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1. Introduction. In this paper generic singularities of maximum (minimum)
functions over a preimage are classified in the case of one-dimensional or two-
dimensional image-space, and preimage-space of dimension not smaller than that
of the image-space. It turns out that in the case of general position there are
four and thirteen singularities of such functions respectively (up to Γ -equivalence
defined below). In the first case their list does not depend on the dimension of the
preimage-space and in the second one it stabilizes starting from dimension three.
To be more precise, on a smooth (i.e. of class C∞) manifold N without boundary
we consider a pair of smooth mappings, namely, a function g : N → R1

t and a
proper mapping τ : N → Rmq . On the image of the mapping τ the pair defines the
maximum function over the preimage G(q) = max{g(p)|p ∈ τ−1(q)}, q ∈ τ(N).
We endow the space of such pairs with the Whitney fine C∞-topology. A pair
in general position or a generic pair is a pair lying in some open dense set. The
generic singularities of maximum functions over preimages are the singularities of
those functions for generic pairs. These singularities cannot be removed by small
perturbations of the pair.

It is easy to see that G(q) is a solution of the elementary smooth problem
q(p) → max under the constraint τ(p) = q [5]. Thus the classification of the
singularities of maximum functions over preimages also provides a list of generic
singularities of the solution of such a problem as a function of q (in particular,
a list of generic singularities of the boundary of the set of values of q where the
function G is defined).

By changing the sign of the function g(G), all the results obtained for max-
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imum functions can be extended to the case of minimum functions. The generic
singularities of the latter for dimN > m = 2 can be realized as the singularities of
the time optimal function of a two-dimensional control system (such a realization
of one of the singularities is given in Section 2). The relationship between the
singularities of wave fronts and those of the minimum function of the family of
functions is well known [2], [3], [14]. It seems to have appeared for the first time
in [12].

The classification of the generic singularities of maximum and minimum func-
tions over preimages gives an opportunity to classify the generic singularities
of the field of limit directions of a smooth differential inequality F (z, ż)≤0 on a
surface with locally bounded derivatives. The latter classification proves to be im-
portant for the investigation of integral funnels for such inequalities. That classifi-
cation will be treated in another paper. Some results concerning this classification
have already been announced in [7].

If τ is a fiber map the list of generic singularities of maximum (minimum)
functions over preimages (up to R+-equivalence, i.e. up to a diffeomorphism of
the image-space and addition of a smooth function defined on this space) is finite
for m ≤ 6. It was found by L. N. Bryzgalova [6]. In that case she also found all
simple and stable germs of such a function for any m. Later V. I. Matov proved
that the generic maximum (minimum) function over the preimage is topologically
a Morse function [10].

I am grateful to V. I. Arnol’d, V. V. Goryunov and V. M. Zakalyukin for
useful discussions concerning this work.

2. Classification of singularities. We start with the formulations of the
main results of this paper.

2.1. Singularities of a maximum function over the preimage. A pair (g, τ)
is called IΓ -stable if for any pair (g̃, τ̃) sufficiently close to it the images of the
manifold N under the mappings (g, τ) and (q̃, τ̃) can be transformed into one
another by a C∞-diffeomorphism of the space Rmq × R1

t that is fibered over Rmq
and close to the identity. Denote n = dimN .

Theorem 1. For m = 1 or m = 2 and n ≥ m the generic pair is IΓ -stable.

The germs of two functions are Γ -equivalent if there exists a C∞-diffeomor-
phism of the space of graphs of these functions which is fibered over the spaces
in which they are defined and transforms one of these germs into the other.

Theorem 2. If n ≥ m = 1 and if the pair is in general position, the germ
at each point of the image of the maximum function over the preimage is Γ -
equivalent to the germ at zero of one of the following four functions:

(1) 0; (2) |x|; (3)
√
x; (4) max{

√
x;−1}
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Here and further, unless otherwise specified, x and x, y are coordinates in R1
q

and R2
q respectively.

Theorem 3. If n ≥ m = 2 and if the pair is in general position, the germ
at each point of the image of the maximum function over the preimage is Γ -
equivalent to the germ at zero of one of the following thirteen functions:

(1) 0;

(2) |x|;

(3)
√
x;

(4) max{
√
x;−1};

(5) ||x|+ y|+ |x|;

(6) max{
√
x; |y| − 1};

(7) max{
√
x;
√
y − 1};

(8) max{
√
x;
√
y − 1;−2};

(9) max{
√
x; y};

(10) max{ω ∈ R|ω3 + ω x+ y = 0};

(11) max{−ω4 + ω2x+ ωy|ω ∈ R};

(12)
√
x|y|;

(13) max{
√
x|y|;−1}.

The first ten singularities can be observed for any n ≥ 2, the eleventh singularity
may only occur when n ≥ 3, and the last two singularities can only be met when
n = 2.

Endow the space C∞(N,R) and the space C∞p (N,Rm) of proper mappings
with the Whitney fineC∞-topology. The mapping in general position is a mapping
from a certain open dense subset of the appropriate space of mappings in that
topology.

Theorem 4. For m = 1 or m = 2 and n ≥ m, for a fixed mapping g with
Morse critical points (for an LR-stable mapping τ respectively) and for the map-
ping τ (g respectively) in general position the statements of Theorem 2 are valid
if m = 1, the statements of Theorem 3 are valid if m = 2 and the statements of
Theorem 1 are true.

Theorems 1–4 will be proved in Section 3.

R e m a r k s. 1. The LR-stability is the stability relative to the ordinary left-
right equivalence [4], [9].

2. For m = n = 2 part of the singularities from the list of Theorem 3 can
be obtained from the normal forms of germs of the diagrams R ← N → R2 [1],
[4], [8]. The other singularities from this list are transversal “overlappings” of the
singularities obtained in this way.

