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Abstract. We deal with controllability of right invariant control systems on semi-simple
Lie groups. We recall the history of the problem and the successive results. We state the final
complete result, with a sketch of proof.

0. Introduction, History of the problem, previous results. In this pa-
per, R and C denote respectively the fields of real and complex numbers. For the
statement of the problem, we refer to the notations defined in the next section 1.
We deal with the transitivity (or controllability) of families of right (or left)
invariant vector fields Γ on a real semi-simple Lie group G, with finite center
whose Lie algebra is denoted by L. Let Γ ⊂ L, Γ is said to be transitive if the
sub-semigroup Γ+ of G generated by {exp tX | X ∈ Γ, t ≥ 0} is all of G.

This question of transitivity is the basic problem of control theory. It is espe-
cially important to solve the case of right invariant systems on semi-simple Lie
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groups for several reasons. One of these reasons is that it allows to produce con-
trollability theorems in more “practical” cases: certain semi-direct product groups
and the so called bilinear ”systems” on Rn (see [BJKS] for an example).

Controllability on other types of Lie groups has been dealt with by several
authors: see for instance [HHL], [L], [HI].

Affine families of vector-fields, i.e. Γ = {A + uB | u ∈ R, (A,B) ∈ L × L}
are especially important in control theory, since control systems often appear
naturally under the form ẋ = (A + uB)x. The techniques that we deal with
are particularly efficient in this case. Our purpose in this paper is, after having
recalled the history of the problem and the successive results, to state a final
version of the theorem (theorem 2 below) and to give a sketch of its proof.

All papers dealing with controllability on semi-simple Lie groups make use of
the extension techniques proposed in the original paper [JK]. In this paper, the
first theorem on simple Lie groups is stated:

Theorem 0 ([JK], Theorem 0, page 156). Let G be a real connected Lie group
with finite center whose Lie algebra L is a real form of a simple Lie algebra LC.
A subset Γ ⊂ L is transitive if :

1) Γ contains a one dimensional space RB where B is strongly regular ,
2) Γ satisfies the “strong rank condition” with respect to B,
3) let s = sup{Re a | a ∈ SpB}. In the case where s 6∈ SpB, there are

a1, a2 ∈ SpB and A1, A2 ∈ Γ such that Re a1 = s = −Re a2 and A1(a1) 6= 0,
A2(a2) 6= 0,

4) in the case where s ∈ SpB, there are A1, A2 ∈ Γ such that Trace(adA1(s)◦
adA2(−s)) < 0.

See [JK] for the “strong rank condition”. There is also theorem 1, page 157 of
the same paper, dealing with the semi-simple case.

In previous papers we have already improved these results in several cases by
showing that assumption 2 (strong rank condition) can be replaced by the weaker,
more natural (and obviously necessary for controllability) simple rank condition,
i.e. the Lie algebra generated by Γ , Lie(Γ ), is equal to L.

1) First, in the paper [GB] this criterion was proved to be sufficient for G =
SL(n,R) with adB real diagonalizable (theorem 2, page 378).

2) Second, the same result was generalized in [GKS] for some classes of simple
Lie groups: when L is a real normal—or split—form of any complex Lie algebra
of type An, Dn, E6, E7, E8 with the same assumption that B is real strongly
regular, i.e. adB is real diagonalizable ([GKS], theorem 1, page 188).

3) Third, the same result was proved to be true for other remaining types G2,
F4, Bn, Cn in [EAG] (theorem 2, page 295):

Theorem 1 [EAG]. Let G be a real connected Lie group with finite center
whose Lie algebra L is a real normal form of a simple Lie algebra LC. Assume
that Γ = {A+ uB | u ∈ R, (A,B) ∈ L× L}, satisfies the following conditions.
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1) B is “real strongly regular”.
2) If A = A0 +

∑
a∈SpB Aa, and a is maximal with respect to B, then

Trace(adA+a ◦ adA−a) < 0.

In the paper [LC] (theorem 5, page 40) the same result is proved for An, Dn

with a slightly weaker assumption on B (i.e. B is only “A-real strongly regular”,
see [LC] for this assumption).

Now, let us state the final result, which is the main result of this paper:

Theorem 2. Let G be a real connected semi-simple Lie group with finite center
and let L be its Lie algebra. Let Γ = {A + uB | u ∈ R}, (A,B) ∈ L × L, satisfy
the following conditions.

