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1. Introduction. During the past three decades or so, a significant amount
of research on stochastic control has been performed. However, only a relatively
few examples of explicitly solvable stochastic control problems are available. The
most notable example is the linear regular problem (e.g., [15]) though some other
examples exist (e.g., [1, 2, 17, 21]). In recent years a family of nonlinear geo-
metric examples has been given [6–13] that use spherical polynomials in a basic
role. These examples are the control of a natural diffusion process in a family
of well known manifolds with nonzero curvature. The spherical polynomials are
eigenfunctions of the Laplace–Beltrami operator. These examples were motivated
by the general theory that was developed in [4, 5].

To provide some insight into these solvable examples, an example in real hy-
perbolic three space is described [6, 11]. Real hyperbolic three space H3(R) is
probably the simplest three dimensional noncompact, irreducible Riemannian
manifold that has nonzero curvature. A natural geometric model for H3(R) is
the unit ball

(1.1) B1(0) = {y ∈ R3 : |y| < 1}
where | · | is the usual Riemannian metric on R3. The space B1(0) with the
Riemannian metric

(1.2) ds2 = 4(1− |y|2)−2(dy2
1 + dy2

2 + dy2
3)

is a complete Riemannian manifold with constant sectional curvature −1. More
importantly for the approach here H3(R) is a noncompact symmetric space, that
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is

(1.3) H3(R) ' SL(2,C)/ SU(2)

where SL(2,C) is the Lie group of 2× 2 matrices over C with determinant 1 and
SU(2) is the (maximal compact) subgroup of unitary matrices in SL(2,C).

The global geodesic polar coordinates for H3(R) at the origin, denoted by 0,
are a useful coordinate system, that is, the map

Exp0 Y 7→ (r, θ1, θ2)

where Y ∈ T0H3(R), Exp0 is the exponential map at 0, r = |Y |0 with | · |0
the Riemannian metric at 0 and (θ1, θ2) are some coordinates of the unit vector
Y/|Y |0. The Riemannian structure in this coordinate system is

(1.4) ds2 = dr2 + (sinh2 r)dσ2

where dσ2 is the usual Riemannian structure on the unit sphere in T0H3(R). The
Laplace–Beltrami operator ∆H3(R) in these coordinates is

(1.5) ∆H3(R) =
∂2

∂r2
+ coth r

∂

∂r
+ sinh−2 r∆S2

where ∆S2 is the Laplace–Beltrami operator on the unit sphere in T0H3(R). The
geodesic polar coordinates for H3(R), and the Riemannian structure and the
Laplace–Beltrami operator in this coordinate system are described in [19].

The stochastic control problem is the control of Brownian motion by a drift
vector field so that this controlled diffusion process remains close to the origin.
The cost functional has a term for the state being away from the origin that is
an increasing function of the radial distance from the origin and a term for the
use of control. This cost functional is

(1.6) J(U) = E|Y (0)|0

T∫
0

a sinh2 |Y (t)|0
2

+
(

cosh2 |Y (t)|0
2

)
U2(t) dt

where (Y (t), t ≥ 0) is the controlled diffusion in H3(R) with the infinitesimal
generator

(1.7)
1
2
∆H3(R) + u

∂

∂r
.

Since the cost functional only depends on |Y (t)|0 and the control is only in the
radial direction, it suffices to consider the radial part of this process (X(t), t ≥
0) where X(t) = |Y (t)|0. The process (X(t), t ∈ [0, T ]) has the infinitesimal
generator

(1.8)
1
2
∂2

∂r2
+ coth r

∂

∂r
+ u

∂

∂r

and satisfies the stochastic differential equation

(1.9) dX(t) = (cothX(t) + U(t))dt+ dB(t) X(0) = |Y (0)|0
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where (B(t), t ≥ 0) is a real-valued standard Brownian motion. An admissible
control at time t is a Borel measurable function of X(t) such that the stochastic
differential equation (1.9) has a unique strong solution.

