
GEOMETRY IN NONLINEAR CONTROL
AND DIFFERENTIAL INCLUSIONS

BANACH CENTER PUBLICATIONS, VOLUME 32
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1995

SYSTEMS OF RAYS IN THE PRESENCE
OF DISTRIBUTION OF HYPERPLANES

S. JANECZKO

Institute of Mathematics, Warsaw University of Technology
Pl. Politechniki 1, 00-661 Warszawa, Poland

Abstract. Horizontal systems of rays arise in the study of integral curves of Hamiltonian
systems vH on T ?X, which are tangent to a given distribution V of hyperplanes on X. We inves-
tigate the local properties of systems of rays for general pairs (H,V ) as well as for Hamiltonians
H such that the corresponding Hamiltonian vector fields vH are horizontal with respect to V .
As an example we explicitly calculate the space of horizontal geodesics and the corresponding
systems of rays for the canonical distribution on the Heisenberg group. Local stability of systems
of horizontal rays based on the standard singularity theory of Lagrangian submanifolds is also
considered.

Introduction. Let X be a differentiable manifold. Let ω be a differential
1-form on X, and V a distribution of tangent hyperplanes in T ?X annihilated
by ω. We consider the Hamiltonian systems vH , with Hamiltonian H on T ?X,
which are horizontal with respect to V , i.e. the projections of the bicharacteristics
of vH onto the base of T ?X are tangent to V . We introduce the notion of the
space of geodesics-rays as the reduced symplectic space M of bicharacteristics
on H−1( 1

2 ) equipped with the reduced symplectic form µ defined by the rela-
tion ωX |H−1( 1

2 ) −π?µ = 0, where ωX is the canonical Liouville form on T ?X

and π is the projection onto M along bicharacteristics (cf. [9]). Any Lagrangian
submanifold L of (M,µ) is called a system of rays. Its counterimage π−1(L) repre-
sents an optical system of rays in the phase space (T ?X,ωX) of geometric optics.
The graph of π is a Lagrangian submanifold in the product symplectic structure
(T ?X ×M,π?2µ − π?1ωX), where πi are the projections of the cartesian product
T ?X×M . Then we have a generating function G for graphπ (cf. [6]), which helps
to determine the structure of the counterimage π−1(L). Now the stability notion
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for an optical system of rays is defined by the deformation group of Lagrangian
submanifolds in M . Then combining the deformed Lagrangian submanifolds with
the structure of the fixed (i.e. undeformed) function G we impose on the stability
problem the properties of the eikonal equation itself (cf. [4]).

In Section 1 we describe the properties of the function G for horizontal Hamil-
tonian systems. The integrable and nonintegrable cases of ω are discussed and the
relation of G to the distance function (measured along the horizontal curves of V )
is described. It is shown how to make use of generating functions and generating
families of functions to investigate systems of rays in T ?X gliding along horizontal
curves. For general pairs (V,H), where H is a geodesic Hamiltonian, the space of
locally shortest paths (normal geodesics, cf. [14]), horizontal with respect to V is
investigated. The differences between integrable and nonintegrable cases of V are
described. Section 2 is devoted mostly to computational examples. We calculate
explicitly (in contrast to [16]) the space of geodesics and the generating functions
G for R3 endowed with the contact distribution. The same is done for a distri-
bution on R3 annihilated by the singular contact form dz + y2dx. By this result
we obtain the exact form of geodesics—they are liftings of circles and lines in
the nonsingular contact case. Finally in Section 3, using the generating function
G we introduce the stability notion for optical systems of rays and find stable
systems of rays in the above mentioned 3-dimensional example of the Heisenberg
group. An extension of the classification of local models of systems of rays to the
corresponding classification of their evolutions is discussed.