2.2. Realization of singularities. It was noted above that when n > m = 2
the generic singularities of minimum functions over preimages can be realized as
generic singularities of the time optimal function in a two-dimensional control
system. We give here a realization of singularities of type (10) from the list of
Theorem 3 whose appearance as a singularity of a time optimal function is less
obvious than that of the other ten singularities.
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Consider a control system in the plane defined by the equations ẋ = cosu,
ẏ = x+sinu, where u ∈ [0, 2π). At every point of the domain x > 1 the directions
of the admissible velocities form an angle smaller than 180◦. The limit velocities
lying on the sides of this angle are defined by values of the control parameter
which are solutions of the equation sinu = −1/x. Hence cosu = ±

√
1− 1/x2

and the family of integral curves of the field of limit velocities is defined by the
equation y′ = ±

√
1− x2. By integration we find that y = ±(x

√
x2 − 1 − ln(x +√

x2 − 1))/2 + c. For the initial set we take a circle x = a + r cosφ, y = sinφ,
0 ≤ φ < 2π, a > 1, touching at a certain point A the curve l : y = −(x

√
x2 − 1−

ln(x +
√
x2 − 1))/2. This curve passes through the boundary point (1, 0) of the

domain of definition of the field of limit velocities. We shall show that at this point
the time optimal function has a singularity of type (10) from the list of Theorem 3
up to R+-equivalence. To do this, we use the Pontryagin Maximum Principle [13].
We introduce a vector (Ψ1, Ψ2) and a function H = Ψ1 cosu+ Ψ2(x+ sinu). This
vector satisfies the system of equations Ψ̇1 = −Ψ2, Ψ̇2 = 0 and is perpendicular to
the initial set at time t = 0. Consequently, (Ψ1(0), Ψ2(0)) = ±(cosφ, sinφ) if the
motion begins from the point corresponding to the angle φ. For the point (1, 0)
and for any point sufficiently close to it the respective time optimal motion begins
along the smaller arc AB, where B = (a− r, 0), of the initial set with admissible
velocity directed outside the initial set, as we can easily see. From this and from
the condition max{H|0 ≤ u < 2π} ≥ 0 we find that this motion starts with the
vector (Ψ1(0), Ψ2(0)) = (cosφ, sinφ). Consequently, Ψ1(t) = −t sinφ + cosφ and
Ψ2(t) = sinφ. The time optimal control satisfies the equation − sinu (−t sinφ +
cosφ) + cosu sinφ = 0 or ctg u = −t + ctg φ since it yields a maximum with
respect to u for the function H. It follows that the time optimal extremals for
points sufficiently close to (1, 0) are defined by

x(t) = a+ r cosφ+
t∫

0

(τθ − ctg φ)(1 + (θ − ctg φ)2)−1/2 dθ,

y(t) = r sinφ+
t∫

0

(x(θ)− (1 + (θ − ctg φ)2)−1/2 dθ.

The extremal goes to the point (1, 0) from the point A and arrives with the
value u = −π/2 of the control parameter. Consequently, the time of arrival is
t0 = ctg φ0, where φ0 is the angle corresponding to the point A. It is easy to find
that: xφ(t0, φ0) > 0, yt(t0, φ0) = ytt(t0, φ0) = 0 < yttt(t0, φ0) and ytφ(t0, φ0) > 0.
Consequently, locally, in a neighborhood of the point (1, 0, t0) of the space of
variables x, y, t, the surface swept up by the time optimal extremals is defined by
the equation y = Y (t, x), where Y is a smooth function, Y (t0, 1) = Yt(t0, 1) =
Ytt(t0, 1) = 0 6= Yttt(t0, 1)Ytx(t0, 1). According to Mather’s division theorem [9]
this equation is locally, in a neighborhood of this point, equivalent to the equation

(t− t0)3 + b(x, y)(t− t0)2 + c(x, y)(t− t0) + d(x, y) = 0,
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where b, c, d are smooth functions, b(1, 0) = c(1, 0) = d(1, 0) = 0 6= cx(1, 0)
dy(1, 0). The change of variables (which is an R+-equivalence) t̃= t−t0+b(x, y)/3,
x̃ = c(x, y)−b2(x, y)/3, ỹ = d(x, y)−b3(x, y)/27−b(x, y)x̃/3 reduces this equation
to the form (we omit the tilde in the notations of new variables) t3 + xt+ y = 0.
Consequently, the time optimal function has singularity (10) from the list of
Theorem 3 at the point (1, 0) up to R+-equivalence. It is clear that this singularity
is stable under small perturbations of the system.

3. Maximum function over a preimage. In this section we first prove
Theorems 1–3 using Theorem 4 and then prove the last theorem.

3.1. Proof of Theorems 1–3. It is sufficient to show that the set of pairs for
which the assertions of Theorems 1–3 hold true are dense. Indeed, it follows from
this and from the definition of the IΓ -stability that these statements are valid
for a generic pair.

Consider a pair (g0, τ0). For m equal to 1 or 2 and n ≥ m the LR-stable
mappings τ form an open dense set in C∞p (N,Rm) [9]. Consequently, the pair
(g0, τ0) can be approximated by a pair (g0, τ1) where τ1 is an LR-stable mapping.
By virtue of Theorem 4 (for a fixed LR-stable mapping τ = τ1) the pair (g0, τ1)
can be approximated by an IΓ -stable pair (g1, τ1) for which either the statement
of Theorem 2 (for m = 1) or that of Theorem 3 (for m = 2) is true. We have thus
proved Theorems 1–3 modulo Theorem 4.

