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Abstract. A survey of the global linearization problem is presented. Known results are
divided into two groups: results for general affine nonlinear systems and for bilinear systems. In
the latter case stronger results are available. A comparision of various linearizing transformations
is performed. Numerous illustrative examples are included.

1. Introduction. Exact linearization of nonlinear control systems is probably
the most intensively studied and best understood area of the differential geometric
approach to the nonlinear control. It presents a natural and challenging task: to
find suitable compensations that make a given nonlinear system to behave in a
linear fashion, or at least closely to it. This problem deserves a lot of attention:
its positive solution directly extends the applicability of the linear methods to a
more general nonlinear class of systems. As a consequence, beginning with the
pioneering works of Krener [24] and Brockett [3], up to the present time there
has been increasing interest in the various modifications of the exact linearization
problem. Survey of this field can be found in papers [16, 31] or in books [22, 29].

In spite of being aware that all these surveys do not cover many important
subfields like time-scaling transformations [33] or dynamic feedback [7, 8], this
paper does not aim to give an updated survey of the overall linearization area. It
will be concentrated only on the global aspects of the exact linearization since a
systematic and self-contained exposition on this topic is still missing.

The number of results on global linearization is rather modest in comparision
with the above mentioned linearization boom. The main reason for this is that
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the global linearization problem can not be completely tackled by means of local
differential geometry only and requires investigation of the global topological
properties of systems in question. In this respect the problem seems to be still
open: we will see that presently applied additional topological conditions are
relatively simple and straightforward.

Despite the fact that the global linearization is a rather narrow field, we face
an important and challenging problem. Progress from the local exact linearization
to the global one may be viewed as a natural continuation of the progress from the
approximate linearization to the local exact one. At the same time, when applying
control scheme “exact linearization plus linear compensator” for a given control
goal (e.g. stabilization or tracking) to a particular system, global questions can
not be avoided. We will present here several concepts of the globalness and try
to discuss their interest from the practical point of view.

In our opinion, existing results on global linearization are mutually rather
incongruous. We will therefore try to give an independent and self-contained
exposition, supplied when necessary with bibliographical remarks.

Throughout the paper we deal with the affine nonlinear control system of the
form

(1) &= f@)+ Y ugr(x),
k=1

where x € M (n-dimensional smooth manifold) is the state, u = (uy,...,un,) €
R™ is the input, f,g1,...,9m € V(M), i.e., they are smooth vector fields(}) on
M. We do not consider here the output and output relations. Presence of the
output relations suggests a further variety of definitions of exact linearization:
linearization of the input-output responses only [20, 21], linearization of systems
with the fixed outputs [15], linearization using output transformations [27], output
injection [26], etc. Some global results in this respect may be found in [27, 28, 6].
Such variety would make difficult to point out the typical global aspects that are
mainly connected with the properties of the state dynamics of the system.

2. Local and global linearization. Throughout the paper we suppose that
the reader is basically familiar with the problem of local exact linearization us-
ing various kinds of transformations. Nevertheless, to be self-contained we may
sometimes remind some local definitions and results. We do not also consider
here all transformations and compensations used at the present time for the lin-
earization and we concentrate ourselves only on three basic and most natural kinds
of linearization: state linearization, feedback linearization and restricted feedback
linearization.

DEFINITION 1. System (1) is called locally feedback linearizable at xzo € M if

(1) Standard differential geometric notations adopted e.g. in [22] will be used throughout
the paper.
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there exist a neighbourhood U, of g € M and a neighbourhood Vj of 0 € R",
a feedback of the form

u=ax)+ px)v, alx)e C®U,,R™), Blx) e C®(Us,,Gl(m, R)),
and a diffeomorphism
D:Vo = Uy, x=Dly),
transforming the system (1) into a controllable linear system
(2) y=Fy+Gv, yeR" veR™,

where F'; G are (n x n) and (n x m) matrices, respectively. The system is called
restricted (%) feedback linearizable (state linearizable) if it is feedback linearizable
with B(x) = I, (6(z) = L, a(x) = 0, respectively).

