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Complex analysis deals with holomorphic mappings between complex spaces.
We ought to allow complex spaces to be infinite-dimensional and to have sin-
gularities. There are well-developed theories in the finite-dimensional case (see
e.g. [GR], [Lo]) and for domains in certain kinds of topological vector spaces
(see e.g. [Di], [FV], [He]). The most obvious approach to infinite-dimensional
complex spaces is too general to yield sensible results [Do], but there has been
progress [Au] in the study of (possibly infinite-dimensional, possibly singular)
semi-Fredholm-analytic spaces. In any case, I shall assume that a complex space
carries the structure of a Hausdorff space, which I shall call its underlying topol-
ogy ; in the finite-dimensional case I shall assume that the underlying topology
is paracompact. This note discusses some foundational questions and summa-
rizes what we know about the relationships between the underlying topology
and the topologies induced by the classical pseudodistances of Carathéodory and
Kobayashi.

Let Hol(X,Y ) denote the set of all holomorphic mappings from the complex
space X into the complex space Y ; I shall assume that these mappings are con-
tinuous with respect to the underlying topologies of X and Y . Let D denote the
open unit disc in C. A mapping f ∈ Hol(D, X) is called an analytic disc in X.
I shall also assume that a complex space has the property that any two points can
be connected by (the images of) a finite chain of analytic discs in the space; in
the finite-dimensional case this is equivalent to connectedness in the topological
sense [K70, pp. 97–98], [La, pp. 15–16].
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1. The Carathéodory pseudodistance. The Carathéodory pseudodistance
[C, pp. 78–79] between the points p and q of the complex space X is

cX(p, q) = sup{tanh−1(f(q)) : f ∈ Hol(X,D), f(p) = 0, f(q) ≥ 0}.
Obviously 0 ≤ cX(p, q) ≤ ∞. Moreover cD = ρ, the Poincaré distance. When a
Vitali-Montel Theorem holds for X, one can use a “normal families” argument to
show that the supremum is attained, hence that cX(p, q) is finite. In the finite-
dimensional singular case, a suitable Vitali Theorem was proved independently by
Gunning [G] and Andreotti and Stoll [AnS, Proposition 4, pp. 326–328]; a Montel
Theorem for domains in locally convex spaces was given in [DiTV, Lemme 1.2,
pp. 516–517]. Alternatively, for any analytic disc f : D → X it follows from the
the Schwarz Lemma that ρ(0, a) ≥ cX(f(0), f(a)); connecting p and q by a chain
of analytic discs shows that cX(p, q) is finite.

The first topological chore is to check whether cX : X×X → [0,∞) is contin-
uous (with respect to the underlying topology). In view of the triangle inequality,
this amounts to the continuity of cX(p, ·) at each p ∈ X. The argument given by
Carathéodory [C, Satz 6, pp. 85-86] for bounded domains in C2 works in great gen-
erality as long asX is nonsingular at p: take a balanced convex domainB with cen-
ter p with respect to a chart ofX; the inequality cB(p, q) ≥ cX(p, q) and an explicit
computation of cB(p, q) show that cX(p, q)→ 0 as q → p. Alternatively, when a
Vitali-Montel Theorem holds, one can give a normal families argument. Recently
V. Aurich [Au, Lemma 5.4, p. 240] has shown that cX is continuous when X is a
(possibly infinite-dimensional, possibly singular) semi-Fredholm-analytic space.

In an abstract sense the following completely settles all questions about the
topology induced by cX .

Proposition 1.1. Let X be a complex space. Let H∞(X) denote the space of
bounded (complex-valued) holomorphic functions on X equipped with the supre-
mum norm ‖·‖, and let H∞(X)∗ denote the space of bounded linear functionals on
H∞(X) equipped with the dual norm ‖·‖∗. Let τ : X → H∞(X)∗ be the evaluation
map defined by τ(p)(f) = f(p) for p ∈ X, f ∈ H∞(X). Then

(a) cX(p, q) = 2 tanh−1
(

1
2‖τ(p)− τ(q)‖∗

)
for all p, q ∈ X;

(b) cX is a distance if and only if τ is one-to-one;
(c) cX is continuous if and only if τ is continuous;
(d) the topology induced by cX is {τ−1(U) : U is open in H∞(X)∗};
(e) cX induces the underlying topology if and only if τ is an embedding.