3.2. Proof of Theorem 4. The upper boundary of the image of the mapping of
the pair is the union of all points (t, q) of this image such that for any t1 > t the
point (t1, q) does not belong to the image. The following lemma and its corollary
are obvious.

Lemma 1. The graph of the maximum function over the preimage coincides
with the upper boundary of the image of the mapping of the pair.

Corollary 1. If either the statement of Theorem 2 (for m = 1) or that of
Theorem 3 (for m = 2) is valid for an IΓ -stable pair then this statement is also
true for any pair sufficiently close to it.

By virtue of this corollary, in order to prove Theorem 4 (both for fixed LR-
stable mapping τ and for fixed function g with Morse critical points) it is sufficient
to show that in the corresponding set of pairs the IΓ -stable pairs for each of which
either the statement of Theorem 2 (for m = 1) or that of Theorem 3 (for m = 2)
holds true, are dense.

The pair (g0, τ0) with τ0 LR-stable can be approximated by a pair (g, τ0) such
that the function g has only Morse critical points since such functions form an
open dense set in C∞(N,R). By virtue of Theorem 4, for fixed g with Morse
critical points the pair (g, τ0) can be approximated by an IΓ -stable pair (g, τ) for
which either the statement of Theorem 2 (for m = 1) or that of Theorem 3 (for
m = 2) is valid. It follows from this and from the LR-stability of τ0 that (g0, τ0)
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can be approximated by an IΓ -stable pair (g̃, τ0) for which either the statement
of Theorem 2 (for m = 1) or that of Theorem 3 (for m = 2) is true. Thus the
statement of Theorem 4 for fixed LR-stable mapping τ follows from the statement
of this theorem for fixed g with Morse critical points. Let us prove the latter fact.

Throughout this section the function g with Morse critical points is fixed. We
must show the density C∞p (N,Rm) of the set of mappings τ for which the pair
(g, τ) is IΓ -stable and either the statement of Theorem 2 (for m = 1) or that of
Theorem 3 (for m = 2) is valid. We shall only investigate the case n > m = 2. In
the other two cases, i.e. n ≥ m = 1 and n = m = 2, the arguments are similar.
We shall first formulate a number of auxiliary statements.

In the jet space J4
p (N,R2) (of mappings τ) we denote by Q1 the set of jets

associated with a singular point of τ which is not (stably LR-) equivalent to a
singular point of Whitney fold or gather type (cusp). By Q2 we denote the set of
jets associated with a singular point of the mapping (g, τ) either of corank larger
than 1, or of corank equal to 1 at which the corank of the quadratic differential
exceeds 1. Denote by ΣI(φ) Bordmann’s manifold with index I in the jet space of
mappings φ, by jkφ the k-jet extension of the mapping φ, and by α the standard
projection of the jet space onto the preimage. Set

Q = Q1 ∪Q2; Σ = {ξ ∈ J4
p (N,R2)\Q|j4(g, τ)(α(ξ)) ∈ Σ1(g, τ)};

Σ1
τ = {ξ ∈ Σ|j4τ(α(ξ)) ∈ Σ1(τ)};

Σ1
g = {ξ ∈ Σ|j4(g, τ)(α(ξ)) ∈ Σ1,1(g, τ)};

Σ1 = Σ1
τ ∪Σ1

g ; Σ2
τ = {ξ ∈ Σ1

τ |j4τ(α(ξ)) ∈ Σ1,1(τ)}; Σ3 = Σ2
τ ∩Σ1

g ;

Σ2
g = {ξ ∈ Σ1

g |j4(g, τ)(α(ξ)) ∈ Σ1,1,1(g, τ)}; Σ2 = Σ2
τ ∪Σ2

g ∪ (Σ1
τ ∩Σ1

g);

Here j4τ(α(ξ)) = ξ everywhere. The following lemmas and corollaries are useful.

Lemma 2. For a mapping τ in general position,

j4τ(N) ∩Q = ∅.
Lemma 3. Σ is a smooth closed submanifold in j4p(N,R2)\Q of codimension

n− 2.

Lemma 4. Σ1
τ and Σ1

g are smooth closed submanifolds of the manifold Σ of
codimension 1, Σ2

τ (respectively Σ2
g) is a smooth closed submanifold of the mani-

fold Σ1
τ (respectively Σ1

g) of codimension 1.

Lemma 5. Σi
τ and Σ1

g have a transversal intersection in Σ, and so the inter-
section is a smooth closed submanifold of Σ1

g of codimension i, i = 1, 2.

Lemmas 2–5 will be proved in Subsection 3.3. These lemmas and Thom’s
transversality theorem [9] imply the following statement.

Corollary 2. The 4-jet extension of a generic mapping τ is transversal to
each of the manifolds Σ, Σ1

τ , Σ1
g , Σ2

τ , Σ2
g , Σ3, and , in particular , the intersection

j4τ(N) ∩Σ3 is empty.
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Denote the preimages under j4τ of the manifolds Σ,Σ1
τ , Σ

1
g , Σ

2
τ , Σ

2
g , Σ

1
τ ∩

Σ1
g and of the sets Σ\Σ1, Σ1\Σ2, Σ2 by S, S1

τ , S1
g , S2

τ , S2
g , S2

g,τ , S0, S1, S2

respectively. The next assertion follows from Lemmas 2–5 and Corollary 2.

Corollary 3. For a generic mapping τ the following three statements are
valid :

(1) S is a smooth closed submanifold in N of codimension n− 2;
(2) S2

g (respectively S2
τ ) is a smooth closed submanifold of codimension 1 in S1

g

(respectively S1
τ ) which is itself a smooth closed submanifold in S of codimension 1;

(3) S1
g and S1

τ have a tranversal intersection in S and S2
g,τ ∩ (S2

g ∪ S2
τ ) = ∅.

