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Abstract. A normal form for small CR-deformations of the standard CR-structure on the
(2n + 1)-sphere is presented. The space of normal forms is parameterized by a single function
on the sphere. For n > 1, the normal form is used to obtain explicit embeddings into Cn+1. For
n = 1, the cohomological obstruction to embeddability is identified.

1. Introduction. In this paper, we study the space of strongly pseudocon-
vex CR-structures on the sphere S2n+1 in a neighborhood of the standard CR-
structure given by the standard embedding as the unit sphere in Cn+1. Three
questions present themselves:

(1) Which CR-structures near the standard one arise as the boundaries of
domains in Cn+1? (Such CR-structures are said to be embeddable.)

(2) Is there a normal form for CR-structures near the standard one?
(3) Is there a natural parameterization of the space of equivalence classes

of CR-structures, where two CR-structures near the standard one are said to
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be equivalent if they are CR-isomorphic via a diffeomorphism which is near the
identity.

There is a dichotomy between the cases n > 1 and n = 1. Results of Boutet
de Monvel [BdM] show that, when n is greater than 1, all CR-structures near the
standard one are embeddable; and, as we will see here, the results of Lempert
[L1] and Bland-Duchamp [BD1] give a normal form.

In the case n = 1, an example of Rossi [R] shows that there exist CR-structures
near the standard one which are not embeddable. In [BE], Burns and Epstein
showed that they are almost never embeddable. A recent result of Lempert [L2]
showed that if the CR-structure is sufficiently near the standard one and embed-
dable in Cm for some m, then there is an embedding near the standard sphere.
This fact was used in [B] to show that the embeddable CR-structures form a
Hilbert submanifold in the space of all CR-structures and to give a normal form.
Cheng and Lee [CL] have proved the existence of a local slice for the action of
the contact diffeomorphisms on the space of CR-structures. Our goal here is to
outline a framework within which these results naturally fit. Most of the technical
machinery needed is contained in [BD1], [B]. Details will appear in [BD2].

2. Abstract CR-structures on spheres

2.1. Basic facts. We begin with a review of some basic facts about CR-
structures.

Definition 2.1. Ann-dimensional Cauchy–Riemann structure (CR-structure)
on S2n+1 is a rank n complex subbundle H(1,0) ⊂ TCS

2n+1 of the complexified
tangent bundle of S2n+1 such that

(1) H(1,0) ∩H(0,1) = 0,
(2) HC = H(1,0)

⊕
H(0,1) ⊂ TCS

2n+1 has complex codimension one, where, as
usual, H(0,1) denotes the conjugate bundle H(1,0),

(3) the integrability condition [X,Y ] ∈ Γ(H(0,1)) is satisfied for all smooth
sections X, Y ∈ Γ(H(0,1)).

The bundle H(1,0) is called the holomorphic tangent bundle of the CR-struc-
ture.

Two CR-structures H(1,0) and Ĥ(1,0) are said to be equivalent if there is a
diffeomorphism F : S2n+1 → S2n+1 such that F∗H(1,0) = Ĥ(1,0). We are only
interested in CR-structures up to equivalence. Observe that HC is the complex-
ification of a real codimension one subbundle H ⊂ TS2n+1 consisting of vectors
of the form X +X, X ∈ H(1,0). Let η be a 1-form dual to H. The CR-structure
H(1,0) is said to be strongly pseudoconvex if −idη(X,X) > 0 for all non-zero
X ∈ H(1,0). In this case, η ∧ (dη)n is a nowhere vanishing (2n+ 1)-form. A real
1-form η satisfying this latter condition is called a contact form and H is called
a contact distribution. A diffeomorphism leaving the contact distribution fixed is
called a contact diffeomorphism.
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The most important examples of CR-structures are those arising from domains
in Cn+1. Let ρ be a smooth nonnegative function on Cn+1 and let D={z∈ Cn+1 :
ρ(z) < 1} be a bounded domain. The boundary ∂D is a CR-manifold for which
the holomorphic tangent bundle is the intersection of the complexified tangent
bundle of ∂D with the holomorphic tangent bundle of Cn+1, and, if the pullback
to ∂D of the 1-form i∂ρ is a contact form, then it is strongly pseudoconvex (1).