(H1) B is “strongly regular”.
(H2) Γ satisfies the rank condition, i.e. Lie(Γ ) = L.
(H3) Let A = A0 +

∑
a∈SpB Aa. If a is maximal or minimal with respect to

B, then Aa 6= 0.
(H4) If a and α ∈ SpB, a is maximal and α = Re a, Lα and La being in the

same simple component of LC, then Trace(adAα ◦ adA−α) < 0.

Then Γ is transitive.

In this paper, we give a sketch of the proof of this final result (Theorem 2
above). This proof is somewhat different from the basic one in [JK]. It is based
upon:

1. Elementary properties of the Lie saturated set LS(Γ ) associated to a subset
Γ of the Lie algebra L of G (see section 2).

2. Properties of the root systems of simple Lie algebras (see proposition 0,
section 1).

The previous properties, together with the extension techniques proposed in
the paper [JK], are used in the last section to prove two key results (lemmas 3,
4). These lemmas are important to produce a new result (theorem 3), which, in
turn, implies obviously the main theorem.

1. Basic definitions and results. Let L be a real semi-simple Lie algebra
and LC = L⊗R C be its complexification. Let σL : LC → LC be the conjugation
associated to L.

A “strongly regular” element B is an element of L such that adC B, the com-
plexification of adB, is diagonalizable, ker adC B is a Cartan subalgebra of LC
and all the nonzero eigenspaces of adC B are one dimensional. Let SpB de-
note the (possibly complex) nonzero spectrum of adC B. If SpB ⊂ R, B is said
to be “real strongly regular”. (Recall, for the purpose of understanding the-
orem 1, that a real normal form of a simple Lie algebra contains real strongly
regular elements). If a ∈ SpB∪{0}, La denotes the complex eigenspace of adC B,
La = Ker(adC B−a Id) and L(a) denotes the real eigenspace, L(a) = (La+La∗)∩L
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(a∗ = conjugate of a). Aa denotes the complex a-component of A and A(a) the
real a-component. Then A = A0 +

∑
a∈SpB Aa.

The set SpB is totally ordered by the lexicographic order over C.

Definition 0. We say that a ∈ SpB, a > 0 (resp. a < 0), is maximal (resp.
minimal) with respect to B if for all b ∈ SpB, b > 0 (resp. b < 0), [La, Lb] = {0}.

Let LC =
⊕k

i=1 Si be the decomposition into simple components, and let
η ⊂ LC be a Cartan subalgebra invariant by σL. We have η =

⊕k
i=1 ηi, where ηi =

η ∩Si is a Cartan subalgebra of Si. We denote by R a root system of LC relative
to ηi and by Ri a root system of Si relative to ηi then R ⊂ η′ = HomC(η,C)
and Ri ⊂ η′i = HomC(ηi,C). Each h ∈ η′i can be canonically extended to η as
η′ =

⊕k
i=1 η

′
i and R is the union of Ri, i = 1, 2, . . . , k.

σL induces an involution σ : η′ → η′ defined by σ(h) = ∗ ◦ h ◦ σL where
∗ : C→ C is the standard conjugation.

Then R and the Ri, 1 ≤ i ≤ k, are stable under the map α → −α, and R is
stable under σ. Moreover if α ∈ R, then nα 6∈ R for n ∈ R \ {1,−1}. We denote
Reα = (α+ σ(α))/2, and Imα =

√
−1(σ(α)− α)/2.

A “strongly regular” element B can also be defined as follows. Let B ∈ L∩ η
be such that the map: R ∪ {0} → C, 0 → 0, R 3 α → α(B) is a bijection. B
defines an order structure on η′ as follows: h1 > h2 if Reh1(B) > Reh2(B) or if
Reh1(B) = Reh2(B) and Imh1(B) > Imh2(B).

This order structure is compatible with the real vector-space structure of η′.
(Caution: ≥ 0 and ≤ 0 do not imply = 0). On R, B induces a total order (for any
α, β ∈ R, α > β, α < β or α = β) having the following property: if α ∈ R and
Reα 6= 0 (resp. Imα 6= 0), then Reα(B) 6= 0 (resp. Imα(B) 6= 0).

Equivalently with definition 0, a root α ∈ R is said to be maximal (resp.
minimal) if α+ β 6∈ R for all β ∈ R and β > 0 (resp. < 0).

If R is irreducible, R contains only one maximal root s and one minimal root
−s. Since the Si, i = 1, 2, . . . , k, are simple, each Ri is irreducible and contains
only one maximal root si.