Remark 1. Linearization is a particular case of system equivalence: two
nonlinear systems are called mutually feedback (restricted feedback, state) equiv-
alent, if they can be transformed into one another using appropriate transforma-
tions. Linearizability then means equivalence to a linear controllable system and
both terms will be used in the sequel. The same applies to various kinds of global
linearization and equivalence that will be introduced later.

DEFINITION 2. System (1) is called globally feedback (restricted feedback, state)
linearizable at xg € M to a linear system on R™ if it is locally linearizable at this
point and Vy = R™. It is called globally linearizable on M if Uy, = M. A system
that is linearizable globally on M to a linear system on R"™ is called globally
linearizable.

Remark 2. All types of global linearization introduced by Definition 2 are
quite reasonable. Notice that for global state linearization U,, always coincides
with the reachable set from xo. Of course the case of global linearization (i.e.
when both V) = R™ and U,, = M) is most desirable, but at the same time rather
restrictive. Linearization at a given xo € M to a linear system on R"™ covers
cases when a nonlinear system is not globally controllable, but its restriction to
the reachable set from zq is globally equivalent to a linear system on R™. This
case enables a straightforward application of linear methods to solve a particular
control goal for the nonlinear system. In the case of global linearization on M,
one has global controllability of the original nonlinear system, while its linear
equivalent is defined on an open subset of R™ containing the origin. Nevertheless,
this case still remains better than local linearization when U, is a proper subset
of M. Finally, let us note that more special and weaker definitions of global
linearization may be introduced (see e.g. [17, 14]), nevertheless, their significance
seems to be marginal.

We illustrate the above definitions by several examples.

(%) This term is due to [17], Respondek in [32] uses the term “pure feedback”.
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ExXAMPLE 1. The system
Ty =x1+u, Io=uexp(xs),

where z = (z1,22)’ € M = R?, u € R, is globally state linearizable on M but
it is not globally linearizable to a linear system on R?. Actually, linearizing at
zo = (0,a)’,a € R, diffeomorphism is = (y1 + y2, —In(a — y1))" and is defined
only for y; < a. Nevertheless, its image is the whole R2.
EXAMPLE 2. The system
i‘l =T + U(.%‘l + .1‘2), j:‘z = uxra,

where = (71,72) € M = R% u € R, is globally state linearizable to a linear
system on R? at any xp € {z € R? | 2o # 0,2, = 0}, but it is not globally
linearizable on M. Actually, diffeomorphism D : R? — {z € R? | azy > 0}, D =
(ay2 + ayi,a) expyy, linearizes the system at xop = (0,a)’. This system is not

globally controllable: reachable set from (0, 1)’ (resp. (0,—1)") is an open halfplane
x9 > 0 (resp. z2 < 0).

ExaMPLE 3. The system
= f(x) +ug(z), x&M=R*\{0}, ucR,
where f(z) = —(1/2)In(z} + 23)(—x2,21)’, g(z) = z, is not globally linearizable
in any sense of Definition 2. The linearizing map is in this case

COS Yo
sin Yo

x:D(y):expyl[ } D: R?> — R%\ {0}.

It is a local diffeomorphism at any y € R? but is not globally invertible.
EXAMPLE 4 ([1, 13, 14]). The system on M = R?

(3) &1 = sinxg cos xo + uexp(—x1) sin 3,

(4) g = —(sinzg)? + uexp(—zy) cos Tz,

is not globally linearizable in any sense of Definition 2. One can easily see that

system (3) is transformed into a linear system defined on R?\ {0} by the smooth
map x = D(y), where

COS X9

-1 .
D™ (z) =expz [sinxz

], D' R* — R*\ {0},

that is a local diffeomorphism, but not globally one-to-one. Considering the orig-
inal nonlinear system on {z = (z1,22) € R? | 22 € (—7/2,7/2)} and the lin-
earized one on R?\ {y = (y1,42)" € R* | y1 > 0} we obtain one-to-one cor-
respondence. Note that both these sets are not invariant with respect to the
corresponding systems.

EXAMPLE 5. The system on M = R?

:'51:2a:1+u(1+$2), i‘2:$2+u,
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is globally state linearizable since its linearizing diffeomorphism =z = D(y) =
(y1 + (1/2)y3,y2)" is the global diffeomorphism of R? onto itself.