The Hamilton–Jacobi equation for the stochastic control problem (1.6–1.7) of
diffusion type is well known (e.g., [15]) to be

(1.10) 0 =
∂W

∂s
+ min

v∈R

[
1
2
∂2W

∂r2
+ coth r

∂W

∂r
+ v

∂W

∂r
+ a sinh2 r

2
+ v2 cosh2 r

2

]
with the boundary condition

W (s, r) = 0, (s, r) ∈ {T} ×H3(R).

A solution to (1.10) is

(1.11) W (s, r) = g(s) sinh2 r

2
+ h(s)

where

(1.12) g′ +
3
2
g − 1

4
g2 + a = 0, g(T ) = 0,

(1.13) h′ +
3
4
g = 0, h(T ) = 0.

It is not difficult to verify that (1.11) gives the admissible optimal control

(1.14) U∗(s, y) = −1
2
g(s) tanh |y|0

where s ∈ [0, T ] and y ∈ T0H3(R). Since the terms of the stochastic differential
equation with the control (1.14) are locally smooth it is only necessary to verify
that the solution does not hit the origin to show that there is a unique strong
solution. This verification is made by comparison with the stochastic differential
equation for the so-called two dimensional Bessel process.

Since it is elementary that

sinh2 r

2
=

1
2

(cosh r − 1)

it follows easily that f(r) = sinh2 r
2 is an eigenfunction for the radial part, ∆̃H3(R),

of ∆H3(R) where

∆̃H3(R) =
d2

dr2
+ 2 coth r

d

dr
.

A basic aspect of the solvability of this stochastic control problem is that
sinh2 r

2 is an eigenfunction of the radial part of the Laplace–Beltrami operator.
These eigenfunctions are called spherical functions because in this case they are
constant on spheres in B1(0).

This approach to stochastic control problems is not anomalous because it can
be used to solve the scalar linear regulator problem.
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2. Solvable stochastic control problems in noncompact symmetric
spaces of rank one. To generalize the example in the symmetric space H3(R)
given in the Introduction two directions are followed. First, other symmetric
spaces are considered and second other spherical functions are used. Since H3(R)
is an irreducible noncompact symmetric space of rank one, other such spaces are
considered. In analogy with (1.3), a noncompact symmetric space can be de-
scribed as G/K where G is a noncompact semisimple Lie group with finite center
and K is a maximal compact subgroup of G [18]. The rank of G/K is the maximal
dimension of a flat, totally geodesic submanifold. Let g = k + p be the direct sum
(or Cartan) decomposition of the Lie algebra g of G into the Lie algebra k of K
and its orthogonal complement with respect to the Killing form of g. For rank
one symmetric spaces there is a restricted root α ∈ Σ, the set of roots, such that
2α is the only other possible element in Σ. There is a one dimensional abelian
subspace a of p such that

(2.1) p = a + pα + p2α

where pα and p2α are the eigenspaces associated with α and 2α respectively.
Define the integers p and q by the following equations

p = dim pα,(2.2)
q = dim p2α.(2.3)

E. Cartan [3] determined the values of p and q for rank one symmetric spaces
(e.g., p. 532 [18]). There are three families of hyperbolic spaces from the real
numbers, the complex numbers and the quaternions and one hyperbolic space
from an exceptional Lie algebra associated with the Cayley numbers, that is,

Hn(R), p = n− 1 and q = 0 for n = 2, 3, . . . ,
Hn(C), p = n− 2 and q = 1 for n = 4, 6, . . . ,
Hn(H), p = n− 4 and q = 3 for n = 8, 12, . . .

and
H16(Cay), p = 8 and q = 7.