The standard CR-structure is the one induced by the standard embedding
S2n+1⊂Cn+1, and the standard contact form is the restriction of i∂|z|2 to S2n+1,
where (z1, . . . , zn+1) are the coordinates for Cn+1. Henceforth, H(1,0) ⊂ TCS

2n+1

denotes the holomorphic tangent bundle of the standard CR-structure, η denotes
the standard contact form, and HC denotes the complexification of the standard
contact distribution. Objects associated to any other CR-structure will be dec-
orated with hats. The symbol DiffH denotes the infinite-dimensional group of
orientation preserving contact diffeomorphisms of S2n+1.

Two strongly pseudoconvex CR-structures on S2n+1 are said to be isotopic
if they can be connected by a smooth 1-parameter family of strongly pseudo-
convex CR-structures. In this paper, we consider only strongly pseudoconvex
CR-structures which are isotopic to the standard one on S2n+1.

2.2. Representation by deformation tensors. Every CR-structure which is iso-
topic to the standard one can be represented by a deformation tensor.

The proof of this fact relies on a theorem of John Gray [G] which states that
all contact structures on a compact manifold near a fixed contact structure are
equivalent:

Theorem 2.1 (Gray). Let ηt be a differentiable family of contact structures on
a compact 2n+ 1 dimensional manifold M . Then there is a differentiable family
of diffeomorphisms Ft : M 7→M and a family of non-vanishing functions pt such
that

Ft
∗(ηt) = ptη0.

Corollary 2.1. Every strongly pseudoconvex CR-structure on S2n+1 which
is isotopic to the standard one is CR-equivalent to one of the form

(1) Ĥ(1,0) = {X − φ(X) : X ∈ H(1,0)}

where φ : H(0,1) → H(1,0) a complex vector bundle map, called the deformation
tensor for Ĥ(1,0).

P r o o f. That the CR-structure is equivalent to one satisfying the inclusion re-
lation Ĥ(1,0) ⊂ HC is clear from Gray’s theorem. Thus, there is a family Ĥ(1,0)(t),
t ∈ [0, 1], joining H(1,0) to Ĥ(1,0). For t small, it is clear that there are bundle
maps φ(t) such that Ĥ(1,0)(t) is the graph of −φ(t). The integrability conditions

(1) The fact that D is bounded forces the Levy form to be positive everywhere on ∂D.
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for CR-structures (see below) imply that φ(t) satisfies certain symmetry proper-
ties and an a priori bound on the size of φ(t), from which the result follows. (See
[BD1, page 83] where a similar argument is given.)

2.3. Geometry of the standard CR-structure. There is a natural circular ac-
tion on the sphere which leaves the standard CR-structure invariant—namely,
multiplication by the group U(1) of unimodular complex scalars. Let T be the
generator of this U(1)-action with period 2π. The vector field T is characterized
by the two conditions

T η = 1, T dη = 0.
The orbit space of this action is the set of complex lines through the origin, CPn,
and the quotient map is the Hopf fibration.

Often, it will be worthwhile to do calculations using local coordinates. We
will fix our notation now. Let (w1, . . . , wn, θ) be local coordinates for S2n+1,
where (w1, . . . , wn) are the local inhomogeneous coordinates for CPn defined by
the equations wj = zj/zn+1, and θ is a local fiber coordinate; that is, the w
variables parametrize the complex lines through the origin, and θ determines a
point on the line at unit distance from the origin of Cn+1. Define the function
u := log (1 + |w|2). In these local coordinates,

T =
∂

∂θ
,

η = dθ + Re(i∂u) = dθ +
i

2
(uαdwα − uαdwα),

where we have used the notation uα = ∂u/∂wα. A local framing for H(1,0) is
given by the vector fields

eα :=
∂

∂wα
+
i

2
uαT,

and the dual coframing is given by the 1-forms dwα, 1 ≤ α ≤ n.
Notice that η defines a connection form on the circle bundle over CPn, that

eα is the horizontal lift of the vector field ∂/∂wα, and that

dη = iuαβdw
α ∧ dwβ

is a nondegenerate 2 form. The form

Ω := −idη = ∂∂u = uαβdw
α ∧ dwβ

is the Fubini Study metric on CPn.

2.4. Integrability conditions. Consider now a CR-structure of the form (1). In
local coordinates,

φ = φβ
αdwβ ⊗ eα

and Ĥ(0,1) is spanned locally by the vector fields

êα := eα − φαβeβ .
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Expansion of the brackets [êα, êβ ] using the commutation relations

[T, eα] = 0, [T, eα] = 0, [eα, eβ ] = 0, [eα, eβ ] = −iuαβT
immediately yields the conditions:

(A) (Symmetry): φαβ = φβα, where φαβ =: φαγuγβ .
(B) (Horizontal integrability): ∂bφ− 1

2 [φ, φ] = 0, where

∂bφ =
∂φβ

γ

∂wα
dwα ∧ dwβ ⊗ eγ

and where [ , ] is the bracket operation

[φ, φ] = dwα ∧ dwβ ⊗ [φαδeδ, φβ
σeσ].