For all α ∈ R, we denote also by Lα the α-space of LC : Lα = {X ∈ LC :
∀H ∈ η, [H,X] = α(H)X}. Lα here coincides with Lα(B) defined earlier. The
following results are well known (see for instance [B], [H], [W]):

Lemma 0. a) dimC Lα = 1 for all α ∈ R.
b) LC = η ⊕

⊕
α∈R Lα.

c) If α, β ∈ R, [Lα, Lβ ] = {0} if a+ b 6∈ R and α+ β 6= 0, [Lα, Lβ ] = Lα+β if
α+β ∈ R, and [Lα, Lβ ] has dimension 1 and is contained in η if α+β = 0. There
are positive integers p(α, β) and q(α, β) such that α+mβ ∈ R⇔ −p(α, β) ≤ m ≤
q(α, β), where m is an integer.

d) σL(Lα) = Lσ(α) for all α ∈ R. Hence Lα+Lσ(α) is invariant by σL. Define
L(α) = L ∩ (Lα + Lσ(α)). Hence L(σ(α)) = L(α), L(α)⊕R C = Lα + Lσ(α) and
dimR L(α) = 1 if α = σ(α), dimR L(α) = 2 otherwise.
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e) L = η ∩ L⊕
⊕
{L(α) | α ∈ R, Imα(B) ≥ 0}.

f) For all α, β ∈ R, [L(α), L(β)] = L(α + β) + L(α + σ(β)) if α 6= σ(α) and
β 6= σ(β) or else [L(α), L(β)] = L(α+ β) if α = σ(α) or β = σ(β).

Clearly, if X ∈L, by b), e) above, X has unique decompositions: X =X0 +∑
{Xα | α ∈ R} and X = X(0) +

∑
{X(α) | α ∈ R, Imα(B) ≥ 0}, where

X0 = X(0) ∈ η, Xα ∈ Lα, X(α) ∈ L(α) and we have X(α) = Xα if α = σ(α);
X(a) = Xα + σLXα = Xα +Xσ(α) if α 6= σ(α).

Convention. If h ∈ η′, h 6∈ R ∪ {0}, we set Lh = L(h) = {0}.
If h = 0, L(0) denotes a subspace of η ∩ L (depending on the situation) and

L0 denotes a subspace of η. Always, L(σ(h)) = L(h).
Moreover, if α ∈ R and Imα(B) < 0 we set X(α) = X(σ(α)). If h ∈ η′,

h 6∈ R ∪ {0}, X(h) = 0. If h = 0, X(0) denotes an element of η ∩ L. Always,
X(h) = X(σ(h)).

Lemma 1. Let X ∈ L(α) \ {0} and Y ∈ L. Let B be “strongly regular”. For
any β ∈ R such that Y (β) 6= 0 and α + β ∈ R ∪ {0}, we have: If α = σ(α) or if
Y (α−σ(a)+β) = 0 then [X,Y ](α+β) 6= 0. If α 6= σ(α) and Y (α−σ(α)+β) 6= 0,
the set of t ∈ R such that [et adB(X), Y ](α+β) 6= 0 (resp. [X, et adB(Y )](α+β) 6=
0) is the complement of a discrete subset of R (possibly empty).

The proof is elementary. We leave it to the reader.

Proposition 0. Let Max(R) be the set of maximal roots of R, R′ the subset
of roots α such that there exists an s ∈ Max(R) for which α + s or α− s is also
a root. Set R′′ = R \ (R′ ∪ ±Max(R)). Then:

1) If α, β ∈ R′, α, β have the same sign and α+β ∈ R, then α+β ∈ ±Max(R).
2) If α ∈ R′, β ∈ R′′ and α + β ∈ R, then α + β ∈ R′ and α, α + β have the

same sign.
3) If α, β ∈ R′′ and α+ β ∈ R, then α+ β ∈ R′′.

The proof (elementary) can be found in [J]. See also [EA].

R e m a r k 0. The sets R′ and R′′ are stable under the map α→−α. They are
not conjugation-stable in general.

Corollary 0. (i) Assume that α, γ ∈ R′, β ∈ R′′, α, γ have the same sign
and α+ β ∈ R, α+ β + γ ∈ R. Then α+ β + γ is maximal or minimal.

(ii) Assume that α ∈ R′, β, γ ∈ R′′, α+ β + γ ∈ R and moreover that at least
one of the two linear forms α + β or β + γ is a root. Then α + β + γ ∈ R′ and
α, α+ β + γ have the same sign.