1. Systems of geodesics. Let X be a smooth manifold. We consider the
cotangent bundle T ?X with the cotangent bundle projection πX : T ?X → X.
We assume dimX = n + 1. By V ⊂ TX we denote a smooth distribution of
hyperplanes on X, i.e. a subbundle of TX, Vq ⊂ TqX. In what follows we restrict
our considerations to distributions of codimension one. Locally V is annihilated
by a 1-form,

ω = dqn+1 +
n∑
i=1

Ai(q)dqi,

where {qi} are coordinates on X.
A smooth curve γ : (a, b) → X is called horizontal if dγ

dt (t) ∈ Vγ(t) for all
t ∈ (a, b). Let H : T ?X → R be a smooth function. We say that the Hamiltonian
vector field vH =

∑n+1
i=1 ( ∂H∂pi

∂
∂qi −

∂H
∂qi

∂
∂pi

), with Hamiltonian H, is horizontal if

(πX)?vH |p̄∈ VπX(p̄)

for all p̄ ∈ T ?X.
By HV we denote the space of horizontal Hamiltonian vector fields. An easy

check shows that if vH ∈ HV , then locally

H(q, p) = h(q, p′1, . . . , p
′
n)
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for some smooth function h : Rn+1 ×Rn → R and

p′i = pi −Ai(q)pn+1.

Let vH ∈ HV and H depend on p′i quadratically, i.e. H(q, p) = 1
2

∑n
i,j=1 g

ij(q)p′ip
′
j

for some smooth functions gij(q), and let V be a nonintegrable distribution. Then
the integral curves of vH are called sub-Riemannian geodesics (cf. [13]) and H
is called a sub-Riemannian Hamiltonian. The sub-Riemannian Hamiltonian H
defines sub-Riemannian geometry provided gij(q) is nondegenerate on X.

Consider the hypersurface H−1( 1
2 ). This is a coisotropic submanifold of T ?X

(cf. [15]). By the canonical symplectic reduction procedure [9] we have the sym-
plectic space of geodesics on H−1( 1

2 ), M , equipped with the canonical symplectic
form µ. In fact we have the projection π along bicharacteristics of H−1( 1

2 ),

π : H−1

(
1
2

)
→M,

and the symplectic form µ on M is defined uniquely by the Liouville form ωX on
T ?X and the reduction relation formula,

(1) π?µ = ωX |H−1( 1
2 ).

Now we construct the product symplectic space

Θ = (T ?X ×M,π?2µ− π?1ωX),

where πi are the canonical projections of the cartesian product T ?X ×M . By
(1), graphπ is obviously a Lagrangian submanifold of Θ. Let (r, s) be Darboux
coordinates on M , i.e. M is diffeomorphic to some cotangent bundle T ?N with
ωN =

∑n
i=1 dsi ∧ dri, and graphπ is locally generated by the generating function

G : X ×N → R,

graphπ

=
{

(p̄; r, s) : −∂G
∂qi

(q, r) = pi,
∂G

∂rj
(q, r) = sj , i = 1, . . . n+ 1, j = 1, . . . , n

}
.

We notice that G is a complete solution of the Hamilton-Jacobi equation

H

(
q,−∂G

∂qi
(q, r)

)
≡ 0.

We see that the above introduced generating function G reconstructs the space
of geodesics which are horizontal with respect to V ; we call this space the space
of horizontal geodesics. A smooth function G : X ×N → R is called a horizontal
genrating function if it defines the space of horizontal geodesics for some horizontal
Hamiltonian system. This Hamiltonian system is determined by the inclusion of
the hypersurface H−1( 1

2 ) in the following form:

X ×N 3 (q, r)→
(
q,−∂G

∂q
(q, r)

)
∈ T ?X.
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Instead of speaking of horizontal Hamiltonian systems we will consider the space
of horizontal generating functions.

By ∆j [G](q, r) we denote the determinant

∆j [G](q, r) = (−1)j+1det


∂2G
∂r1∂q1

. . . ĵ . . . ∂2G
∂r1∂qn+1

...
...

...
∂2G

∂rn∂q1
. . . ĵ . . . ∂2G

∂rn∂qn+1

 .