Recall that we assumed Ĥ(1,0) to be isotopic to the standard structure. There is,
therefore, a family of tensors φ(t) with φ(0) = 0 and φ(1) = φ. The condition
Ĥ(1,0) ∩ Ĥ(0,1) = 0 shows that the composition

φ(t) ◦ φ(t) : H(1,0) → H(1,0)

cannot have eigenvalue one. On the other hand, the symmetry condition can
be used to show that all eigenvalues are nonnegative real numbers. Hence, all
eigenvalues are bounded above by 1. This is equivalent to the following condition:

(C) (Nondegeneracy): |φαβXαXβ | < uαβX
αXβ for all X ∈ Cn.

Let Dn denote the space of deformation tensors satisfying conditions (A), (B)
and (C). Every strongly pseudoconvex CR-structure on S2n+1 which is isotopic
to the standard one is equivalent to one defined by an element of Dn. Moreover,
the group of contact diffeomorphisms of S2n+1 acts on the set of such tensors in
a natural way. Consequently, the classification of these CR-structures on S2n+1

can be achieved by the two-step program of (1) studying the space Dn and (2)
studying the action of the group of contact diffeomorphisms on it.

3. The space Dn. Our analysis of the space Dn mimics the approach to de-
formation theory of complex structures as developed by Kuranishi. We construct
a complex of certain vector-valued forms. Deformation tensors are the 1-forms of
the complex which satisfy a nonlinear differential equation (the integrability con-
dition (B)), and these are parameterized by a certain component of their harmonic
decomposition.

3.1. The symmetric complex (Ω(0,•)
σ (H(1,0)), ∂b). We will work on a subcom-

plex of the ∂b-complex of Kohn-Rossi. The symbols Ω(0,q) and Ω(0,q)(H(1,0)) de-
note the spaces of smooth scalar and H(1,0)-valued forms on S2n+1. Thus, elements
of Ω(0,q) and Ω(0,q)(H(1,0)) are forms of the types

τ = τBdw
B and τ = τB

αdwB ⊗ eα,
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respectively. (The standard summation and multi-index conventions are in force
throughout.) The operator ∂b is given by the formula

∂bτ = eβ
(
τB

α
)
dwβ ∧ dwB ⊗ eα.

In order to take into account the symmetry condition (A) above, we introduce
the hook product of τ and Ω, written τ ∧ Ω:

τ ∧ Ω = τB
αuαγdw

B ∧ dwγ .
The hook product operation is the process of lowering one index via the Hermi-
tian metric uαβdw

α ⊗ dwβ followed by skew-symmetrization. In the special case
of vector fields (vector forms of type (0, 0)), the hook product is just interior eval-
uation. Observe that a tensor φ ∈ Ω(0,1)(H(1,0)) satisfies condition (A) precisely
when

φ ∧ Ω = 0.
The identity φ ∧ Ω = 0 generalizes, for q > 0, to define the subcomplex of

symmetric vector-valued forms:

Ω(0,q)
σ (H(1,0)) = {τ : τ ∧ Ω = 0}.

For q = 0 this definition will not suffice, since X∧Ω = 0 for X ∈ H(1,0) implies
that X = 0; we proceed somewhat differently. We need a partial inverse of the
hook product, written ( )#. Let η = ηBdw

B be a horizontal (0, q)-form. Then
η# is the vector valued (0, q − 1)-form defined by the local coordinate formula,

η# = ηβ1···βq−1γ
uαγdwβ1 ∧ . . . ∧ dwβq−1 ⊗ eα,

where (uαβ) is the inverse of the matrix (uαβ).

The requirement that ∂bX be an element of Ω(0,1)
σ (H(1,0)) forces the identity

∂bX ∧ Ω = 0. A simple local calculation then shows that (locally) such a vector
field must be of the form

X = (∂bf)#

for f a complex-valued function on S2n+1. We define the space of symmetric
0-forms by the equation

Ω(0,0)
σ (H(1,0)) = {X ∈ Ω(0,0)(H(1,0)) : X = (∂bf)#, f ∈ C∞},

where C∞ denotes the space of smooth, complex-valued functions on S2n+1. We
call Ω(0,0)

σ (H(1,0)) the space of horizontal Hamiltonian vector fields.