Fix a stratification on S with strata S0, S1, and S2.

Definition ([9]). Suppose that H1, H2, . . . ,Hk are the strata of the stratified
manifold H, and φ : H → Rl is a differentiable mapping. The mapping φ satisfies
the condition of normal intersection on this manifold if for any pairwise distinct
points zi ∈ Hj(i) whose images under the mapping φ are the same, the subspaces
(dφ)(zi)TziHj(i), j(i) ∈ {1, . . . , k}, 1 ≤ i ≤ r, are in general position in the tangent
space to Rl at the point φ(z1).

Lemma 6. For a generic mapping τ the mapping (g, τ) satisfies the condition
of normal intersection on the stratified manifold S.

Lemma 6 will be proved in Subsection 3.4. By the lemma, for a generic map-
ping τ there can only occur double or triple self-intersections of the image of the
stratum S0 in the image of the manifold S under the mapping (g, τ), or intersec-
tions of the images of the strata S0 and S1. All these intersections are transversal.
Let S00, S000 and S01 be the sets defined by these intersections, respectively. De-
note the remaining parts of the images of the strata S0, S1 and the image of the
stratum S2 by the same symbols (S0, S1 and S2 respectively; the meaning will be
clear from the context). Fix a stratification with strata S0, S1, S2, S00, S000, S01

on the image (g, τ)(S).

Lemma 7. For a generic mapping τ the restriction of the projection (t, q) 7→ q
to the stratified manifold (g, τ)(S) satisfies the condition of normal intersection
on this manifold.

This lemma will be proved in Subsection 3.4.
Take a mapping τ for which the conclusions of Lemmas 2, 6, 7 and Corollaries

2, 3 are true. In order to complete the proof of Theorem 4 (n > m = 2 in the case
being considered), it is sufficient to show that the pair (g, τ) is IΓ -stable and the
assertion of Theorem 3 is true for it. We shall carry out the proof in three stages.
At the first stage we shall make sure that the mapping (g, τ) is LR-stable, and at
the second and third stages we shall verify, respectively, whether the statement
of Theorem 3 is valid for it and whether it is IΓ -stable.

S t a g e 1. The mapping (g, τ) is proper and the dimension of the image-space
is three. Consequently, to prove that this mapping is LR-stable it is sufficient to
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make sure that

(1) it has Whitney fold, Whitney gather or swallowtail type singularities, and
(2) it satisfies the condition of normal intersection on the stratification of the

set of its singular points with the strata being unions of its singular points of the
same type.

Due to Lemma 2 we have j4τ(N) ∩Q2 = ∅. Hence at every singular point of
the pair (g, τ) its rank is two and the codimension of the quadratic differential of
this singular point is smaller than two. Consequently, near every singular point
p this pair can be written in one of the following two forms (recall that g is a
function with Morse critical points):

g(z) = g(p) + φ(z1, z2)± z2
3 ± . . .± z2

n, τ(z) = τ(p) + (z1, z2),
g(z) = g(p) + z1, τ(z) = τ(p) + (z2, φ(z1, z2, z3)± z2

4 ± . . .± z2
n),

where φ is a smooth function, φ(p) = 0, in suitable local coordinates near p with
origin at p, and, in addition, in the second case, under suitable numbering of
the coordinates in the q-plane. For the function g the point p is critical in the
first case and noncritical in the second one. (It is easy to use these two forms in
order to obtain stabilization, after n = 3, of the list of generic singularities of the
maximum function over the preimage for m = 2. For this purpose, it is sufficient
to consider the elementary smooth problem g(z) → extr under the constraint
τ(z) = (x, y) and to apply the method of Lagrange multipliers. The extremum
can be only attained for z4 = . . . = zn = 0. Below the statement about the
stabilization will follow automatically from the theory of singularities.)

It is easy to see that in the first case p is a Whitney fold singular point of τ .
In the second case p is a nonsingular point of (g, τ) if φz3(p) 6= 0, and a singular

point of Whitney fold type if φz3(p) = 0 6= φz3z3(p). If φz3(p) = 0 = φz3z3(p) 6=
φz3z3z3(p), then j4(g, τ)(p) ∈ Σ1,1,0(g, τ). Due to Corollary 2, j4τ t Σ1

g and,
hence, j4(g, τ) tp Σ1,1,0(g, τ) (tB means transversality on the set B) and p is a
singular point of Whitney gather type of (g, τ). Finally, if φz3(p) = 0 = φz3z3(p) =
φz3z3z3(p) then p ∈ S2. Again due to Corollary 2, j4τ t Σ2, and consequently,

rank

∣∣∣∣∣∣
φz3z1 φz3z2 0
φz3z3z1 φz3z3z2 0
φz3z3z3z1 φz3z3z3z2 φz3z3z3z3

∣∣∣∣∣∣ (p) = 3.

Thus, φz3z3z3z3(p) 6= 0, j4(g, τ) ∈ Σ1,1,1,0(g, τ), j4(g, τ) t Σ1,1,1,0(g, τ) and
the mapping (g, τ) has a swallowtail singularity at the point p. So the mapping
(g, τ) has only critical points of Whitney fold, Whitney gather or swallowtail
type. Singular points of these types divide S into strata S\S1

g , S1
g\S2

g and S2
g

respectively. It follows from Lemma 6 that the pair (g, τ) satisfies the condition
of normal intersection on this stratification of the manifold S.

Thus the pair (g, τ) is LR-stable.
We have also proved the following statement.
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Lemma 8. Each of the critical points of the mapping (g, τ) is a critical point of
one of the following three types: Whitney’s fold , Whitney’s gather or a swallowtail ,
provided the assertions of Lemma 2 and Corollary 2 are true for the mapping τ .