Obviously (b) through (e) follow from (a), though it is easy to check them
independently of it. The formula in (a) was stated in [EaH, Lemma 4, p. 65]; its
proof relies on a neat argument given by J. Lewittes [Le, p. 1090]:

‖τ(p)− τ(q)‖∗ = sup{|f(p)− f(q)| : f ∈ H∞(X), ‖f‖ ≤ 1}
= sup{|f(p)− f(q)| : f ∈ Hol(X,D)}
= sup{|f(p)− f(q)| : f ∈ Hol(X,D), f(q) = −f(p) ≥ 0}
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= 2 sup{f(q) : f ∈ Hol(X,D), f(q) = −f(p) ≥ 0}
= 2 tanh(sup{ρ(0, f(q)) : f ∈ Hol(X,D), f(q) = −f(p) ≥ 0})
= 2 tanh( 1

2 sup{ρ(f(p), f(q)) : f ∈ Hol(X,D), f(q) = −f(p) ≥ 0})
= 2 tanh( 1

2cX(p, q)).

The key point here is the third equality, which says that |f(p) − f(q)| will be
maximized by choosing f(p) and f(q) symmetrically about 0.

In connection with Proposition 1.1(e) there are some concrete positive results.

Proposition 1.2. Each of the following is a sufficient condition for cX to
induce the underlying topology :

(a) X is a bounded domain in a Banach space;
(b) X is a domain in C and cX is a distance;
(c) X is a relatively compact domain in a Stein space;
(d) X is finite-dimensional , cX is a distance, and the closed Carathéodory ball

{q ∈ X : cX(p, q) ≤ r} is compact (with respect to the underlying topology) for
every p ∈ X and every r > 0.

The proof of (a) is easy: if U is a neighborhood of a point p in X, we take a
ball B centered at p and containing X, compute cB(p, q) to find a radius δ for
which {q ∈ X : cB(p, q) < δ} ⊂ U , and note that cX(p, q) ≥ cB(p, q). A slick
elementary proof of (b) can be found in [JP91, Proposition 1.3, p. 170]. Proofs
of (c) and (d) were given by N. Sibony [Sib, pp. 222–223].

Recently Mikihiro Hayashi [Ha] constructed a Riemann surface (a one-dimen-
sional complex manifold) X for which the mapping τ of Proposition 1.1 is one-to-
one but not an embedding. In view of parts (b) and (e) of Proposition 1.1, Jean-
Pierre Vigué observed that this Riemann surface provides an example of a complex
space for which the Carathéodory pseudodistance is a distance but does not induce
the underlying topology. Marek Jarnicki, Peter Pflug, and Vigué [JPV91] applied
some general theorems to establish the existence of a domain in C3 with the same
property. Indeed, a Remmert–Narasimhan–Bishop embedding realizes Hayashi’s
example as closed complex submanifold of C3; using Siu’s theorem [Siu], it is
easy to construct such a domain containing this submanifold. The experts [ElG,
p. 128] seem to believe that every open Riemann surface will embed in C2; once
this has been proved there will be a corresponding example of a domain in C2.

Even when a Carathéodory distance induces the underlying topology, recent
examples of Riemann surfaces and bounded pseudoconvex domains [JPV92] show
that the closure of an open Carathéodory ball may be a proper subset of the cor-
responding closed Carathéodory ball.

2. Inner pseudodistances. Kobayashi [K73, p. 484] suggested the idea of
applying the metric space theory of inner distances, as codified by Rinow [Ri], to
the Carathéodory distance. This theory, which goes back at least to the work of
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Menger [M, p. 492], measures distance by the infimum of the lengths of (continu-
ous) curves joining two given points. In view of the Hayashi-Jarnicki-Pflug-Vigué
examples, this construction may use curves that do not conform to our intuition
of a “curve” in a complex space.

In hopes of clarifying the nature of the difficulties, I shall now introduce some
terminology. A path in the set X is a mapping γ : [a, b]→ X, where a and b are
real numbers with a ≤ b ; the values γ(a) and γ(b) are called the endpoints of γ.
Let me emphasize that X is only a set and there is no continuity assumption. A
network on X is a collection N of paths in X satisfying:

• whenever p and q are points of X there is a path in N with endpoints p, q;
• if γ : [a, b] → X and a ≤ t ≤ b, then γ ∈ N if and only if γ|[a,t] ∈ N and

γ|[t,b] ∈ N;
• if γ ∈ N and A : R→ R is a nonconstant affine function, then γ ◦A ∈ N.