Definition 3.1. The symmetric complex (Ω(0,•)
σ (H(1,0)), ∂b) is the differential

complex

0→ Ω(0,0)
σ (H(1,0))

∂b−→ Ω(0,1)
σ (H(1,0))

∂b−→ Ω(0,2)
σ (H(1,0))

∂b−→ . . .

R e m a r k. The complex Hamiltonian vector fields just defined are related to
contact vector fields. Recall that a contact vector field is a real vector field Y
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satisfying the condition
LY η = hη,

for some function h on S2n+1. When f = gi, with g real, the complex Hamiltonian
vector field X = (∂bf)# is the (1, 0) part of a contact vector field. More precisely,

Xf = −ifT +X +X

is a contact vector field. Notice that f = Xf iη, and LXf
η = −iT (f)η.

Using the Folland–Stein estimates, it is possible to develop a Hodge theory
for the symmetric complex with good estimates on the orthogonal complement
of the harmonic forms. Thus, there are homotopy maps hσ : Ω(0,q)

σ (H(1,0)) →
Ω(0,q−1)
σ (H(1,0)) which give rise to the symmetric decomposition

τ = ∂b ◦ hσ(τ)⊕ hσ ◦ ∂b(τ)⊕Hσ(τ),

where Hσ : Ω(0,q)
σ (H(1,0)) → Hq(Ω(0,•)

σ (H(1,0)), ∂b) is orthogonal projection onto
the harmonic symmetric forms. In degree 0, the symmetric decomposition assumes
the form

X = hσ ◦ ∂b(X)⊕Hσ(X).

Let Ω(0,q)
σ,s (H(1,0)) and Γs be the Folland–Stein completions of Ω(0,q)

σ (H(1,0))
and C∞, with respect to the Folland–Stein norm ‖ ‖s (see [BD1]). Let Dn,s denote
the Folland–Stein completion of the space Dn. In [BD2] we prove the following
theorem.

Theorem 3.1. Suppose n > 1 and s > 2n+4. Then H1(Ω(0,•)
σ (H(1,0)), ∂b) = 0

and Dn,s is a smooth Hilbert manifold.
Moreover , let

Nε = {f ∈ Γs+2 : f ⊥ ker
(
∂b ◦ (∂b(·))#

)
, ‖f‖s+2 < ε}

and assume that ε is sufficiently small. Then Nε is diffeomorphic to a neighborhood
N ′ ⊂ Dn,s. More precisely , every deformation tensor φ ∈ N ′ can be uniquely
expressed in the form

φ = ∂b(∂bfφ)# ⊕ hσ∂bφ,
which defines a diffeomorphism φ 7→ fφ from N ′ to Nε.

The function fφ introduced in Theorem 3.1 is called the generating function
for the deformation tensor φ.

4. Normal form (n > 1). The parameterization in Theorem 3.1 is not
optimal. Since the action of the group of contact diffeomorphisms on deformation
tensors has not been taken into account, each equivalence class of CR-structures
is represented by an infinite dimensional family of deformation tensors. In this
section, we show how to normalize small deformation tensors via this action by
contact diffeomorphisms.
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4.1. The Fourier decomposition. The U(1)-action on S2n+1 preserves the stan-
dard CR-structure, as well as the contact form η. It, therefore, induces an action
on the ∂b-complex, which is equivariant with respect to the operators ∧, ( )# and
∂b. The direct sum decomposition of the spaces Ω(0,q)(H(1,0)) into eigenspaces
of the U(1)-action is called the Fourier decomposition. Thus, each vector form
τ ∈ Ω(0,q)(H(1,0)) has the decomposition

τ =
+∞∑

k=−∞

τk where τk = τk,B
αeikθdwB ⊗ eα.

and τk,B
α is independent of θ. If τ is symmetric, then so are each of the terms in

its Fourier decomposition. The decomposition of tensors into positive, negative
and zeroth order Fourier components gives the splitting

Ω(0,q)
σ (H(1,0)) = Ω(0,q)

σ,− (H(1,0))⊕ Ω(0,q)
σ,0 (H(1,0))⊕ Ω(0,q)

σ,+ (H(1,0))

and we write τ = τ− + τ0 + τ+. Similar decompositions are defined for ordinary
forms and for functions. If f is a real-valued function on S2n+1 then its Fourier
decomposition

f = f− + f0 + f+

satisfies the identities f+ = f− and, consequently, f− = f+.
Of particular interest are the tensors with only positive Fourier components.