S t a g e 2. We have to show that the statement of Theorem 3 is valid for the
pair (g, τ). Let A=(t0, q0) be a point on the graph of the corresponding maximum
function over the preimage. The preimage P = (g, τ)−1(A) does not contain a
singular point of τ of Whitney gather type since the image of such a point belongs
to the interior of the whole image (g, τ)(N). Consequently, P ∩(S1

g\S2
g) = ∅. Two

cases are possible here: the intersection P∩S1
τ is either (1) empty or (2) not empty.

In the first case the point A belongs to one of four subsets of the stratified
manifold (g, τ)(S), namely, (a) S0, (b) S00, (c) S000, (d) S2

g . The germ at the
point A of this manifold is the germ at this point, respectively, (a) of a smoothly
embedded surface passing through it; (b) of two or (c) three smoothly embedded
surfaces transversally intersecting at this point, (d) of a swallowtail surface with
vertex at this point. The tangent set to this manifold does not have a vertical
direction (i.e. the direction of the t-axis) since P ∩ S1

τ = ∅. Consequently, the
germ (G, q0) is Γ -equivalent to the germ at zero of functions (1), (2), (5), (11),
respectively, of the list in Theorem 3. These singularities are precisely those of
the maximum function of a generic two-parameter family of functions. The R+-
equivalence is sufficient to reduce them to the respective normal forms [6].

In the second case P ∩ S1
τ 6= ∅. The point A belongs to one of three strata of

the image (g, τ)(S), namely, (a) S2, (b) S1, (c) S01. In subcases (a) and (b) the
set P consists of one point p which belongs to S2

τ\S1
g (since P ∩ (S1

g\S2
g) = ∅) and

S1
τ\S2

τ respectively. In particular, p is a noncritical point of the function g and a
singular point of Whitney fold type of the mapping (g, τ). Consequently, in both
subcases, near p this mapping can be written as

t = z1, x = z2, y = φ(z1, z2) + ε3z
2
3 + . . .+ εnz

2
n,

where εi = ±1, φ is a smooth function, φ(p) = 0 = φz1(p), in suitable local
coordinates z1, z2, . . . , zn in the preimage-space near the point p with origin at
it and in suitable coordinates t, x = x(q), y = y(q) in the image-space near the
point A with origin at A. (Note that all εi are identical and their sign is the
same as the sign of the first nonzero z1-derivative of φ at p, otherwise we would
have G(q0) > t0.) On the manifold S we have rank(g, τ)′ ≡ 2 and, consequently,
z3 = z4 = . . . = zn = 0. Thus, near the point A, the graph of the function G lies
on the surface y = φ(t, x). Due to the choice of τ we have j4τ(N)∩Q1 = ∅. This
implies that every critical point of the mapping τ is either a Whitney fold or a
Whitney gather. From this and from the definition of the manifolds S2

τ and S1
τ

we find that in subcases (a) and (b) the point p is a Whitney gather or Whit-
ney fold point of τ respectively. Thus we have φz1z1(p) = 0 6= φz1z1z1(p)φz1z2(p)
and φz1z1(p) 6= 0 respectively. Applying Mather’s division theorem [9] we find
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that the equation y = φ(t, x) is locally near A equivalent to the equation t3 +
a(x, y)t2 + b(x, y) t+ c(x, y) = 0 in subcase (a) and to the equation t2 +d(x, y)t+
e(x, y) = 0 in subcase (b), where a, b, c, d, e are smooth functions vanishing at zero,
bx(0, 0)cy(0, 0) 6= 0 6= ey(0, 0). Setting t = t+ a(x, y)/3, x̃ = b(x, y)− a2(x, y)/3,
ỹ = c(x, y) − a3(x, y)/27 − x̃a(x, y)/3 in subcase (a) and t̃ = t + d(x, y)/2, x̃ =
d2(x, y)/4− e(x, y), ỹ = x in subcase (b), we reduce these equations to the forms
(we omit the tildes) t3 +x t+ y = 0 and t2−x = 0 respectively. Consequently, in
subcase (a) the germ (G, q0) is Γ -equivalent (and R+-equivalent) to the germ at
zero of function (10) in the list of Theorem 3.

In subcase (b) the singularity of the function G at the point q0 depends only on
whether there are points of the set (g, τ)(S) different from A on the straight line
q = q0. If there are no such points then evidently the germ (G, q0) is Γ -equivalent
to the germ at zero of function (3) in the list of Theorem 3. Now if there are points
of this kind we take one, say A1, that is closest to A. In the stratified manifold
(g, τ)(S) the sum of the codimensions of the strata containing these two points is
less than three since by Lemma 7 the restriction of the projection (t, q) 7→ q onto
this manifold satisfies the condition of normal intersection on it. Consequently, A1

belongs to S0, S00 or S1. When A1 ∈ S0 the germ (G, q0) is evidently Γ -equivalent
to the germ at zero of function (4) in the list of Theorem 3.

When A1 ∈ S00 the germ ((g, τ)(S), A1) is the germ at A1 of two smoothly
embedded surfaces transversally intersecting at A1, and at that point the vertical
direction has no contact with any one of these surfaces. Furthermore by Lemma 7
the images of the strata S00 and S1 under the projection (t, q) 7→ q are transversal
at q0. Hence we find that when A1 ∈ S00 the germ (G, q0) is Γ -equivalent to the
germ at zero of function (6) in the list of Theorem 3.