2. Properties of the Lie saturated set LS(Γ ). Recall that for Γ ⊂ L,
LS(Γ ) is the largest subset of Lie(Γ ) such that closure(LS(Γ )+) = closure(Γ+).
A necessary and sufficient condition for controllability of Γ is just LS(Γ ) = L
(see [JK]).
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In the rest of the paper, we will consider special subsets Γ of L, with the
following properties:

a) LS(Γ ) is a closed convex cone.
b) If ±X ∈ LS(Γ ) and Y ∈ LS(Γ ), then et adX(Y ) ∈ LS(Γ ) for all t ∈ R.
c) If ±X and ±Y belong to LS(Γ ), then ±[X,Y ] ∈ LS(Γ ).
d) LS(Γ ) generates L as a Lie algebra.
e) Γ contains ±B, where B ∈ L∩ η, B is a fixed strongly regular element and

the order on η′ is relative to B.
f) If ±X ∈ LS(Γ ), then LS(Γ ) ⊃ ⊕{L(α) | α ∈ R,X(α) 6= 0}.
g) For all X ∈ L, let %+(X) = max{Reα(B) | α ∈ R,α > 0, X(α) 6= 0} and

%−(X) = min{Reα(B) | α ∈ R,α < 0, X(α) 6= 0}, for B ∈ Γ defined in e). Set
R(B) = {α(B) | α ∈ R}.

If X ∈ LS(Γ ) and if %+(X) 6∈ R(B) (resp. %−(X) 6∈ R(B)) or if %+(X) =
%(B) ∈ R(B) (resp. %−(X) = %(B) ∈ R(B)) and ±X(%) ∈ LS(Γ ), then: L(α) ⊂
LS(Γ ) for all α ∈ R such that X(α) 6= 0 and Reα(B) = %+(X) (resp. %−(X)).

h) Let rm = sup{|Re si(B)| | (Si + σL(Si)) ∩ L 6⊂ LS(Γ )}, if rm = %(B) ∈
R(B), then L(%) ⊂ LS(Γ ) and L(−%) ⊂ LS(Γ ).

i) If s ∈ Max(R), there exists an X+ ∈ LS(Γ ) such that X+(s) 6= 0 and an
X− ∈ LS(Γ ) such that X−(−s) 6= 0.

Comments. Properties a) to i) are the only properties of LS(Γ ) that we are
going to use in the proof of Theorem 2. Note that they are not independent.

From the general classical theory of [JK], properties a), b), c) are always
satisfied for the Lie saturated set LS(Γ ) of any Γ ⊂ L. Property d) is the obvious
classical necessary condition for controllability.

Property i) comes from the assumption (H3) of our theorem 2.
Property f) is an easy consequence of the property e), which states that Γ con-

tains a strongly regular element and its opposite (see proposition 11(d), page.173
of [JK] for a proof).

Property g) is also stated in proposition 11 (a, b, c), page 173 of [JK]. It is an
easy consequence of the general properties of LS(Γ ).

Property h) is, as in [JK], a consequence of assumption (H4) of our theorem 1
and of the fact that the Lie group G has a finite center. Let us recall briefly what
happens:

Consider A∗ = A0 +
∑
{A(α) | |Reα(B)| ≤ rm}. A∗ is in LS(Γ ) because A ∈

LS(Γ ), LS(Γ ) is convex and L(γ) ⊂ LS(Γ ) for all γ ∈ R such that |Re γ(B)| > rm.
Assume that rm = %(B) ∈ R(B). Then % 6= 0, % ∈ Ri for some i, 1 ≤ i ≤ k.
We claim that Si = σL(Si) : σL being an anti-automorphism of LC, σL(Si) is a
simple ideal of LC. Since σL(L%) = Lσ(%) = L%, so σL(Si)∩Si ⊃ L% 6= {0}. Thus
σL(Si) = Si. If rm 6= Re si(B), then Re si(B) > rm, Si ∩L = (Si +σL(Si))∩L ⊂
LS(Γ ). Additionally L(%), L(−%) ⊂ LS(Γ ).