Such tensors extend holomorphically along each of the disks of the unit disk
bundle of E → CPn, and, because they vanish on the zero section, they descend
to the blow-down—to tensors on the unit ball in Cn+1. Tensors with only a
zeroth Fourier component are pull-backs to E of forms on CPn, and are called
basic. (Here we are implicitly using the fact that the holomorphic tangent bundle
of S2n+1 is the horizontal lift of the holomorphic tangent bundle of CPn via the
connection form η.)

4.2. Action of the contact diffeomorphisms. We now consider the action of
the group of contact diffeomorphisms on the space of deformation tensors. This
action is not strictly a pullback of the deformation tensor; rather, it pulls back
the CR structure, and considers the new CR structure as a deformation of the
standard one. More specifically, we have the following definition.

Definition 4.1. Let φ be a deformation tensor on S2n+1 and F : S2n+1 →
S2n+1 a contact diffeomorphism and let Ĥ(1,0) ⊂ HC be the bundle of vectors of
type (1, 0) defined by φ. There a unique subbundle Ĥ ′(1,0) ⊂ HC such that the

equation F∗Ĥ
′
(1,0) = Ĥ(1,0) holds. The pullback of φ by F , written F ∗φ, is the

deformation tensor whose space of (1, 0)-vectors is Ĥ ′(1,0).

This defines an action

Ψ : DiffH ×Dn → Dn, (F, φ) 7→ F ∗φ.
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To compute the derivative of the map Ψ at the point (id, 0), we work formally,
leaving details to [B] and [BD2].

Let Ft = id+ tXf +O(t2) denote the one parameter family of contact diffeo-
morphisms which is generated by a contact vector field Xf , where f = gi is pure
imaginary as above. Let φt= tφ+O(t2) be a family of deformation tensors and let
X = (∂bf)# = Xαeα. We calculate (to first order in t) as follows. Recall that the
vectors of type (0, 1) with respect to φt are spanned by êβ = eβ − φβ,t

γeγ . Then,
since F−1

t = id− tXf +O(t2), the pull-back under Ft of the space of (0, 1)-vectors
is spanned by the set

dF−1
t êβ = eβ − teβ(Xγ)eγ − teβ(Xγ)eγ − tφβ

γeγ +O(t2).

After a change of basis, we find that it is also spanned by vectors of the form

eβ − t(φβ
γ + eβ(Xγ))eγ +O(t2).

Thus, the derivative dΨ(id,0) has the form

dΨ(id,0) : TDiffH × TD → TD, (Xf , φ) 7→ φ+ ∂b(∂bf)#,

where f = gi for some real-valued function g .

4.3. Cancelling negative Fourier coefficients. We now show how the action
of the group of contact diffeomorphisms can be used to normalize deformation
tensors. As we have just seen, the infinitesimal action is of the form

φ 7→ φ+ ∂b(∂bf)#,

where f is pure imaginary. We have also seen that, for n > 1, φ has the decom-
position

φ = ∂b(∂bfφ)# + hσ(∂bφ)

and that φ is uniquely determined by its generating function fφ.
Notice that, one may construct a pure imaginary function by starting with

an arbitrary function with no positive Fourier components and subtracting from
it the conjugate of its negative Fourier components. We can use this freedom to
modify the negative (and part of the zeroth) Fourier components of a deformation
tensor via the action of the group of contact diffeomorphisms. An application of
the Implicit Function Theorem for Banach spaces gives the following normal form
result, which shows that every sufficiently small deformation of the standard CR-
structure on the spheres S2n+1, n > 1 is representable by a deformation tensor
with no negative Fourier components.

Theorem 4.1. Let n > 1 and s > 2n + 4. Then there is a number ε > 0
depending on n and s such that each deformation tensor φ ∈ Dn,s with ‖φ‖s < ε
is CR-equivalent to a deformation tensor in the normal form

∂b(∂bf)# + hσ(τ)
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where f ∈ Γs+2(S2n+1) and τ ∈ Ω(0,2)
σ,s+1(H(1,0)) have Fourier decompositions of

the forms

f =
+∞∑
k=0

fk and τ =
+∞∑
k=0

τk,

where f0 is the pull-back of a real-valued function on CPn. The tensor τ is
uniquely determined by the generating function f .

R e m a r k. The normal form constructed in this theorem is unique up to
specification of a finite number of additional parameters. This is clear from the
observation that the linearized mapping dΨ(id,0) has a finite dimensional kernel
of the same dimension as the automorphism group of the standard CR structure
on the sphere. Specifying these parameters can be interpreted as determining a
point on the sphere, and a second order framing at that point.