Let (θ1, . . . , θn−1) be Cartesian coordinates on an open subset of the unit
sphere Sn−1 in TpG/K. The inverse of the mapping

(θ1, . . . , θn−1, r) 7→ Expp(rθ1, . . . , rθn−1)

is a system of geodesic polar coordinates at p ∈ G/K where Expp is the expo-
nential map at p. The Laplace–Beltrami operator in these coordinates is

(2.4) ∆G/K =
∂2

∂r2
+ (γp coth γr + 2γq coth 2γr)

∂

∂r
+∆Sn−1

where γ = (2p+8q)−1/2, p and q are given in (2.2, 2.3) and ∆Sn−1 is the Laplace–
Beltrami operator on Sn−1 in TpG/K. The radial part ∆̃G/K of the Laplace–
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Beltrami operator is

(2.5) ∆̃G/K =
∂2

∂r2
+ (γp coth γr + 2γq coth 2γr)

∂

∂r
.

More details about these hyperbolic spaces and their Laplace–Beltrami operators
can be found in [19].

To determine the spherical functions consider the eigenvalue problem (p. 302
[16])

(2.6) ∆̃G/Kϕλ = λ∆ϕλ

where λ∆ = −(〈l, l〉+ 〈%, %〉), 〈·, ·〉 is the Killing form and % is one half of the sum
of the positive restricted roots with their multiplicities. This eigenvalue problem
reduces to the differential equation

(2.7) z(z − 1)
d2ϕλ
dz2

+ [(a+ b+ 1)z − c]dϕλ
dz

+ abϕλ = 0

where z = − sinh2 γr, 〈l, l〉+ 〈%, %〉 = 1
2 (p+ 4q)−1[λ(H0)2 + %(H0)2], α(H0) = 1,

〈H0, H0〉 = 2(p + 4q), a = 1
2 [p + 2q + 2iλ(H0)], b = 1

2 [p + 2q − 2iλ(H0)] and
c = 1

2 (p + q + 1). A power series solution u1 that is regular at the origin is the
hypergeometric function F , that is,

(2.8) u1(z) =
∞∑
n=0

(a)n(b)nzn

(c)nn!
= F (a, b, c, z)

where

(2.9) (a)n =
Γ (a+ n)
Γ (n)

.

and Γ is the gamma function. If a (or b) is a negative integer −m then the
hypergeometric function is a polynomial over R expressed as

(2.10) F (−m, b, c, z) =
m∑
n=0

(−m)n(b)n
(c)n

zn

n!

and each term in the polynomial is positive for z < 0.
Consider the controlled diffusion process (Y (t), t ≥ 0) with the infinitesimal

generator

(2.11)
1
2
∆G/K + u

∂

∂r

and the cost functional

(2.12) Jm(U) = E|Y (0)|0

T∫
0

[F (−m, b, c,− sinh2 γ|Y (t)|0) + f(|Y (t)|0)U2(t)]dt
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where

(2.13)
f(x) =

[Fx(−m, b, c,− sinh2 γx)]2

F (−m, b, c,− sinh2 γx)
,

Fx(−m, b, c,− sinh2 γx) =
∂

∂x
F (−m, b, c,− sinh2 γx),

and 0 < T ≤ T1 ([9]).
An admissible control at time t is a Borel measurable function of X(t) =

|Y (t)|0 such that there is a unique strong solution of the stochastic differential
equation

(2.14)
dX(t) =

[
1
2

(γp coth γX(t) + 2γq coth 2γX(t)) + U(t,X(t))
]
dt+ dB(t),

X(0) = |Y (0)|,

where (B(t), t ≥ 0) is a real-valued standard Brownian motion.
The above stochastic control problem is explicitly solvable [9].

Theorem 2.1. Let the dimension of G/K be at least three. For each m ∈ N the
stochastic control problem (2.11, 2.12) has an optimal control U∗ that in geodesic
polar coordinates at the origin is

(2.15) U∗(t, x) =
−1
2

F (−m, b, c,− sinh2 γx)
Fx(−m, b, c,− sinh2 γx)

g(t)

where g is the unique positive solution of the Riccati equation

(2.16)
g′ − 1

2
(p+ 4q)−1

[
λ(H0)2 +

(
1
2
p+ q

)2]
g − 1

2
g2 + 1 = 0,

g(T ) = 0.