Proposition 1.1. The smooth function G : X × N → R is a horizontal
generating function if and only if G satisfies the equation

(2) ∆n+1[G] +
n∑
j=1

Aj(q)∆j [G] = 0.

P r o o f. A geodesic γ(r,s)(t) = (q1(t; r, s), . . . , qn+1(t; r, s)) as a curve in X is
defined by the equations

(3)
∂G

∂ri
(γ(r,s)(t), r)− si ≡ 0, i = 1, . . . , n.

It has to be horizontal, so it fulfils the equation

(4) q̇n+1(t; r, s) +
n∑
i=1

Ai(γ(r,s)(t))q̇i(t; r, s) ≡ 0.

Differentiating (3) with respect to t we obtain a system of equations for the
tangent vector to the geodesic:

n+1∑
j=1

∂2G

∂ri
qj(γ(r,s)(t), r)q̇j(t; r, s) ≡ 0, i = 1, . . . , n.

(4) with these equations gives the condition for the vanishing of the determi-
nant of the extended system of equations. The expansion of this determinant
gives equation (2). It is straightforward that any solution of (2) is a horizontal
generating function.

R e m a r k 1.2. Until now we have not used the property that ω is integrable
or not. If ω is integrable then Ai depend on q′ = (q1, . . . , qn) and there exists a
smooth function q′ → S(q′) such that ω = dF , where F (q) = qn+1 + S(q′). Then
we take new symplectic coordinates,

(q, p)→ (q′, qn+1 + S(q′), p′, pn+1),

and reduce the problem to the hypersurface qn+1 + S(q′) = C (where C is con-
stant) with Hamiltonian

H̃(Q1, . . . , Qn, P1, . . . , Pn) = H(Q1, . . . , Qn, C − S(Q1, . . . , Qn), P1, . . . , Pn).

Any Lagrangian subvariety L of (T ?N,µ = ωN ) is called a system of rays. The
counterimage of L, π−1(L), is a Lagrangian subvariety of T ?X built by geodesics.
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Let L be generated by a generating family F : N × Rk → R, (r, λ) → F (r, λ).
Then the corresponding generating family for π−1(L) has the form

R̃(q, ν) = F (ν1, ν2)−G(q, ν1),

where ν = (ν1, ν2) are the Morse parameters of R̃ (for the theory of Morse families
see e.g. [15]).

R e m a r k 1.3. Let us fix s = s̄ in formula (3). We assume q̄ = γ(r,s̄)(0)
does not depend on r. Then the family F (r, λ) =

∑n
i=1 s̄iri generates a bunch

of rays through q̄. For simplicity we take F ≡ 0 (i.e. we put s̄i = 0). Then the
corresponding generating family of this bunch of rays in T ?X is

R̃(q, λ) = −G(q, λ).

The level sets of the family R̃(q, λ) form the wave-front evolution corresponding
to the system of rays generated by this family. Implicitly, this function represents
the distance from the origin (say q̄ = 0) to the point q along the geodesic. It
is obtained by elimination of the parameters (λ) in the equations ∂G

∂λi
(q, λ) = 0,

i = 1, . . . , k, namely,

d(0, q) = −G(q, λ)|{ ∂G∂λi (q,λ)=0, i=1,...,k}.

Now we consider a horizontal curve γ(t). We can choose it to be normalized:

γ̇(t) =
(

1, φ2(t), . . . , φn(t),−
n∑
i=1

Ai(γ(t))φi
)
, φ1 ≡ 1.