R e m a r k. The proof of this theorem will appear in [BD2]. It involves en-
dowing the neighborhood of the identity in DiffH with a Hilbert space structure
which is compatible with the Folland–Stein norms. With respect to this structure,
one can show that the action Ψ is of class C1 on the Folland–Stein completions
of DiffH and Dn.

Omori [O] has analyzed the action of the contact diffeomorphism group in
great generality; our analysis is similar to his. Omori’s treatment, however, is
based on the standard Sobolev spaces while our work uses the anisotropic norms
of Folland–Stein. This fundamental difference means that a much more detailed
analysis is required. This analysis, in the case of S3, is contained in [B], and the
higher dimensional cases will be discussed in [BD2]

4.4. Recovering the indicatrix. In general, it is impossible to eliminate the ze-
roth Fourier component of a deformation tensor through the action of the contact
diffeomorphism group. For suppose that we have normalized to a deformation ten-
sor of the form φ =

∑∞
k=0 φk, where φ is a small deformation with φ0 6= 0. Since

φ0 descends to define a deformation of the complex structure CPn, and CPn is
stable, there is a small diffeomorphism, say F , of CPn which is an biholomorphism
between CPn with the complex structure defined by φ0 and its standard struc-
ture (i.e. F ∗(0) = φ0). Notice that F is unique up to a biholomorphism of CPn
and it is generally not symplectic. Lift F to a bundle map F̃ : S2n+1 → S2n+1.
Since F does not preserve the symplectic form of CPn (the curvature form of the
connection η), F̃ does not preserve the connection form η. Let η′ be the unique
connection form for which F̃ ∗η′ = η. Thus,

η′ = η + β

where β is the pullback of a 1-form on CPn. Notice that the contact structure
on S2n+1 defined by η′ is not the standard one, and it defines a unique (up to
a constant dilation) Hermitian norm h on the tautological bundle E → CPn. If
Sh denotes the unit circle bundle with respect to this new norm, then the map F̃
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may be interpreted as a CR-isomorphism between S2n+1 with the deformed CR-
structure given by φ0 and the standard CR-structure on Sh which it inherits as
hypersurface of E (or, equivalently, of Cn+1); that is, we have the CR embedding:

F̃ : (S2n+1, φ0)→ Sh ⊂ Cn+1.

Now, because F̃ is a U(1)-equivariant contact diffeomorphism between S2n+1 and
Sh, the CR-structure defined by φ is transferred via F̃ to a CR-structure on Sh
of the form

φ′ =
∞∑
k=1

φ′k.

The deformation tensor φ′ is now to be interpreted as a deformation of the circular
domain Sh and it is precisely the modular data of the type considered by us in
[BD1], where we show it to be the modular data for a marked, linearly convex
domain in Cn+1. (Recall that a marking of a domain D ⊂ Cn+1 consists of a
point p ∈ D together with a complex basis for the complex tangent space TpD.)

In [BD1], we show that the data depends only on the biholomorphism class
of D and the marking. Moreover, specifying the marking amounts to specifying
(n + 1)2 + n + 1 parameters. Thus, the pair (Sh, φ′) is uniquely determined up
to the specification of a finite number of additional parameters.

Infinitesimal generating functions for indicatrices. Changing the indicatrix has
a nice interpretation within the framework of the symmetric complex. Recall that
the sphere is the set of points in Cn+1 defined by the equation |z|2 = 1. The
indicatrix Sh above is defined by the equation

h := |z|2ev = 1,

where, by definition, v = log(h/|z|2), which descends to a function on CPn. The
contact structure on S2n+1 defined by h is the 1-form

η′ = η +
i

2
(∂v − ∂v)

and the map F̃ discussed above is constructed as follows: Set ηt=η + tβ, where
β = i

2 (∂v − ∂v). Then there is a 1-parameter family of diffeomorphisms F̃t :
S2n+1 → S2n+1 such that

F̃ ∗t ηt = η,

which is constructed as follows by a variation of Weinstein’s proof of the Darboux
theorem [W]. (The technique is due to Moser.) Begin by letting Yt be the time
dependent vector field characterized by the two conditions

Yt ηt = 0, Yt dηt = −β.
(When v is small, such a vector field exists.) Let F̃t be the 1-parameter family of
diffeomorphisms generated by Yt. Then,

LYt
ηt = −β.
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Now compute:
d

dt
(F̃ ∗t ηt) = F̃ ∗t

(
dηt
dt

+ LYtηt

)
= F̃ ∗t (β − β) = 0.