If A1 ∈ S1, then, by Lemma 7 we have: (1) the image of the stratum S1 under
the projection (t, q) 7→ q has a transversal self-intersection at q0 and (2) any point
of {q = q0} ∩ (g, τ)(S) different from A and A1 lies in S0. It is easy to see that
depending on whether the last intersection is empty or not, the germ (G, q0) is
Γ -equivalent to the germ at zero of functions (7) and (8) respectively in the list
of Theorem 3.

In subcase (c) (when A ∈ S01) the set P consists of two points p1 ∈ S1
τ\S2

τ

and p2 ∈ S0. As in subcase (b), we reduce the image of the germ (S, p1) under the
mapping (g, τ) to the germ at zero of the surface t2 = x by means of a suitable
choice of coordinates t, x = x(q), y = y(q) in the image-space with origin at A.
Then the image of the germ (S, p2) under this mapping will be reduced to the germ
at zero of the surface t = a(x, y), where a is a smooth function, a(0, 0) = 0 since
p2 ∈ S0 and (g, τ)(p2) = A. We have ay(0, 0) 6= 0 since by Lemma 6 the images
of the strata S0 and S1 under the mapping (g, τ) intersect transversally. Setting
ỹ = a(x, y) and omitting the tilde, we find that the germ (G, q0) is Γ -equivalent
(R+-equivalent) to the germ at zero of function (9) in the list of Theorem 3.

Thus the statement of Theorem 3 is true for the pair (g, τ).
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S t a g e 3. To prove the IΓ -stability of the pair (g, τ) it is sufficient to prove
the IΓ -stability of the boundary of its image since this pair is LR-stable. For
q0 ∈ τ(N) the intersection of the straight line q = q0 with this boundary (and
with the set (g, τ)(S)) consists of a finite number of points since the mapping τ
is proper and every critical point of its restriction to the manifold S is either a
Whitney fold or a Whitney gather. By Lemma 7, the sum over these points of
codimensions (in the stratified manifold (g, τ)(S)) of the strata containing them
is less than three. Then, besides the finite number of points of the stratum S0,
this intersection may contain either (1) exactly one point of one of the strata
S1, S00, S01, S000, S2, or (2) two distinct points from the union of the strata S1

and S00. It follows that in order to prove the IΓ -stability it is sufficient to prove
the IΓ -stability, in the first case, of singularities (3), (2), (9), (5), (10), (11) of
the list in Theorem 3 respectively, and, in the second case, either singularities (6)
and (7) of this list or the tranversal overlapping of two singularities of type (2) of
this list (transversal overlapping means that (a) it takes place on different levels
with respect to t and (b) the images under the projection (t, q) 7→ q of the curves
of singular points of these two singularities have transversal intersection at the
point q0). It is easy to see that when the pair (g, τ) is LR-stable, the indicated
singularities are also IΓ -stable.

This completes the proof of Theorem 4.

3.3. Proofs of Lemmas 2–5. Let us prove Lemma 2. A generic mapping τ is
LR-stable and each of its critical points is either a Whitney fold or a Whitney
gather. Then, for such a mapping j4τ(N)∩Q1 =∅. The set Q2 is a closed Whitney
stratified submanifold in j4p(N,R2) of codimension larger than n. Consequently,
by virtue of Thom’s transversality theorem, j4τ(N)∩Q2 = ∅ for a generic mapping
τ . Thus we have j4(N)∩ (Q1∪Q2) = ∅ for a generic mapping τ . We have proved
Lemma 2 since Q = Q1 ∪Q2.

It is sufficient to prove the statements of Lemmas 4–5 in the jet space over
some chart on N . Without loss of generality, we may assume N = Rnz , z =
(z1, z2, . . . , zn), ξ ∈ j4(Rnz , R

2), j4τ(α(ξ)) = ξ.
The set Σ is closed in j4(Rnz , R

2)\Q and is defined by the system of equations

det

∣∣∣∣∣∣
gzi gzj gzk

τ1,zi
τ1,zj

τ1,zk

τ2,zi
τ2,zj

τ2,zk

∣∣∣∣∣∣ = 0, 1 ≤ i < j < k ≤ n.

Near every point ξ ∈ Σ there are exactly n−2 independent equations among them
since rank(g, τ)′(α(ξ)) = 2. Consequently, S is a smooth closed submanifold in
j4(Rnz , R

2) of codimension n− 2. We have proved Lemma 3.
For ξ ∈ Σ1 the point α(ξ) is not a critical point of the function g. Indeed, if

g′(α(ξ)) = 0 then, first, we have rank τ ′(α(ξ)) = 2 since rank(g, τ)′(α(ξ)) = 2,
and, second, α(ξ) is a critical point of Whitney fold type of the mapping (g, τ)
since the function g has only Morse critical points. Thus ξ 6∈ Σ1

τ and ξ 6∈ Σ1
g .
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Consequently, ξ 6∈ Σ1, and we have a contradiction.
For the jet ξ ∈ Σ1 we choose coordinates z1, z2, . . . , zn in Rnz such that

τz2(α(ξ)) 6= 0 and g(z) ≡ z1 near the point α(ξ). For definiteness we assume
that τ1,z2(α(ξ)) 6= 0. In these coordinates the manifold Σ is defined near the
point ξ by a system of n − 2 independent equations ψi = 0, 2 < i ≤ n, where
ψi = τ2,zi − τ1,ziτ2,z2/τ1,z2 .