In the previous examples we concentrated only on the state linearization case
in order to illustrate briefly the main obstructions for the global linearization of
systems that are locally everywhere linearizable. In Example 1 one can observe
that the vector field (1,expz2)’ is not complete, i.e. its integral curves are not
defined for all time moments. We will see in the sequel that the completeness
of a certain collection of vector fields is necessary for the linearized system to be
defined on the whole R™. Example 3 illustrates another basic topological property
necessary for the global linearization: the simple connectedness of M that is obvi-
ously violated here. Simple connectedness usually guarantees that the linearizing
diffeomorphism is globally one-to-one. Nevertheless, as indicated by Example 4, it
is not true that the system, locally everywhere linearizable on a simply connected
manifold, is globally linearizable on M.

3. General results. In this section available results about general nonlinear
systems of the form (1) will be presented. Most of them deal either with state
linearization or restricted feedback linearization. The reason is that, contrary to
the case of the unrestricted feedback, linearizing restricted feedback (when exist-
ing) is unique (up to the form of the resulting linear system). As a consequence,
the results on restricted feedback linearization can be also used to exclude global
linearizability of a particular nonlinear system.

Another typical feature of what we call here general results is that they are
not easy to be applied to a particular system. The reason is that many of them
may be viewed as rather straightforward reformulation of the definition of global
linearization. For instance, often one can meet requirement that a certain map
should be globally one-to-one ([17], Theorem 3 or [14], Theorems 1-3). Actually,
proving the global bijectivity of a locally diffeomorphic map is the key issue of
the global linearization and also an open general mathematical problem.

3.1. State and restricted feedback linearization. Global state linearization is
solved by the following theorem.

THEOREM 1. System (1) is globally state linearizable if and only if there exist
(after a reordering the inputs) Kronecker indices py > ... > pm >0, D00 g =
n, such that

1) Vo € M dim span{adif ge(z) |1 <k <m,0
2) Vo € M [ad} gr(v),ad} gi(z)] = 0, 1
3) dxg € M : f(xp) =0,

4) the vector fields f,gr, k =1,...,m, are complete,
5) M is simply connected.

COROLLARY 1. System (1) is globally state linearizable at xo € M to a linear
system on R™ if and only if there exist (after reordering the inputs) Kronecker
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indices iy > ... > iy >0, Y po pk = n, such that
1) there exists a largest connected set N > g such that Yz € N
dimspan{adﬁcgk(x) |1<k<m, 0<i<pu,—1}=n

2) Ve e N [adp k(7),ad gi(z)] =0, 1 <k, 1<m, 0<p+q<puy+m—1,
3) flxo) =

4) the vector fields f,gr, k=1,...,m are complete on N,

5) N is simply connected.

Remark 3. Conditions 1-3 of Theorem 1 being valid in a neighbourhood
of 2y are necessary and sufficient for the local state linearization ([24]). Condition
4 is e.g. valid when || f,gx(x)| < C(1 + ||z||) for a suitable constant C' > 0.
Condition 5 of Theorem 1 can be verified easily, but the situation considered
there is rather rare. More typical is the situation of Corollary 1 and when N
is a proper subset of M, then the Condition 5 is in general very difficult to
check. Moreover, conditions 1-4 imply the existence of the smooth regular map
D : R™ — M such that N = D(R") and D locally linearizes the nonlinear system
at any x € N. For this map there is a very straightforward equivalence between
D being one-to-one and N being simply connected. In other words, checking the
simple conectedness of N is as difficult as the direct establishing of the global
invertibility of a linearizing local diffeomorphism.