This implies that F̃ ∗t ηt is independent of t. Since F̃0 = id and F̃ ∗0 η0 = η, it follows
that F̃ ∗t ηt = η for all t.

Notice that Yt = 1
2 (Xt +Xt) where Xt is the (1, 0)-vector field defined by the

equation
Xt Ωt = −∂v,

where Ωt = −idηt. The lift of Xt to a horizontal vector field on S2n+1 is −(∂bv)#t

and one finds that (to first order)

φt := F̃ ∗t (0) = −t∂b(∂bv)# +O(t2).

Thus, the process of transferring to a new indicatrix is represented infinitesimally
by a term of the form −∂b(∂bv)#, for v a real-valued function on CPn.

4.5. Explicit construction of embeddings. When the deformation tensor φ has
sufficiently small Folland–Stein norm ‖φ‖s, s > 2n + 4, it is possible to obtain
explicit embeddings which realize the abstract CR-structure defined by φ as the
CR-structure on a hypersurface. Moreover, when φ is in normal form, this em-
bedding coincides with a circular map constructed by Lempert [L1] and yields a
solution of the homogeneous Monge-Ampére equation on the interior.

An embedding into Cn+1 is obtained by constructing (n + 1) independent
functions which are CR with respect to the deformed CR-structure given by φ.
Let ĥ be one such function. It is easy to show that a complex-valued function ĥ
is a CR-function on S2n+1 with respect to the CR-structure defined by φ if and
only if it satisfies the equation

(2) (∂b − φ · ∂b)ĥ = 0,

where φ · ∂b := φ ∂b := φβ
αea.

To find ĥ we write it in the form

ĥ = h+ g

where h is the harmonic projection of ĥ onto the space of CR-functions on S2n+1

with respect to the standard structure. Notice that the function g = ĥ − h is
L2-orthogonal to these CR-functions.

The function ĥ can be viewed as a perturbation of h. We will show that when
the Folland–Stein norm ‖φ‖s is sufficiently small, h determines g, and, therefore,
it determines ĥ. To see this, note that from equation (2), it follows that

G∂
∗
b(∂b − φ · ∂b)g = G∂

∗
b(φ · ∂bh).

Since g is perpendicular to the space of CR-functions, G∂
∗
b∂bg = g = Ig. Hence,

g is a solution of the equation

(3) (I −G∂∗b ◦ φ · ∂b)g = G∂
∗
b(φ · ∂bh).
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The operator on the left hand side of this equation is invertible if the operator
norm of G∂

∗
b ◦ φ · ∂b is less than one, and this is the case, provided that the

Folland–Stein norm ‖φ‖s is sufficiently small. Assume that this is the case and
let g be the solution to equation (3).

It remains to show that ĥ is a solution of equation (2). To this end, set β=
(∂b−φ·∂b)ĥ and notice that, by construction, G∂

∗
bβ = 0. For n>1, the (0, 1)-form

β has the harmonic decomposition

β = ∂bG∂
∗
bβ +G∂

∗
b∂bβ.

Since G∂
∗
bβ = 0, we may compute as follows:

β = G∂
∗
b∂bβ = G∂

∗
b(∂b − φ · ∂b)β +G∂

∗
b(φ · ∂bβ)

= G∂
∗
b(∂b − φ · ∂b)(∂b − φ · ∂b)ĥ+G∂

∗
b(φ · ∂bβ) = G∂

∗
b(φ · ∂bβ),

where we have used the integrability condition for φ at the last step. On the other
hand, if ‖φ‖s is sufficiently small, then

‖β‖s+1 = ‖G∂∗b(φ · ∂bβ)‖s+1 < ‖β‖s+1,

which implies that β = 0.
To obtain an explicit embedding, let hj , j = 1, 2 . . . , n+ 1 be the restrictions

to S2n+1 of the standard coordinate functions on Cn+1, let ĥj = hj + gj be the
CR-functions obtained by the procedure we just outlined. They define a map

F : S2n+1 → Cn+1,

which, by construction, is a CR-map of (S2n+1, φ). By the Sobolev embedding
theorem of Folland–Stein [FS], for Folland–Stein norm ‖φ‖s sufficiently small,
s > 2n+4, F will be at least C2+α for some α > 0. Let D ⊂ Cn+1 be the domain
bounded by F (S2n+1) and note that, for φ sufficiently small, D is strongly convex.