If the jet ξ belongs to the set Σ1
τ which is “cut out” of Σ by the equation

ψ1 = 0 or is defined by a system of n − 1 independent equations ψ = 0, where
ψ = (ψ1, ψ3, . . . , ψn). Consequently, Σ1

τ is a smooth closed submanifold in Σ
of codimension 1. The set Σ2

τ is defined on the manifold Σ1
τ by the equation

det(∂ψ/∂z′) = 0, where z′ = (z1, z3, . . . , zn). This equation is nondegenerate
since for the jet ξ ∈ Σ1

τ we have rank(∂ψ/∂z′) > n − 2. Evidently it does not
depend on the equations ψ = 0. Consequently, Σ2

τ is a smooth closed submanifold
in Σ1

τ of codimension 1.
If the jet ξ belongs to the set Σ1

g then near ξ this set is “cut out” of Σ by the
equation ∆ = 0, where ∆ = det ∂Ψ̃/∂z̃, Ψ̃ = (Ψ3, Ψ4, . . . , Ψn), z̃ = (z3, z4, . . . , zn).
This equation can be solved for some derivative τ2,zi,zj

since for the jet ξ ∈ Σ we
have rank(∂Ψ̃/∂z̃) > n− 4. It does not depend on the equations ψ̃ = 0 since the
latter do not include the second derivatives of τ . Consequently, Σ1

g is a smooth
closed submanifold in Σ of codimension 1.

The submanifold Σi
τ intersects the submanifold Σ1

g transversally in Σ since
on Σ the equations defining them are independent. Consequently, the intersection
Σi
τ ∩Σ1

g is a closed smooth submanifold of Σ of codimension i.
Finally, Σ2

g is a smooth closed submanifold in Σ1
g of codimension 1 since for

fixed z1 these sets are Bordmann’s manifolds with indices (1, 1, 1) and (1, 1),
respectively, in the jet space of mappings (z2, . . . , zn) 7→ τ(z1, z2, . . . , zn).

We have proved Lemmas 4 and 5.

3.4. Proofs of Lemmas 6 and 7. Take multi-indices I = (i1, . . . , ik), J =
(j1, . . . , jl), where ir, js ∈ {0, 1, 2, 3}, 1 ≤ r ≤ k, 1 ≤ s ≤ l. Define the sets
ΣI = {(ξ1, . . . , ξk) ∈ j4k(N,R2)|ξr ∈ Σir , (g, τ)(α(ξr)) = (g, τ)(α(ξi)), 1 ≤ r ≤
i ≤ k}, and, for |I| + k > 1 and |J | + l > 1, the sets ΣI;J = {(ξ1, ξ2, . . . , ξk+l) ∈
J4
k+l(N,R

2)|(ξ1, . . . , ξk) ∈ ΣI , (ξk+1, . . . , ξk+l) ∈ ΣJ , τ(α(ξ1)) = τ(α(ξk+1))}.
Each of these sets is a Whitney stratified submanifold in the enveloping space of
multijets of codimensions |I| + k(n + 1) − 3 and |I| + |J | + (k + l)(n + 1) − 4,
respectively. Here |I| = i1 + . . . + ik, |J | = j1 + . . . + jl. Due to Lemmas 2–5,
the boundary of this submanifold in this space lies in a set which does not meet
the image of the multiple 4-jet extension of a generic mapping τ . Now let us first
prove Lemma 6 and then Lemma 7.

Due to Lemma 2, Corollary 2 and Lemma 8, a generic pair (g, τ) has only crit-
ical points of Whitney fold, Whitney gather and swallowtail types. It follows that
for generic τ the mapping j4kτ is transversal toΣI near the diagonal. Consequently,
by virtue of the multijet transversality theorem, for generic τ the mapping j4kτ is
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transversal to ΣI , k>1. In particular, j4kτ(N)∩ΣI = ∅ if kn < |I|+k(n+1)−3 or
|I|+k > 3. Thus for generic τ the image of its multiple 4-jet extension can inter-
sect (transversally) only the manifold Σ0,0, Σ0,0,0 and Σ0,1 (or Σ1,0) and cannot
intersect other manifold ΣI . We will show that for the pair (g, τ) this implies the
fulfillment of the condition of normal intersection on the stratified manifold S. It
is sufficient to verify the transversality of the intersections corresponding to the
indicated four manifolds. We shall carry out the computations for the manifolds
Σ0,0,0 and Σ0.1. In the other two cases (Σ0,0 and Σ0,1) the arguments are similar.
To simplify notation we assume that n = 3.

Let j43τ(p1, p2, p3) ∈ Σ0,0,0. The point pi is a noncritical point of the mapping
τ and a critical point of Whitney fold type of the mapping (g, τ) since j43τ(N) ∩
ΣI = ∅ for |I| > 0. Near the point pi we choose a system of coordinates ui, vi,
wi with centered origin at this point in which the mapping (g, τ) has the form
t = φi(ui, vi) ± w2

i , x = ui, y = vi, where φi is a smooth function, φi(0, 0) =
0, i = 1, 2, 3, φ1 ≡ 0, in suitable coordinates t, x(q), y(q) in the image-space
with origin at the point (g, τ)(p1). From the condition j43τ t Σ0,0,0 we have
(φ2,uφ3,v − φ2,vφ3,u(0, 0) 6= 0. Consequently, the tangent planes to the graphs
t = φi(x, y), i = 1, 2, 3, at zero are in general position. Hence, at the points p1,
p2, p3 of the stratum S0 the condition of normal intersection is fulfiled for the
pair (g, τ).