Let us fix t = t0. Then all geodesics γ(r,s)(t) in X with the same tangent vector
γ̇(t0) passing through γ(t0) satisfy the system of 2n− 1 equations,

(5)
{
φj(t0)− q̇j(t0; r, s) = 0,
∂G
∂ri

(γ(t0; r, s), r)− si = 0,

where i = 1, . . . , n, j = 2, . . . , n and γ̇(r,s)(t) = (q̇1(t; r, s), . . . , q̇n+1(t; r, s)).
Any solution of (5) is a one-dimensional curve in (r, s) parameters. The cor-

responding curve in the cotangent space T ?γ(t0)X is given by the equations

pi =
∂G

∂qi
(γ(t0), r),

where (r, s) satisfies (5).
Let I 3 t→ β(t) be a horizontal curve. Then to each t ∈ I we have attached

the one-parameter family of geodesics

τ → γ

(
τ ; r,

∂G

∂r1
(β(t), r), . . . ,

∂G

∂rn
(β(t), r)

)
,

gliding along the horizontal curve β. The counterimage of this family in T ?X
appears to be an isotropic subvariety (cf. [8]).
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Let H be a general Hamiltonian on T ?X and let V be a distribution on X as
before. By

K̃ =
{

(q, p) ∈ T ?X;K(q, p) =
∂H

∂pn+1
(q, p) +

n∑
i=1

Ai(q)
∂H

∂pi
(q, p) = 0

}
we denote the space of tangent directions to V . We write Y = H−1(0) and we
assume that Y and K̃ intersect transversally along the 2n-dimensional surface
W = Y ∩ K̃. Making use of π we have a smooth map

ρ = π|W : W →M

into the 2n-dimensional space of rays defined by H. The image of ρ is called the
space of tangent rays. These are integral curves of vH which are tangent at some
point (∈W ) to the distribution V .

Proposition 1.4. Generically the spaces of tangent directions are classified
by the Whitney stable mappings R2n → R2n, i.e. for a generic pair (H,V ), the
mapping ρ is locally equivalent (right-left equivalent [10]) to one of the mappings

(x1, . . . , x2n)→ (xk+1
1 + x2x

k−1
1 + . . . x1xk, x2, . . . , x2n), 1 ≤ k ≤ 2n.

The only difference between this proposition and the result quoted in [2] (p. 4)
is that we are a step further in the flag of exceptional submanifolds defined by
the subsequent Poisson brackets. The space of singular points of ρ corresponds,
in [2], to the set of asymptotic directions (if V is integrable then dS = ω and
K = {H,S}, where S is a smooth function on X). The set of singular points of
ρ is described by

H = 0, K = 0, {H,K} = 0,
and determines the rays of M which are tangent to W .

The biasymptotic directions are described by

H = 0, K = 0, {H,K} = 0, {H, {H,K}} = 0,

and the triple-asymptotic directions (which correspond to the biasymptotic ones
if K is a general hypersurface of X) by

H = 0, K = 0, {H,K} = 0,
{H, {H,K}} = 0, {H, {H, {H,K}}} = 0.

Let us write H in the convenient form H(q, p) = H̄(q, p̄, p̄n+1) for some smooth
function H̄ : R2n+2 → R and p̄ = (p̄1, . . . , p̄n), p̄i = pi−Ai(q)pn+1, p̄n+1 = pn+1,
i = 1, . . . , n. Then the set of critical points of ρ is described by

H̄ = 0,
∂H̄

∂p̄n+1
= 0,

{
H̄,

∂H̄

∂p̄n+1

}
= 0.

We find{
H̄,

∂H̄

∂p̄n+1

}
= pn+1

n∑
i,j=1

∂H̄

∂p̄i

∂2H̄

∂p̄j∂p̄n+1
εij +

n∑
i=1

(
∂H̄

∂p̄i

∂2H̄

∂q̄i∂p̄n+1
− ∂H̄

∂q̄i

∂2H̄

∂p̄i∂p̄n+1

)
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+ pn+1

n∑
j=1

(
∂H̄

∂p̄j

∂2H̄

∂p̄n+1∂p̄n+1
− ∂H̄

∂p̄n+1

∂2H̄

∂p̄j∂p̄n+1

)
Aj,n+1

+
n∑
j=1

(
∂H̄

∂q̄n+1

∂2H̄

∂p̄j∂p̄n+1
− ∂H̄

∂p̄j

∂2H̄

∂p̄n+1∂q̄n+1

)
Aj ,

where Ai,j = ∂Ai
∂qj ,

[Xi, Xj ] = εij
∂

∂qn+1
= (Ai,j −Aj,i +AiAj,n+1 −AjAi,n+1)

∂

∂qn+1
,

and the vector fields Xi = ∂
∂qi −Ai

∂
∂qn+1 , i = 1, . . . , n, generate V .