For the simplest nontrivial symmetric space, the real hyperbolic plane H2(R),
solvable stochastic control problems can be formulated and solved in analogy with
the higher dimensional symmetric spaces. An unusual property in this case is that
the controlled diffusion can hit the origin which is a singularity for the stochastic
differential equation but nevertheless there is a unique strong solution for the
optimal system [10].

3. Solvable stochastic control problems in compact symmetric spaces
of rank one. Since many models of physical phenomena are described in compact
spaces, it is natural to investigate stochastic control problems in compact sym-
metric spaces. While compact symmetric spaces are simpler in some respects than
noncompact symmetric spaces, there are other aspects that make these compact
spaces more complicated for stochastic control than their noncompact counter-
parts, e.g., typically the lack of global triviality, the existence of conjugate points
and spherical polynomials lack a global monotonicity.
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If M is a compact symmetric space of rank one then M ' G/K where G is
the identity component of the group of isometries of M and K is the isotropy
subgroup of G at 0 ∈ M called the origin. Let L be the diameter of M , that is,
the maximal distance between any two points. If x ∈ M then let Ax be the set
of points of M that are a distance L from x. Ax is a submanifold of M that is
called the antipodal manifold associated with x.

The following is a complete list of the irreducible compact symmetric spaces of
rank one and their corresponding antipodal manifolds (p. 167 [19]): i) spheres Sn

for n = 1, 2, . . . and A0 is a point, ii) real projective spaces Pn(R) for n = 2, 3, . . .
and A0 = Pn−1(R), iii) complex projective spaces Pn(C) for n = 4, 6, . . . and
A0 = Pn−2(C), iv) quaternion projective spaces Pn(H) for n = 8, 12, . . . and
A0 = Pn−4(H) and v) the Cayley plane P16(Cay) and A0 = S8. The values of p
and q in (2.2, 2.3) for these compact spaces are the same as their dual hyperbolic
spaces. In the Killing form metric the diameter of a compact symmetric space of
rank one L satisfies the following equation

(3.1) L2 = p
π2

2
+ 2qπ2.

Let (θ1, . . . , θn−1) be Cartesian coordinates on an open subset of the unit
sphere S1(0) in TxM where M is a compact symmetric space of rank one. The
mapping Expx : TxM → M is a diffeomorphism of the ball BL(0) = {y ∈ TxM :
|y| < L} onto the open set M \Ax. The inverse of the mapping

(θ1, . . . , θn−1, r) 7→ Expx(rθ1, . . . , rθn)

is a system of geodesic polar coordinates at x ∈M where r ∈ (0, L), r = |Y | and
Y ∈ BL(0).

In analogy (or duality) to (2.4) the Laplace–Beltrami operator for a compact
symmetric space of rank one is

(3.2) ∆M =
∂2

∂r2
+ (pγ cot(γr) + 2qγ cot 2γr)

∂

∂r
+∆Sr

where ∆Sr is the Laplace–Beltrami operator on Sr(0), the sphere in M with
center 0 and radius r. The radial part of ∆M is

(3.3) ∆̃M =
∂2

∂r2
+ (pγ cot γr + 2qγ cot 2γr)

∂

∂r
.

Let G be given by the following equality

G(m, r) = F

(
1
2
p+ q +m,−m, 1

2
(p+ q + 1), sin2 γr

)
where F is the hypergeometric function (2.8) and m ∈ Z+. There is a maximal
interval [0, δ] where G(m, ·) is strictly decreasing for r ∈ [0, δ]. Choose c > 0 such
that

(3.4)
√
cL ≤ δ
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where L is the diameter of the compact symmetric space of rank one. Let k0(m, c)
be chosen such that

(3.5) G(m,
√
cL) + k0(m, c) = 0.

Define G̃ by the equation

(3.6) G̃(m, r) = G(m, r) + k0(m, c)

The controlled diffusion (Y (t), t ≥ 0) has the infinitesimal generator

(3.7)
1
2
c∆M + u

∂

∂r

and the cost functional is for suitable T > 0 [8]

(3.8) Jm(U) = E|Y (0)|

T∫
0

(−G̃(m, |Y (t)|) + h(m, |Y (t)|)U2(t))dt

where

(3.9) h(m, r) =
[G̃r(m, r)]2

G̃(m, r)
.

