0 < λ < λ0.
2) A functional J : A → R is said to be regularly locally convex at the point

f0 if it is uniformly differentiable at the point f0 in any direction and the function
J ′(f0; ·) : A→ R is convex.
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3) If a functional G : A→ R is convex, then the set

∂G(f0) = {x∗ ∈ (A)∗ : G(f)−G(f0) ≥ 〈x∗, f − f0〉 ∀f ∈ A}
is called the subdifferential of G at f0, whereas the subdifferential of a functional
J : A→ R regularly locally convex at the point f0 is defined as follows:

∂J(f0) = ∂G(f0) where G(f) = J ′(f0; f).

A regularly locally convex functional at the point f0 has a nonempty subdiffer-
ential at this point (see [6], 4.2, Proposition 3).

The local behaviour of a regularly locally convex functional is completely
determined by its directional derivative (see [6] and [12]).

Paper [1] which deals with regularly locally convex functionals constitues an
example of an application of the methods of nonsmooth optimization to problem
(1) since it concerns functionals that are merely subdifferentiable. The necessary
optimality condition obtained in [1] (Th. 4.1.) contains subdifferentials of the
corresponding functionals, hence the possible applications are limited by subd-
ifferential calculus. It was possible to calculate subdifferentials in the following
problem solved in [1]:

(7)
{
J(f) := max{re a1(f), re a2(f)} → min
f ∈ F

where F is the family of all Carathéodory functions in K, that is, of all analytic
functions f such that f(0) = 1 and re f(z) > 0 for all z ∈ K: a1(f) = f ′(0),
a2(f) = 1

2f
′′(0). Let us remark that problems like (7) are comparatively difficult

to investigate by means of other extremal methods, for instance, variational ones.
In the case when the functional J is linear or convex, we may apply the

methods of convex analysis, for example, the method of extreme points (cf. e.g.
[5]). This method is based on the Krein–Milman theorem stating that a compact
and convex subset of a locally convex linear-topological space is determined by the
set of its extreme points. Since most families of functions considered in the theory
of extremal problems are not convex, the Krein–Milman theorem is applied to the
closed convex hulls of these families. Consequently, for a compact family F , we
have HF = H(EF) where HF denotes the closed convex hull, and EF the set
of extreme points of the family F . For a complex, continuous, linear functional
defined on F , we then get (cf. [5])

(8)
max{Re J(f) : f ∈ HF} = max{Re J(f) : f ∈ F}

= max{Re J(f) : f ∈ EHF}.
An analogous result is obtained for the functional |J(f)| and for a real, continuous
and convex functional J . Note that equality (8) is useful since EHF ⊂ F ⊂ HF .
Consequently, in order to solve the extremal problem, it suffices to solve it for
the smaller class EHF . Moreover, the solutions are good even for the wider class
HF . It turns out that, for many families under consideration, the set EHF is
essentially smaller than F , and the optimization problems can be solved relatively
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easily. Note that the success in applying this method depends on the possibility of
determining the extreme points of the family F . In the case of families determined
by a structural formula, the extreme points are the functions corresponding to the
Dirac measures on the boundary of the discK. For families possessing no structure
representations, the problems of determining the extreme points and their convex
hulls are comparatively difficult and still open. And so, for instance, the problems
of describing the sets EHS and ES are open, where S denotes the family of
functions univalent in the disc K, with the expansion f(z) = z + a1z

2 + . . . ,
z ∈ K. It is known that functions of the form z/(1− xz)2, |x| = 1 (the Koebe
functions) belong to EHS, thus to ES, because EHS ⊂ ES. One also knows
other functions belonging to EHS. One also obtained some necessary conditions
for a function to belong to ES, but the general problem is still open. It follows
from the above observations that the method of extreme points, like other general
optimization methods, does not yield satisfactory results when applied to extremal
problems concerning families of univalent functions.
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