Remark 4. The proof of Theorem 1 (Corollary 1 is its obvious conse-
quence) may be performed in several ways. Assuming analyticity of system data
Respondek [32] uses a certain global theorem introduced to control theory by
Sussmann [35] and Krener [24, 25]. For the C* data one can easily adapt the
proof used by Dayawansa et al. in [17] (actually, it is applicable even in C™*!
case). It is based on the fact that the map D : R™ — M defined as

D(y) =¥ o...0 DY (x9),

where @!, i = 1,...,n, are mutually commuting flows of vector fields adf Gk
k=1,...,m,0 g J g ur — 1, is by conditions 1,4 a local diffeomorphism at
any ¥y = (y1,-..,yn) € R™ and by conditions 2,3 linearizes system (1). At the
same time it defines a transitive abelian Lie group action on M and therefore D is
globally one-to-one if and only if M is simply connected. Actually, it is appropriate
to note here that the last fact is a consequence of the local invertibility of D at Vy €
R"™ and D(R™) = M only (any covering of a simply connected set is one-to-one).
The fact that D defines transitive abelian Lie group action implies in particular
that D(R™) = M, but it is not necessary for the last equality. Another useful
observation is that Respondek uses completeness of f, g; in order to prove (based
on Palais [30]) completeness of vector fields ad?c g, k=1,.... m0<j<pu,—1
while Dayawansa et al. [17] consider the last fact as an assumption. As it will be
seen in Example 6, paradoxically it may be in some cases more simple to check
this assumption.
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Remark 5. One can easily see using the above scheme that if all conditions
of Theorem 1 hold with the exception of the existence of a point xo € M with
f(xg) = 0, then the corresponding system is globally state equivalent to a system

y=Fy+Gu+d, deR"

(F,G) being a controllable pair. Linear controllability implies that there exist a
shift of the y-space and a constant (in y-coordinates) feedback removing d from
the above equation. This indicates that in the case of any kind of global feedback
linearization one need not worry about the existence of an equilibrium point. Note
that this is possible only in the global case since in the local case an arbitrary
shift is not available. A similar observation applies to global linearization to a
linear system on R™.

For the restricted feedback linearization, we concentrate ourselves on the
single-input case, since multi-input results are not available. The reason is prob-
ably that even the conditions for the local restricted feedback linearization are in
the multi-input case rather complicated (see [31], Theorem 3.3).

Global restricted feedback linearization results are rather straightforward gen-
eralizations of the state linearization case. The reason is that there exists (if any)
a unique restricted feedback a(z) such that the corresponding closed loop system
is state equivalent to a linear system in Brunovsky canonical form (5]). Moreover,
this feedback can be computed using a straighforward, linear algebraic scheme.
As the result, extra global requirements are very similar to those of Theorem 1.

To be more precise, let us consider a single input nonlinear system of the
form (1), i.e. with m =1 and ¢g; = g. Let us define the following distributions:

(5) Di(x):span{adjcg(a:), j=0,...,i}, i=0,...,n—1.

At any € M such that dim D"~ !(z) = n we may define (and easily compute
by purely linear algebraic methods) the unique one-form 7 as

(6) n(adyg) = (-1)" '6;n1, i=0,1,...,n—1.
Finally, let
(7) a(z) ==Ly (n(f))(),

then it is known from the local theory that for any restricted feedback linearizable
single-input system «, with the above mentioned properties, is unique. For the
global case we have

THEOREM 2. A single input system (1) is globally restricted feedback lineariz-
able if and only if Vo € M (see (7, 6) for a and (5) for D?)
1) dim D"~ }(z) = n,
2) (a) n is an exact one-form or equivalently
(b) [D”%,D”fl] C D2 or equivalently
(c) [g,ad},,, 9] =0Vj=1,3,...2n -1
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3) the vector fields g, f + ag are complete,
4) M is simply connected.

COROLLARY 2. Let us consider arbitrary ro € R™ and let N C M, xg € N be
the largest connected open set with respect to inclusion such that condition 1 of
Theorem 2 holds Vx € N. A single-input system (1) is globally restricted feedback
linearizable at xg € R™ to a linear system on R™ if and only if N is simply
connected and conditions 2,3 hold on N.