Let X(t) = |Y (t)| be the radial part of the controlled diffusion. The process
(X(t), t ≥ 0) satisfies

(3.10)
dX(t) =

[
c

2
γp cot γX(t) + cγq cot 2γX(t) + U(t)

]
dt+

√
cdB(t),

X(0) = |Y (0)|,
where (B(t), t ≥ 0) is a real-valued standard Brownian motion. An admissible
control at time t is a Borel measurable function of X(t) such that (3.10) has one
and only one strong solution.

The solution to the stochastic control problem (3.7, 3.8) is given in the fol-
lowing theorem [7, 8].

Theorem 3.1. The stochastic control problem described by (3.7, 3.8) has an
optimal control U∗ that in geodesic polar coordinates at the origin is

(3.11) U∗(s, r) = −1
2
G̃(m, r)

G̃r(m, r)
g(s)

where g is the unique positive solution of

(3.12) g′ +
c

2
γ2(4m2 + 2mp+ 4mq)g − 1

4
g2 − 1 = 0, g(T ) = 0,

and U∗ is extended by continuity to be zero on the antipodal manifold.

4. Solvable stochastic control problems in noncompact symmetric
spaces of higher rank. The stochastic control problems in Section 2 are gen-
eralized to all classical noncompact symmetric spaces of arbitrary rank. It is



BROWNIAN MOTION 191

important to describe the Laplace–Beltrami operator in “good” coordinates so
that the eigenvalue problem for spherical functions can be solved to give a fairly
explicit construction of the spherical polynomials. These coordinates arise quite
naturally from the rank one case and some other geometrical considerations.

Initially the symmetric cones are described [14]. Let X = Rn be a real Eu-
clidean space with inner product 〈·, ·〉. An open proper cone L ⊂ X with vertex
at 0 is called self-dual if its closure Λ satisfies

(4.1) Λ = {x ∈ X : 〈x, y〉 ≥ 0 for all y ∈ Λ}.
A self-dual cone Λ is called symmetric if its linear automorphism group

(4.2) GΛ = {g ∈ GL(X) : g(Λ) = Λ}
acts transitively on Λ. Let e ∈ Λ be the unit element of X that is considered as
a Jordan algebra. The stabilizer subgroup is KΛ := {g ∈ GΛ : g(e) = e}.

The matrix cones are one family of these symmetric cones. Let K be one of
the division algebras: R, C or H. For an integer r ≥ 1 let

ΛK := H+
r (K)

denote the set of all positive definite, self-adjoint, (r × r)-matrices with entries
in K. Then Λ = ΛK is a symmetric cone with GΛ = GLr(K) acting on Λ as
(g, x) 7→ gxg∗ for x ∈ Λ and g ∈ GΛ. The stabilizer subgroup KΛ is Ur(K), the
unitary matrices over K.

Another family of examples are the forward light cones. For n ≥ 3 define Λn
as

Λn = {x ∈ Rn : x1 > (x2
2 + . . .+ x2

n)1/2}
Λn is a symmetric cone with GΛ = R+ × SO0(n− 1, 1) and KΛ = SO(n− 1).

Consider the positive Weyl chamber, a+
Λ ,

(4.3) a+
Λ =

{∑
tiH

Λ
i : t1 > . . . > tr

}
where (HΛ

i ) is a suitable basis [13] of the abelian subspace of the Lie algebra and
r is the rank. Consider the associated coordinates x1 > . . . > xr > 0 defined by

(4.4) xi = exp(ti)

for i = 1, . . . , r. The radial part ∆̃Λ of the Laplace–Beltrami operator on Λ is

∆̃Λ =
r∑
i=1

(
x2
i

∂2

∂x2
i

+
(

1− d

2
(r − 1)