Recall that, when φ is in normal form, it has no negative Fourier components.
This important fact means that φ extends holomorphically along the unit disks of
the Hermitian vector bundle E → CPn to define an integrable complex structure
on the unit disk bundle of E with respect to the standard metric, and that the
map F extends to a map which is holomorphic relative to this deformed complex
structure. If we transfer the map to the indicatrix Sh defined by the zeroth Fourier
component of φ, then one can show that the map F descends to a C1-map from
the indicatrix I = {z ∈ Cn+1 : h(z) ≤ 1} into the strongly convex domain D. The
results of [BD1] show that the map F is one of the circular representations of the
strongly convex domain D constructed by Lempert [L1]. We have, thus, recovered
Lempert’s construction for domains in a neighborhood of the round sphere.

5. Normal form n = 1. The case of S3 is both simpler and more subtle
than the higher dimensional case S2n+1, n > 1. It is simpler because both the
symmetry condition (A) and the integrability condition (B) are vacuous—there
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are no 2-forms—and because there is a global framing of the holomorphic tan-
gent bundle H(1,0) which facilitates computations. It is more subtle because the
degree 1 cohomology of the symmetric complex is infinite dimensional, making it
impossible to normalize all negative Fourier components of a deformation tensor
to zero. The detailed analysis of the 3-dimensional case is done in [B].

For n = 1, the symmetric complex assumes the form

0→ Ω(0,0)
σ (H(1,0))

∂b−→ Ω(0,1)
σ (H(1,0))→ 0.

It is convenient to express all tensors in terms of the global framing on S3 obtained
by restricting the vector fields

Z = z2 ∂

∂z1
− z1 ∂

∂z2
, Z = z2 ∂

∂z1
− z1 ∂

∂z2
, T = − Im

(
z1 ∂

∂z1
+ z2 ∂

∂z2

)
on C2 to S3. The dual coframe is the restriction to S3 of the 1-forms

ω = z2dz1 − z1dz2, ω = z2dz1 − z1dz2, η = − Im(∂ log |z|2).

Notice that every deformation tensor is of the form

φ = µω ⊗ Z, |µ| < 1.

To translate into the coordinates (w, θ) used above, write z2 = eiθ(1 + |w|2)−1/2

and w = z1/z2 and recall that e := e1 is a local framing for H(1,0). A straightfor-
ward computation then yields the formulas

ω = e2θi(1 + |w|2)−1dw and Z = e−2θi(1 + |w|2)e

It follows that the tensor φ has the form

(4) φ = e−4θiµdw ⊗ e.

The cohomology of the symmetric complex was computed in [B], where it was
demonstrated that

(5) H1(Ω(0,•)
σ (H(1,0)), ∂b) := coker∂b ◦ (∂b( ))#

= {(f1(z)z1 + f2(z)z2)ω ⊗ Z : fj(z) ∈ CR(S3), j = 1, 2},
where CR(S3) denotes the space of CR-functions on S3—that is, the bound-
ary values of holomorphic functions on the unit ball which are smooth up to
the boundary. Thus, by virtue of equation (4), every cohomology class [φ] ∈
H1(Ω(0,•)

σ (H(1,0)), ∂b) has a representative with Fourier decomposition of the form

φ =
−4∑
−∞

φk.

The existence of cohomology classes with representatives having negative
Fourier components implies that (at least at the infinitesimal level) there are
CR-structures for which it is impossible to find representatives having no nega-
tive Fourier components. However the cohomology group H1(Ω(0,•)

σ (H(1,0)), ∂b) is
the only obstruction [B]:
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Theorem 5.1. Every CR-structure sufficiently near the standard one in the
Folland–Stein s-norm (s > 6) is equivalent , via a small contact diffeomorphism,
to one of the form

(∗) φ = φ− + φ0 + φ+

where φ0 = igdw ⊗ e for the pull back of some real-valued function g on CP 1,

φ− =
(
f1z

1 + f2z
2
)
ω ⊗ Z

for CR functions fj as in (5), and

φ+ =
∞∑
k=1

φk.

The form (∗) is unique up to the choice of a marking on the CR manifold (deter-
mined by fixing 7 additional parameters.)

Of these, the only CR structures that embed in Cm for some integer m are
those for which φ− = 0. Hence, the space of embeddable small deformations of
the standard sphere forms a contractible linear space.

R e m a r k. The last part of Theorem 5.1 follows from a stability result of
Lempert contained in [L2].
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