The proof of Theorem 2 (Corollary 2 is its easy consequence) can be performed
slightly adapting proofs of the similar results in [32] (for analytic case) or in [17]
for C* (more exactly, even for C?"*2) case. Actually, our Theorem 2 is a mix-
ture of formulations used in the mentioned references. It is appropriate to note
that the arguments generalizing Theorem 1 to Theorem 2 are identical with the
arguments used for the well know local result on restricted feedback linearization:
the the above feedback v = a+ u is well defined at any point and transforms the
corresponding system to the case when Theorem 1 is applicable. m

ExXAMPLE 6. Consider bilinear system
T1 =uxry T = I1,

where z = (z1,72) € R% We have f = (0,21), g = (22,0), [f,g] = (z1, —x2)’
so that dim D'(x) = 2 for Voy # 0. Consider N = {x € R? | 25 > 0} (the
case N = {z € R? | x5 < 0} is analogical). We have obviously on N the exact
form n = (0,1/x2)',n(g) = 0,n([f,g]) = —1, feedback a = z7/23 and f + ag=
(22 /29, 21)" is a complete vector field on the simply connected set N. By Corollary
2 the above system is globally restricted feedback linearizable at any xzg € N to
a controllable linear system on R™. Straightforward computations show that the
linearizing diffeomorphism is z = exp(y1)(y2,1)’. Notice also that the original
bilinear system was globally controllable, i.e. N considered in Corollary 2 need
not be equal to the reachable set from xzy € V.

The above example illustrates that checking the completeness may be in gen-
eral very difficult task, since the sufficient condidion mentioned in Remark 3 is
not valid here and completeness of the vector field f + ag should be checked in
a different way (we left it to the interested reader). Notice that [f + ag,g] = —x
is linear and thus complete. This shows that in some cases (especially for low di-
mensions) it may be reasonable to check completeness of g, [f + ag, g], ... rather
than that of f 4 ag itself.

3.2. Unrestricted feedback. As it was already indicated, the case of the unre-
stricted feedback is complicated due to the fact that the linearization need not
be unique. First, we give two examples to illustrate this difficulty.

ExaMpLE 7. Consider the following planar system with two inputs:

i = exp(—m1) ((cosxa, —sin ) uy + (sinxa, cos x2) us) .
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Both mutually commuting vector fields on the right-hand side of this system are
not complete, the system is locally state linearizable around any point, but it is
not globally state linearizable in any sense of Definition 2. On the other hand,
the above system is easily globally linearizable using the unrestricted feedback:

o [vl] :exp<_x1>[ cos 2 Sinxg} [ul}

) —sinzy coszo | | us

The next example is formulated as a Proposition since it describes a fairly
general planar situation.

PRrROPOSITION 1. Consider the planar single-input system of the form
T1 =u,
i2 = fo(x2) + fi(z2)zr,  fo(0) =0.
It is

1) locally both restricted and unrestricted feedback linearizable around the ori-
gin if and only if f1(0) # 0O;

2) globally restricted feedback linearizable if and only if fi(xz) # 0 Vzo € R
and (0, f1)’ is a complete vector field;

3) globally unrestricted feedback linearizable if and only if fi(x2) # 0 Vay € R.

Proof. Parts 1, 2 follow from Theorem 2 and the corresponding local results
(see [23, 3]). To prove the remaining one, let us observe that y = (f1(z2)z1 +
fo(x2),z2)" is a global diffeomorphism of R™ that together with the feedback
v = fiu+ (fo+ fiz1)(fiz1 + fo) linearizes the above system. m

Observe that for the class of systems considered in Proposition 1 locally there
is no difference between restricted and unrestricted feedback linearizability (of
course in each case the system is linearized using different transformations). At
the same time, application of the unrestricted feedback substantially enlarges
possibilities for the global linearization.

In [19] sufficient conditions for the unrestricted feedback linearization of a
single-input system are proved. They apply several known results about global in-
vertibility of mappings from R™ to R™. The paper of Cheng et al. [14] treats multi-
input case and gives necessary and sufficient conditions, that unfortunatelly con-
tain a priori requirement of the global invertibility of a certain map. Boothby [2]
gives necessary and sufficient conditions in terms of the global integrability of
the system on a simply connected manifold and the completeness of vector fields
modified by the linearizing feedback. Special attention is devoted to the two-
dimensional cases. Similar results are obtained in Dayawansa et al. [18].