)
xi

∂

∂xi

)
+ d

∑
i 6=j

x2
i

xi − xj
∂

∂xi
(4.5)

=
r∑
i=1

(
∂2

∂t2i
− d

2
(r − 1)

∂

∂ti

)
+ d

∑
i 6=j

1
1− exp(tj − ti)

∂

∂ti

where d ∈ Z+ is determined by Λ [13].
Let m = (m1, . . . ,mr) be a partition, that is, m1 ≥ m2 ≥ . . . ≥ mr ≥ 0. A

spherical polynomial ϕ̃Λm is a symmetric polynomial in the coordinates (x1, . . . , xr)
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so it can be expressed as

(4.6) ϕ̃Λm(x) =
∑
µ≤m

cµmqµ(x)

where the sum is over all the partitions µ ≤ m in the reverse lexicographic
ordering [20], the cµm are coefficients and qµ is the monomial symmetric function
associated with µ that is obtained by summing over all distinct permutations of
µ1, . . . , µr. Using the definition of the monomial symmetric functions it follows
that

ϕ̃Λm(x) =
∑

am(i)xi11 . . . xirr

where i = (i1, . . . , ir) and am(i) = am(j) if j is a distinct permutation of i. For
j ∈ {1, . . . , r} define ajm(i) as

ajm(i) =
ij
|m|

am(i)

and

(4.7) ϕ̃Λmj =
∑

ajm(i)xi11 . . . xirr

where the sum is over distinct r-tuples such that ajm(i) 6= 0. It follows easily that

ϕ̃Λm(x) =
r∑
j=1

ϕ̃Λmj(x).

The spherical polynomials for the real matrix cones first developed in the statisti-
cal literature in multivariate analysis. The following result [12, 13] is important for
the use of ϕ̃Λm in a stochastic control problem because it provides a monotonicity
of ϕ̃Λm along rays so that ϕ̃Λm can be used in a cost functional.

Proposition 4.1. The coefficients cµm of the spherical polynomial ϕ̃Λm in (4.5)
are nonnegative.

The controlled diffusion has the infinitesimal generator

(4.8)
1
2
∆Λ +

r∑
j=1

uj(s, t)
∂

∂tj

where t = (t1, . . . , tr) are the coordinates (4.3) and ∆Λ is the Laplace–Beltrami
operator. The cost functional for the stochastic control problem for the partition
m is

(4.9) JΛm(U) = EX(0)

T∫
0

ϕ̂Λm(X(s)) +
r∑
j=1

fj(X(s))U2
j (s)ds

where

ϕ̂Λm(t) = ϕ̂Λm(et1 , . . . , etr ),(4.10)
ϕ̂Λmj(t) = ϕ̂Λmj(e

t1 , . . . , etr ),(4.11)
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fj(t) =
[Djϕ̂

Λ
m(t)]2

ϕ̂Λmj(t)
,(4.12)

Dj =
∂

∂tj
(4.13)

and (X(t), t ∈ [0, T ]) is the radial part of the controlled diffusion with the in-
finitesimal generator (4.8). The process (X(t), t ∈ [0, T ]) satisfies the family of
stochastic differential equations

(4.14) dXk(s)

=
[
− d

4
(r − 1) +

d

2

∑
j 6=k

1
1− exp(Xj(s)−Xk(s))

+ Uk(s,X(s))
]
ds+ dBk(s)

for k = 1, . . . , r, X(0) = (X1(0), . . . , Xr(0)), X1(0) > . . . > Xr(0), and (B1(s), . . .
. . . , Br(s); s ≥ 0) is a standard r-dimensional Brownian motion.

An admissible control at time t is a Borel measurable function of X(t) such
that the family of stochastic differential equations has one and only one strong
solution.

The solution of the stochastic control problem (4.8, 4.9) is described in the
following result [13].