If rm = Re si(B), by assumption (H4), trace(adA(%) ◦ adA(−%)) < 0, which
implies that Z = A(%) + A(−%) = A∗(%) + A∗(−%) is a compact vector field (i.e.
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the set {exp(tZ) | t ∈ R} is relatively compact in G).
Since the projection G → AdG is a finite covering map, to show that Z ∈ L

is compact, it is sufficient to prove that it is compact in AdG. Let us recall some
facts. Let τ : LC → LC be the unique Weyl anti-involution commuting with σL.
Then:

(i) τ(Lα) = L−α for all α ∈ R,
(ii) the hermitian form: Z ∈ LC → Kil(Z, τ(Z)) is negative definite,
(iii) if Z ∈ LC and τ(Z) = Z, Z is compact in AdC G, the adjoint group of LC.

Take any X ∈ L(%) \ {0} ⊂ L% \ {0}, any Y ∈ L(−%) \ {0} ⊂ L−% \ {0}
such that Kil(X,Y ) < 0. Set Z = X + Y , τ(X) ∈ L−%. So, τ(X) = cY where
c ∈ C \ {0}. Since τ ◦ σL = σL ◦ τ and σL(X) = X, we have τ(X) = τ ◦ σL(X) =
σL ◦ τ(X) = c∗Y . So c∗, the conjugate of c, is equal to c, and c is real. Also, by
(ii) above, 0 > Kil(X, τ(X)) = cKil(X,Y ). Hence, c > 0.

If c = 1, τ(Z) = Z and so Z is compact.
If c 6= 1, let ζ = −1/2 log c and H = [X,Y ], then [H,X] = hX and [H,Y ] =

−hY where h ∈ R \ {0}. Let Z1 = e(ζ/h) adH(Z). Then it is easy to check that
τ(Z1) = Z1. Hence Z1 is compact. Since Z is conjugate to Z1, it is also compact
in AdG.

By proposition 11(b), page 173 of [JK] again, A(%) ∈ LS(Γ ) and A(−%) ∈
LS(Γ ). Apply these considerations to X = A(%), Y = A(−%), Z = X + Y .
Because Z is compact, the closure of the semigroup {exp(tZ) | t ≥ 0} contains
the one-parameter group {exp(tZ) | t ∈ R}. Hence by the definition of LS(Γ ),
±Z ∈ LS(Γ ). Property f) implies that L(%) ⊂ LS(Γ ), L(−%) ⊂ LS(Γ ).

Hence the assumptions of our theorem 2 plus the general properties of LS(Γ )
imply that for the “system” Γ of theorem 2, all the properties a) to i) above hold.

Therefore, theorem 2 follows from the following result.

Theorem 3. If Γ is a subset of L satisfying conditions a) to i) above, then
LS(Γ ) = L and Γ is transitive.

3. Sketch of the proof of the main result. In this section we show theorem
3 which, as explained in section 2, implies our main result.

S k e t c h o f p r o o f o f t h e o r e m 3. Assume that LS(Γ ) 6= L. We define:

ν = {i | 1 ≤ i ≤ k,∃α ∈ Ri, L(α) 6⊂ LS(Γ )}
= {i | (Si + σL(Si)) ∩ L 6⊂ LS(Γ )}.

Let rm = max{Re si(B) | i ∈ ν}. Let µ = {i ∈ ν | Re(si(B)) = rm}. All the
subalgebras ⊕

i∈µ
Si,

⊕
i∈ν

Si,
⊕
i 6∈µ

Si,
⊕
i 6∈ν

Si

are stable under σL. Let us denote by L̂ the semi-simple real subalgebra of L,
L ∩

(⊕
i∈µ Si

)
. Then L̂ is not contained in LS(Γ ) and L̂ ⊗R C has the algebra



206 R. EL ASSOUDI ET AL.

η̂ =
⊕

i∈µ ηi as a Cartan subalgebra. We have σL(η̂) = η̂ and the set of roots
of L̂ ⊗R C with respect to η̂ is the set of restrictions to η̂ of elements of R̂ =⋃
i∈µRi⊂R. Max(R̂) for the order induced by η′ is denoted by M . Let R̂′ and

R̂′′ be the subsets defined in proposition 0, relative to L̂, η̂, R̂ and the order
induced on (η̂)′=HomC(η̂,C) by η′. The set R̂ is stable under σ and by the map:
α→ −α. The sets R̂′ and R̂′′ are stable under α→ −α.

Finally, R̂′ =
⋃
i∈µR

′
i and R̂′′ =

⋃
i∈µR

′′
i .

For the proof of theorem 3, we need some lemmas.

Lemma 2. Assume that ±X ∈ LS(Γ ), Y ∈ LS(Γ ) and X 6= 0. If ± ad2X(Y ) ∈
LS(Γ ) then L(α) ⊂ LS(Γ ) for all α ∈ R such that [X,Y ](α) 6= 0.