We give here a rather different formulation of the necessary and sufficient
conditions for the restricted feedback linearization that is, nevertheless, equivalent
to the single-input version of [14] and we indicate its relation to the results of [2,
18]. For the simplicity we restrict ourselves to the single-input case.
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THEOREM 3. Single-input nonlinear system (1) is globally unrestricted feedback
linearizable on M if and only if it is globally state equivalent to the following
system

® = f(z)+gx)u, x=(r1,...,2,) €R",
g = (gl(x)aov 70)/7 f = (fl(x)7f2(x)7f3($27"° 7-7371)7- . -afn(xnflal’n))/
and
9f; noi
g1(x) # 0, #0 VreR", j=2,...,n.
8$j,1
If in addition there exists a constant € > 0 such that
o |- . Vo eR", j=2,...,n,
8xj_1

then the above system is globaly unrestricted feedback linearizable, i.e. the corre-
sponding linear system is defined on the whole R™.

Remark 6. Nonlinear single-input system is globally state equivalent to
the form (8) if and only if distributions D%,i = 0,...,n — 1, (see (5) for their
definition) can be transformed using a global coordinate change into the form
D' = span{d/dz;, j =0,...,i},i=0,...,n—1 (we will call this property as the
global integrability of a nested sequence of distributions). Necessary conditions
for this are the involutivity of D and dim D*(z) =i+ 1, Vi = 0,1,...,n — 1,
x € M (in the local case they are also sufficient—see [23]), but they are not
sufficient. Cheng et al. [14] therefore requires existence of linearly independent
vector fields Z; € D*,i =0,...,n — 1, such that

Y= 1, yn) = Py 0.0 DY (x0)

is a bijection of R™ onto M (actually, this bijection defines a global coordinate
change taking the investigated nonlinear system to the special form (8)). One can
really expect the last assumption to be difficult to check, moreover, as indicated
by the previous examples, the above map may be globally bijective for some
selections of Z;’s while for other selections it need not be. For the multi-input
case, treated analogically, the reader is referred to [14] as well as for the full proof.

Remark 7. Proofof Theorem 3 is the constructive one, i.e. it gives an algo-
rithm for explicit computations of all linearizing transformations. It computes at
first the linearizing diffeomorphism and then the appropriate unrestricted feed-
back. Let us also note that the condition
of;

8$j_1

>e VreR"j=2,...,n,

is only sufficient for the linearized system to be defined on the whole R™ (it is not
necessary—see e.g. globally linearizable system &1 = u, 3 = exp(—x3)z1). When
comparing Theorem 3 with the results of [2, 18] we can observe that the above
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sufficient condition is also the sufficient condition for the completeness of the
appropriate collection of vector fields. Results of [2, 18] are therefore more general
than Theorem 3; nevertheless, since no criterion for completeness is known, the
difference is not so important.

4. Bilinear systems. Here we present results for a more particular class of
nonlinear systems—bilinear systems. It turns out that for this class it is possible
in some cases to remove general a prior:i type assumptions and even obtain the
equivalence between local and global linearization.

Consider bilinear system of the form

m
(9) T = (A—FZBkuk)x—l—Cu

k=1
Here x = (z1,...,x,)" € R™ is the state, u = (uy,...,uy,) € R™ is the input;
A, By, C are real matrices of appropriate dimensions.

We start with global state linearization. A single-input (homogeneous) bilinear

system has the form (9) with k =1, By = B, C =c € R" (C =0). The following
two theorems are given in [10].

THEOREM 4. A single-input bilinear system (9) is globally state linearizable
at xg € R™ to a linear system on R™ if and only if it is locally state linearizable
at xg.

THEOREM 5. Let A¥ C R™, k < n, be the k-dimensional affine submanifold
given by Ex = d, d€ R"™, with E being an (n—k) xn matriz of full rank. Providing
that A* is invariant with respect to (9) consider restriction of (9) to A*. Then
this restriction is globally state linearizable at xo € AF to a linear system on RF
if and only if it is locally linearizable at xq.

Remark 8. Straightforward evaluation shows that Theorems 4,5 are mu-
tually equivalent. This is based on the rather old trick going back to Brockett [4],
when nonhomogeneous bilinear system can be considered as a homogeneous one
in the state space of higher dimension (column vectors of C' are additional states).
The aim of Theorem 5 is two-fold. First, it can be proved more easily than The-
orem 4 based on properties of a matriz (in particular, finite dimensional) Lie
algebra (see [9, 10]). Secondly, it gives an answer about global linearizability for
systems defined on R", but actually evolving on a lower dimensional submanifold.