Theorem 4.2. The stochastic control problem described by (4.8, 4.9) has an
optimal control

(4.15) U∗j (s, t) =
−ϕ̂Λmj(t)

2Djϕ̂Λm(t)
g(s)

where j = 1, . . . , r, s ∈ [0, T ], t ∈ a+
Λ , Dj = ∂/∂tj , g is the unique positive solution

of

(4.16) g′ − 1
2
χΛmg −

1
4
g2 + 1 = 0, g(T ) = 0,

and χΛm =
∑
mi(mi + d

2 (r + 1− 2i)) is the eigenvalue of ϕ̂Λm for ∆̃Λ.

The other family of noncompact symmetric spaces are called symmetric balls
[14]. Let Z ' Cn be a complex vector space with a norm | · |. Let

(4.17) Ω = {z ∈ Z : |z| < 1}

be the open unit ball in Z. Ω is called symmetric if its holomorphic automorphism
group

(4.18) GΩ = {g : Ω → Ω biholomorphic}

acts transitively on Ω. Since Ω is a bounded domain, GΩ is a finite dimensional
real Lie group. Let 0 ∈ Ω be the origin. The stabilizer subgroup of GΩ is

(4.19) KΩ = {g ∈ GΩ : g(0) = 0}.
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One family of examples of symmetric balls is the hyperbolic matrix balls. Let
p, q ≥ 1 and define

Ωp,q = {z ∈ Cp×q : Spec(zz∗) < 1}
that is the open unit ball of complex (p×q) matrices with respect to the operator
norm. Then Ω = Ωp,q is a symmetric ball where GΩ = SU(p, q)/center acting
by Moebius transformations and KΩ = S(U(p) × U(q)) acting by z 7→ uzv∗ for
z ∈ Ω, u ∈ U(p), v ∈ U(q) and det(u) det(v) = 1.

Another family of examples is the Lie balls. For n ≥ 3 define Ωn as

Ωn = {z ∈ Cn : z · z < 1 + |z · z|2 < 2}
where z · w is the dot product.

Consider the coordinates t1 > . . . > tr > 0 on the positive Weyl chamber a+
Ω

and the associated coordinates x1 > . . . > xr > 0 defined by xi = sinh2 ti for
= 1, . . . , r. The radial part ∆̃Ω of the Laplace–Beltrami operator ∆Ω [13] is

∆̃Ω = 4
{ r∑
i=1

(
xi(1 + xi)

∂2

∂x2
i

+
(

1 + b

2
+ c+ (1 + c+ b)xi

)
∂

∂xi

)
(4.20)

+ d
∑
i 6=j

xi(1 + xi)
xi − xj

∂

∂xi

}

=
r∑
i=1

(
∂2

∂t2i
+ (2c coth(2ti) + b coth(ti))

∂

∂ti

)
+ 2d

∑
i 6=j

sinh(ti) cosh(ti)
sinh2(ti)− sinh2(tj)

∂

∂ti

where b, c and d are integers that are determined from the symmetric ball.
Let ϕ̂Ωm(x) be the spherical polynomial for the partition m in the coordinates

xi = sinh2(ti). It can be expressed as

(4.21) ϕΩm(x) =
∑
µ≤m

cµmqµ(x)

where qµ is the monomial symmetric function for the partition µ and cµm ≥ 0.
Using the definition of the monomial symmetric functions it follows that

ϕ̃Ωm(x) =
∑

am(i)xi11 . . . xirr

where i = (i1, . . . , ir) and the sum is over distinct r-tuples such that am(i) 6= 0.
For j ∈ {1, . . . , r} define ajm(i) as

ajm(i) =
ij∑r
k=1 ik

am(i)

and

(4.22) ϕ̃Ωmj =
∑

ajm(i)xi11 . . . xirr
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and the sum is over distinct r-tuples such that ajm(i) 6= 0. It easily follows that

ϕ̃Ωm(x) =
r∑
j=1

ϕ̃Ωmj(x) + cΩm

where cΩm is the constant term in ϕ̃Ωm. These spherical polynomials can be con-
structed in an explicit way using the spherical polynomials for the symmetric
cones [13].