Intuitively, a network is closed under path product, reversal, and restriction. Fi-
nally, a gigadistance on the set X is a function D : X ×X → [0,∞] satisfying the
usual axioms for a pseudodistance:

(1) D(p, p) = 0 for all p ∈ X,
(2) D(p, q) = D(q, p) for all p, q ∈ X,
(3) D(p, q) +D(q, r) ≥ D(p, r) for all p, q, r ∈ X.

Once we accept these definitions, it is reasonable to define the length of the path
γ : [a, b]→ X relative to the gigadistance D to be

L(γ,D) = sup
{ k∑
j=1

D(γ(tj−1), γ(tj)) : k ≥ 1, a = t0 ≤ t1 ≤ · · · ≤ tk = b
}
.

Of course 0 ≤ L(γ,D) ≤ ∞. Setting

DN(p, q) = inf{L(γ,D) : γ ∈ N and γ has endpoints p, q},
gives another gigadistance DN ≥ D; it may happen that DN is infinite even when
D is a (finite) distance and the paths in N are continuous with respect to D.
We say that the gigadistance D is inner for N if DN = D. If D is an arbitrary
gigadistance, it is easy to see that L(γ,DN) = L(γ,D) for every γ ∈ N, so DN

is inner for N. The book [Ri] considers the case where (X,D) is a pathwise con-
nected metric space and N consists of all paths that are continuous with respect
to D. To conclude the general discussion, here is a simple topological fact.

Lemma 2.1. Let D be a continuous distance on the locally compact Hausdorff
space X. Let N be a network on X consisting of mappings that are continuous
with respect to the given topology on X. If D is inner for N, then D induces the
given topology.

Now let X be a complex space such that cX is a continuous pseudodistance
(a condition essentially always satisfied—see §1). There are at least four natural
networks on X:
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• the network C of all paths continuous with respect to cX ,
• the network U of all paths continuous with respect to the underlying topol-

ogy,
• the network V of admissible curves of Venturini [Ve, p. 387],
• the network D of all piecewise continuously differentiable paths.

All have been used to construct “inner” Carathéodory (pseudo)distances:

• cXC, denoted by c′X in [K73, p. 484];
• cXU, denoted by ciX in [K76, p. 364], [B77, p. 49], [PS, p. 67];
• cXV, denoted by ciX in [Ve, p. 390];
• cXD, denoted by C̃X in [Di, p. 53].

(I have guessed some authors’ intent.) Clearly C ⊃ U ⊃ V ⊃ D, so cX ≤ cX
C ≤

cX
U ≤ cX

V ≤ cX
D. It is quite usual to have cX 6= cX

C (see e.g. [B77], [Vi83],
[JP90]). Jean-Pierre Vigué has noted that the 2-dimensional complex space con-
structed in [Vi84] satisfies cXC 6= cX

U. If I interpret the author(s) correctly, [K76,
Theorem 2.6(2), p. 364] (resp. [PS, p. 67]) states that cXU = cX

D whenever X
is a finite-dimensional complex space (resp. manifold); Jarnicki and Pflug [JP91,
p. 170] note that this is true when X is a bounded domain in Cn, but they point
out the lack of a proof in the general case. While it may be counterintuitive for
a ragged curve to be short, it is conceivable that a trip along such a curve may
encounter little resistance from cX .

The arguments in §1 show that cXD(p, q) is finite and also that cXD(p, ·) is
continuous at each nonsingular point p. In the finite-dimensional singular case
continuity follows from comparison with the Kobayashi distance (see §3) or by
noting that cXD coincides with the integrated form of the Carathéodory-Reiffen
metric [Re, Satz 2, p. 321].

Theorem 2.2. Each of the following is a sufficient condition for cXU (resp.
cX

D) to induce the underlying topology :

(a) X is a bounded domain in a Banach space;
(b) X is finite-dimensional and cXU (resp. cXD) is a distance.

The proof of (a) is the same as for Proposition 1.2(a). Of course (b) follows
from Lemma 2.1; the only difficult part is continuity at the singular points.