Examples of n-dimensional single-input homogeneous bilinear systems (9) that
are globally linearizable at an equilibrium point are given in [9]. The same refer-
ence presents a complete list of all single-input homogeneous bilinear systems on
R? and R? that are globally linearizable at an equilibrium point (a typical planar
case is our Example 2). Finally, one can find in [10] examples of n-dimensional
nonhomogeneous bilinear systems that are globally state linearizable (i.e. by a
global diffeomorphism of R™ onto itself)—see also our Example 5.
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ExaMPLE 8. We show that Theorem 4 cannot be generalized to the multi-input
case. Consider the system

i~ (w3 o] % 3))

that is obviously locally state linearizable at any point except the origin but it is
not globally feedback linearizable in any sense of Definition 2 since it evolves on
R?\ {0}.

An additional sufficient condition for the global state linearization of multi-
input nonhomogeneous bilinear systems were derived in the recent work [12].
This condition consists in the requirement that all nonzero linear combinations
of Bi,...,B,, do have an eigenvalue distinct from 27wk+/—1, k integer. Complete
analysis of state linearizable multi-input bilinear systems with state space dimen-
sions up to 5 is also provided there.

An interesting question arises: is it possible to extend the previous equivalence
between the local and global linearizations of bilinear systems also to the case of
the (restricted) feedback linearization? Actually, we loose in this case most of
the advantages of bilinear systems, namely, guaranteed completeness of all vector
fields and application of properties of matrix Lie algebras. As a consequence,
only results in small dimension are available for restricted feedback while for
the unrestricted feedback a counterexample indicates the negative answer to the
above question.

THEOREM 6. Consider a homogeneous single-input bilinear system in R? or
R3. It is globally restricted feedback linearizable to a linear system on R? or R3,
respectively, if and only if it is locally restricted feedback linearizable.

Remark 9. Previous theorem is given in [11]. Actually, a complete list of
both the locally and globally restricted feedback linearizable homogeneous single-
input bilinear systems is given there. A typical two-dimensional case is indicated
by the earlier Example 6.

ExXaMPLE 9. We show that for the unrestricted feedback case there exists a
locally linearizable single-input bilinear system that is not globally linearizable in
any sense. Consider the following system

([t 1l )

with 2 = (z1,72)’ € R%,u € R, around its equilibrium (1, —1)’". Obviously

as =0 )

i.e. Buz,[A, B]x are linearly independent Va € R?\ {0} and the system is locally
unrestricted feedback linearizable around the mentioned equilibrium. At the same
time it is not globally linearizable in any sense of Definition 2. Actually, it should
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hold for the possible linearizing diffeomorphism D that D(R?) = R?\ {0} and
therefore either D is not one-to-one or resulting linear system is not defined on
the whole R"™.

5. Conclusions. An attempt was made to present briefly a collection of known
results in the field of the global linearization of nonlinear systems. Two groups of
results are described. First, results on general affine nonlinear systems are given
which use additional general topological assumptions to tackle the problem. Sec-
ondly, results are provided which try to find more particular classes of systems for
which general topological assumptions may be avoided. In this context a question
arises, namely, what are the perspectives of the further development in this field?

As indicated at the beginning of the paper, only two simple conditions were
used in addition to the local linearizability: simple connectedness and complete-
ness. On the general level it seems to be therefore reasonable to try to engage
more topology to study the problem. For instance, the following question seems
to be challenging: does there exist a smooth (analytic) single-input system with
M = R"™ satisfying all conditions of Corollary 1 except the last one? At least,
no example of such system is known to the author (recall Example 3—the vector
field f(z) is not smooth at 0 € R?). Notice that for multi-input case such a sys-
tem exists—see Example 8. A negative answer to this question would lead to the
generalization of Theorem 4 to the class of nonlinear systems defined on R™ by
smooth (analytic) complete vector fields.

Also the second group of results suggests open problems, e.g. restricted feed-
back linearization of n-dimensional bilinear systems or further analysis of the
multi-input case.
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