The controlled diffusion has the infinitesimal generator

(4.23)
1
2
∆Ω +

r∑
j=1

uj(s, t)
∂

∂tj

where t = (t1, . . . , tr) and ∆Ω is the Laplace–Beltrami operator on Ω.
The cost functional for the stochastic control problem for the partition m is

(4.24) JΩm(U) = EX(0)

T∫
0

ϕ̂Ωm(X(s)) +
r∑
j=1

fj(X(s))U2(s)ds

where

ϕ̂Ωm(t) = ϕ̃Ωm(sinh2 t1, . . . , sinh2 tr),(4.25)
ϕ̂Ωmj(t) = ϕ̃Ωmj(sinh2 t1, . . . , sinh2 tj),(4.26)

fj(t) =
[Djϕ̂

Ω
m(t)]2

ϕ̂Ωmj(t)
,(4.27)

Dj =
∂

∂tj
,(4.28)

and (X(t), t ∈ [0, T ]) is the radial part of the controlled diffusion with the in-
finitesimal generator (4.23). The process (X(t), t ∈ [0, T ]) satisfies the family of
stochastic differential equations

(4.29) dXk(s) =
[
2c coth 2Xk(s) + b cothXk(s)

+ 2d
∑
k 6=j

sinhXk(s) coshXk(s)
sinh2Xk(s)− sinh2Xj(s)

+ Uk(s,X(s))
]
ds+ dBk(s)

for k = 1, . . . , r, X(0) = (X1(0), . . . , Xr(0)), X1(0) > . . . > Xr(0) > 0, X(t) ∈ a+
Ω

and (B1(s), . . . , Br(s); s ≥ 0) is a standard r-dimensional Brownian motion.
An admissible control at time t is a Borel measurable function of X(t) such

that the family of stochastic differential equations (4.29) has one and only one
strong solution.

The solution of the stochastic control problem (4.23, 4.24) is described in the
following result [13].
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Theorem 4.3. The stochastic control problem described by (4.23, 4.24) has an
optimal control

(4.30) U∗j (s, t) =
−ϕ̂Ωmj(t)

2Djϕ̂Ωm(t)
g(s)

where j = 1, . . . , r, s ∈ [0, T ], t ∈ a+
Ω , Dj = ∂/∂tj and g is the unique positive

solution of

(4.31) g′ +
1
2
χΩmg −

1
4
g2 + 1 = 0, g(T ) = 0,

where χΩm =
∑
imi(mi + d(r − i) + 2c+ b) is the eigenvalue of ϕ̃Ωm for ∆̃Ω.
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fondamental simple, Ann. Sci. Ecole Norm. Sup. 44 (1927), 345–467.

[4] T. E. Duncan, Dynamic programming optimality criteria for stochastic systems in Rie-
mannian manifolds, Appl. Math. Optim. 3 (1977), 191–208.

[5] —, Stochastic systems in Riemannian manifolds, J. Optim. Theory Appl. 27 (1979),
399–426.

[6] —, A solvable stochastic control problem in hyerbolic three space, Systems Control Lett.
8 (1987), 435–439.

[7] —, A solvable stochastic control problem in spheres, in: Contemp. Math. 73, Amer.
Math. Soc., 1988, 49–54

[8] —, Some solvable stochastic control problems in compact symmetric spaces of rank one,
in: Contemp. Math. 97 Amer. Math. Soc., 1989, 79–96.

[9] —, Some solvable stochastic control problems in noncompact symmetric spaces of rank
one, Stochastics and Stochastic Rep. 35 (1991), 129–142.

[10] —, A solvable stochastic control problem in the hyperbolic plane, J. Math. Sys. Estim.
Control 2 (1992), 445–452.

[11] —, A solvable stochastic control problem in real hyperbolic three space II, Ulam Quart. 1
(1992), 13–18.

[12] T. E. Duncan and H. Upmeier, Stochastic control problems in symmetric cones and
spherical functions, in: Diffusion Processes and Related Problems in Analysis I, Birkhäu-
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