In view of Theorem 2.2, it is natural to look at unbounded domains in the
Hilbert space `2 of sequences of complex numbers x = (xν)∞ν=1 satisfying ‖x‖ =√∑

|xν |2 <∞. Following [FV, pp. 93–94], set

X = {x ∈ `2 : sup
ν
|xν |/ν < 1}.

Then cX
U and cX

D are distances, x(n) = (δn+1
ν )∞ν=1 ∈ X, and

cX
U(0, x(n)) = cX

D(0, x(n)) = tanh−1
( 1
n+ 1

)
→ 0 as n→∞.

But ‖x(n)‖ = 1, so these distances cannot induce the underlying (norm) topology.
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3. The Kobayashi pseudodistance. The definition of the Kobayashi pseu-
dodistance [K67, p. 462], as explained by Royden [Ro], involves dualizing the
Carathéodory construction to obtain an object that may not be a pseudodis-
tance, and then applying a general technique.

At the risk of overdoing the jargon, let us say that a paradistance on the set
X is a function D : X ×X → [0,∞] satisfying:

(1) D(p, p) = 0 for all p ∈ X,
(2) D(p, q) = D(q, p) for all p, q ∈ X.

Lemma 3.1. Let D be a paradistance on the set X. For p, q ∈ X, k = 1, 2, 3, . . .,
set

D(k)(p, q) = inf
{ k∑
j=1

D(pj−1, pj) : p0 = p, pk = q
}
.

Then

(a) D(k) is a paradistance on X;
(b) D = D(1) ≥ D(2) ≥ D(3) ≥ . . . ;
(c) D(∞) = infkD(k) = limk→∞D(k) is a gigadistance on X.

In other words, D(∞) is the largest gigadistance on X bounded above by D.
Now let X be a complex space. The one-disc Kobayashi paradistance between

the points p and q of X is

δX(p, q) = inf{tanh−1(a) : 0 ≤ a < 1, f ∈ Hol(D, X), f(0) = p, f(a) = q}.
It may happen that the set in this formula is empty, in which case the infimum
is defined to be ∞. But if X is an n-dimensional complex manifold, a theorem of
Fornaess and Stout [FS77] (resp. [FS82]) asserts the existence of a holomorphic
mapping of Dn (resp. the n-dimensional ball) onto X, whence δX is finite. This
is also true if X is a domain in a Banach space [Di, pp. 49–50]. The infimum is
not usually attained, but it will be if X is taut [W, Definition 1.2, p. 199], [DiT,
Definition 6.2, p. 359]. The Kobayashi pseudodistance on X is

dX = δ
(∞)
X .

If f ∈ Hol(D, X) and 0 ≤ a < 1 we have

dX(f(0), f(a)) ≤ δX(f(0), f(a)) ≤ tanh−1(a) = ρ(0, a).

Using a chain of discs one sees that dX is finite. Moreover the geodesic proper-
ties of ρ give L(f |[0,a], dX) ≤ ρ(0, a). It follows that dXA ≤ δX , where A is the
smallest network on X containing {f |[0,a] : 0 ≤ a < 1, f ∈ Hol(D, X)}. Thus
dX = dX

U = dX
V = dX

D = dX
A.

The argument in §1 shows that dX(p, ·) is continuous at each nonsingular
point p. The only simple proof I know for continuity in the finite-dimensional
singular case uses a Hironaka resolution of singularities [Hi], [HiR]; see [B72], [La,
Proposition 1.7, pp. 17–18]. Possibly the new metric of Kobayashi [K90] could be
helpful in this regard.
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Let K be the network of all paths continuous with respect to dX . When dX is
continuous, we have K ⊃ U, so dX = dX

K, i.e. dX is inner for K [K73, pp. 483–484].

Theorem 3.2. Each of the following is a sufficient condition for dX to induce
the underlying topology :

(a) X is a bounded domain in a Banach space;
(b) X is finite-dimensional and dX is a distance.

The proof is identical to that of Theorem 2.2. Moreover, for the unbounded
domain X in `2 constructed at the end of §2, dX is a distance that does not induce
the underlying topology [FV, pp. 93–94].
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Carathéodory distance, Results Math. 18 (1990), 57–59.

[JP91] —, —, Invariant pseudodistances and pseudometrics—completeness and the product
property , Ann. Polon. Math. 55 (1991), 169–189.

[JPV91] M. Jarn ick i , P. Pf lug and J.-P. Vigu é, The Carathéodory distance does not
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