The proof is elementary. It only makes use of the properties b), c), a), f) of
LS(Γ ). (See [EAGK]).

Lemma 3. i) Any of the following three assumptions below implies that L(α) ⊂
LS(Γ ):

1) α ∈ R and |Reα(B)| > rm,
2) α ∈ ±M ,
3) α ∈ R, |Reα(B)| = rm and there is an Y ∈ LS(Γ ) such that Y (α) 6= 0.
ii) If α ∈ R̂′ and if there exists an Y ∈ LS(Γ ) such that Y (α) 6= 0, then

L(α) ⊂ LS(Γ ).

The proof uses lemma 2 and the properties (given in proposition 0 and corol-
lary 0) of the sets R̂, R̂′, R̂′′ defined above. (See [EAGK] for details.)

Lemma 4. If α ∈ ±M∪R̂′ and L(α) ⊂ LS(Γ ) then, for Y ∈ LS(Γ ), L(α+β) ⊂
LS(Γ ) for all β ∈ R such that Y (β) 6= 0.

The proof of this lemma is very difficult and technical because the sets M , R̂′

and R̂′′ are not stable by σ in general. In the proof all possible different cases
are examined. Note that the proof is much simpler in the case where L is a real
normal form, since for every α ∈ R, α = σ(α), which implies that several difficult
cases disappear (see [EAGK]).

Now, let I be the subalgebra of L̂ generated by the L(α) such that α ∈ ±M∪R̂′
and L(α) ⊂ LS(Γ ). Assume that we have shown that I is in fact an ideal of L̂.
Then I ⊗R C is an ideal of L̂ ⊗R C =

⊕
i∈µ Si and I ⊗R C =

⊕
{Si | i ∈ µ

and Si ∩ (I ⊗R C) 6= {0}}. For all i ∈ µ, by lemma 3, i), L(si) ⊂ I and so
{0} 6= Lsi ⊂ Si ∩ (I ⊗R C). Hence I = L̂ . This yields a contradiction since
I ⊂ LS(Γ ) by its definition and the property c) of LS(Γ ), but L̂ is not contained
in LS(Γ ).

To see that I is an ideal of L̂, notice that L is generated by the X(α) such that
X ∈ LS(Γ ), and α ∈ R (because Γ contains ±B, B strongly regular). Also, Si
is generated by the Xα such that α ∈ Ri and X ∈ LS(Γ ). Hence, L̂ is generated
by the X(α) such that X ∈ LS(Γ ), X(α) 6= 0, α ∈ R̂. Therefore I is an ideal of
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L̂ provided that for any α ∈ ±M ∪ R̂′ such that L(α) ⊂ LS(Γ ), and any β ∈ R̂
such that there exists an X ∈ LS(Γ ), X(β) 6= 0 we have [L(α), X(β)] ⊂ I.

If β or σ(β) belongs to ±M ∪ R̂′, then lemma 3, i), ii) shows that L(β) =
L(σ(β)) ⊂ LS(Γ ), since X(β) = X(σ(β)) 6= 0. Hence L(β) ⊂ I and since I is an
algebra, [L(α), L(β)] ⊂ I.

Assume that β and σ(β) ∈ R̂′′. If α ∈ ±M we see, by definition of R′′, that
neither α + β nor α + σ(β) is a root. Since R̂′′ = −R̂′′ and ±M ∩ R̂” = ∅ we
deduce that α+β 6= 0 and α+σ(β) 6= 0. Then [L(α), L(β)] = {0} ⊂ I. If α ∈ R̂′,
then α + β 6= 0 and α + σ(β) 6= 0 because R̂′ = −R̂′ and R̂′ ∩ R̂” = ∅. Also,
[L(α), L(β)] 6= {0} implies that at least one of the forms α + β, α + σ(β) is a
root. By proposition 0-2), if α + β ∈ R (resp. α + σ(β) ∈ R) then α + β ∈ R̂′
(resp. α + σ(β) ∈ R̂′). Since L(α) ⊂ LS(Γ ), α ∈ R̂′, X(σ(β)) = X(β) 6= 0
and X ∈ LS(Γ ), lemma 4 shows that L(α + β) + L(α + σ(β)) ⊂ LS(Γ ). Hence,
L(α+β)+L(α+σ(β)) ⊂ I. But [L(α), L(β)] = L(α+β)+L(α+σ(β)) by lemma
0-f). This ends the proof of theorem 3.
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