Let j42τ(p1, p2) ∈ Σ1,0. The point p2 is a critical point of the mapping (g, τ) of
Whitney fold type and a regular point of the mapping τ since j42τ(N)∩Σ1,1 = ∅.
The point p1 is either (1) a critical point of Whitney fold type both of τ and (g, τ),
or (2) a critical point of Whitney gather type of (g, τ) and a regular point of τ
since j42τ(N) ∩Σ2,0 = ∅. As in the previous case, in suitable coordinate systems
(with origins at the points p1, p2, (g, τ)(p1)) the mapping (g, τ) can be written as
t = ±w2

2, x = u2, y = v2 near the point p2(φ2 ≡ 0) and in one of the following two
forms: (1) t = u1, x = v1, y = φ1(u1, v1, w1) and (2) t = φ1(u1, v1, w1), X = u1,
Y = v1, where φ1 is a smooth function, φ1(0, 0, 0) = φ1,w1(0, 0, 0) = 0 and, respec-
tively, (1) φ1,w1w1(0, 0, 0) 6= 0 and (2) φ1,w1w1(0, 0, 0) = 0 6= φ1,w1w1w1(0, 0, 0),
near the point p1. In these two subcases the condition j42τ t Σ0,1 implies, respec-
tively, (1) (φ1,w1v1φ1,u1w1 − φ1,w1w1φ1,u1v1)(0, 0, 0) 6= 0 and (2) (φ1,v1φ1,u1w1 −
φ1,u1φ1,w1v1)(0, 0, 0) 6= 0. Consequently, at zero the subspaces (d(g, τ))(p1)TpS1

and (d(g, τ))(p2)TpS0 are in general position, and at the points p1 ∈ S1 and
p2 ∈ S0 the condition of normal intersection is fulfilled for the pair (g, τ).

We have proved Lemma 6.
Now we prove Lemma 7. Every point of the stratum S0 of the stratified man-

ifold (g, τ)(S) is a regular point of the restriction of the projection (t, q) 7→ q to
this manifold. Consequently, in order to prove the lemma, it is sufficient to show
that the condition of normal intersection is fulfilled on the stratified manifold
(g, τ)(S) with strata S1, S2, S00, S000 and S01.

By virtue of Lemma 6, for generic τ , the pair (g, τ) satisfies the condition
of normal intersection on the stratified manifold S. It follows that locally, in
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a sufficiently small neighborhood U of every point of the stratified manifold
(g, τ)(S)\S0, the images under the projection (t, q) 7→ q of any two different
points of the set U ∩ {(g, τ)(S)\S0} are distinct. Consequently, for generic τ the
intersection of the set j4k+lτ(N) ∩ ΣI,J with a sufficiently small neighborhood
of the diagonal is empty. By virtue of Lemmas 2–5, the intersection of this set
with a sufficiently small neighborhood of the boundary of ΣI,J in j4k+lτ(N,R2) is
also empty. From this and from the multijet transversality theorem we find that
for a generic mapping τ the mapping j4k+lτ is transversal to ΣI,J . In particular,
j4k+lτ(N)∩ΣI,J = ∅ if (k+ l)n < |I|+ |J |+(k+ l)(n+1)−4 or |I|+ |J |+k+ l > 4.
But |I|+ k > 1 and |J |+ l > 1. Consequently, for generic τ the image of its mul-
tiple 4-jet extension can intersect (transversally) only the manifolds Σ1,1, Σ00,1

or Σ1,00, Σ00,00 and cannot intersect any other manifold ΣI,J . We shall show
that this implies the fulfillment of the condition of normal intersection for the
restriction of the projection (τ, q) 7→ q to the stratified manifold (g, τ)(S)\S0. It
is sufficient to verify the transversality of the intersections corresponding to the
four indicated manifolds. We shall carry out the computations for the manifold
Σ00,1. In the other three cases the computations are similar. To simplify notation,
we assume that n = 3.

Let j43τ(p1, p2, p3) ∈ Σ00,1. Each of the points p1, p2 is a critical point of
Whitney fold type of the mapping (g, τ) and a regular point of the mapping τ
since j43τ(N) ∩ Σ10,1 6= ∅. The point p3 is either (1) a critical point of Whitney
fold type of both τ and (g, τ), or (2) a critical point of Whitney gather type of
(g, τ) and a regular point of τ since j43τ(N) ∩Σ00,2 = ∅. In appropriate systems
of local coordinates ui, vi, wi in the preimage-space with origin at the points pi,
i = 1, 2, 3, and in the local coordinates t, x(q), y(q) and t̃, x(q), y(q) in the image-
space with origins at the points (g, τ)(p1) and (g, τ)(p2) respectively, the mapping
(g, τ) can be written as (t, x, y) = (φi(ui, vi) ± w2

i , ui, vi) near the point pi, i =
1, 2, 3, and, correspondingly, (1) (t̃, x, y) = (u3, v3,±u2

3 ± w2
3) and (2) (t̃, x, y) =

(w3φ3(u3, v3, w3), u3, v3). Here φi are smooth functions, φ1 ≡ 0 = φ2(0, 0, 0) =
φ3(0, 0, 0) = φ3, w3(0, 0, 0) 6= φ3,w3w3(0, 0, 0). The condition j43τ t Σ00,1 implies,
respectively, (1) φ2, u2 6= 0 and (2) (φ2,u2φ3,v3 − φ2,v2φ3,u3)(0, 0, 0) 6= 0. In both
cases this means that at the points (g, τ)(p1) ∈ S00 and (g, τ)(p3) ∈ S1 the
condition of normal intersection is fulfilled for the restriction of the projection
(t, q) 7→ q to the stratified manifold (g, τ)(S)\S0.

We have proved Lemma 7.
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(Grenoble), 29 (1) (1979), 263–282.

[9] M. Golubi t sky and V. Gui l l emin, Stable Mappings and Their Singularities, Springer,
1973.

[10] V. I. Matov, Topological classification of the germs of functions of the maximum and
minimax of families of functions in general position, Russian Math. Surveys 37 (4) (1982),
127–128.

[11] B. Mor in, Formes canoniques des singularités d’une application différentiable, C.R. Acad.
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