Let V be integrable. Then εij = 0, and ∂H̄
∂p̄n+1

= {H̄, S} for some smooth
function S : X → R, dS = dqn+1 +

∑n
i=1Aidq

i. Then W =
⋃
tΩt is fibered by

Ωt : H = 0, S = t, {H,S} = 0.

Let Ucp̃ denote the symplectic polar of the tangent space Tp̃Ut, where Ut = {p̃ ∈
T ?X;H(p̃) = 0, S(q) = t}, p̃ = (q, p), dimUcp̃ = 2 (we view S as being lifted to
T ?X). On each Ωt of W we have the following vector field of tangent directions
(cf. [2]):

X̃p̃ = U
c
p̃ ∩ Tp̃Ωt.

If H is a geodesic Hamiltonian, then the integral curves of X̃ are locally short-
est curves, horizontal with respect to V , so they are surface geodesics on the
leaves of the foliation defined by S. If V is nonintegrable, then the correspond-
ing vector field X̃ on W is obtained by repeating the above construction for the
expπX(p̃)(VπX(p̃))-hypersurface of X, at each point p̃ ∈W . expq being defined on
the fibre TqX of the tangent bundle TX (by the geodesic Hamiltonian H).

Let ∆ be the set of critical points of ρ. ByΣ ⊂M we denote the corresponding
set of critical values of ρ. On the nonsingular part of ∆ we have the field of
directions

Ỹ = W
c
p̃ ∩ Tp̃∆.

The integral curves of Ỹ are called special geodesics of (H,V ). These curves
project through π onto bicharacteristics of Σ in (M,µ). The special geodesics are
integral curves of the Hamiltonian vector field v

Σ̃
with Hamiltonian (see [2], p. 4)

Σ̃ = H̄

{
∂H̄

∂p̄n+1
,

{
H̄,

∂H̄

∂p̄n+1

}}
+

∂H̄

∂p̄n+1

{
H̄,

{
∂H̄

∂p̄n+1
, H̄

}}
.

This Hamiltonian is not necessarily quadratic with respect to the p-coordinates.

Example 1.5. We consider the contact distribution dz − xdy = 0, and the
Hamiltonian H(q, p) = 1

2 ((1 + z2)p2
1 + (p2 + xp3)2 + p2

3 − 1), q = (x, y, z). After
straightforward calculations we obtain W = {(q, p); (1 + z2)p2

1 + p2
2 = 1, p3 = 0}
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and
∆ = {(q, p); (1 + z2)p2

1 + p2
2 = 1, p3 = 0, zp1 = 0}.

Thus the corresponding Hamiltonian for the space of special geodesics is

Σ̃(q, p) = p2
1p

2
3 + p2

1p3(p2 + xp3)x− 2zp1p
2
3(p2 + xp3)

− 1
2
p2

1((1 + z2)p2
1 + (p2 + xp3)2 + p2

3 − 1).

Assume that W = Y ∩K̃ is a coisotropic submanifold of T ?X, i.e. {H,K} = 0
on W . Then at each point p̃ ∈ W the corresponding bicharacteristic passing
through p̃ is tangent to W . Thus W projects, by ρ, into the hypersurface Z
of M . In this case systems of horizontal rays are defined by those Lagrangian
submanifolds of M which are also submanifolds of Z (if Z is interpreted as an
eikonal equation then these systems of rays are called bioptical).

Example 1.6. As an example we consider the geodesic Hamiltonian of the
form

H(q, p) =
1
2

( n∑
i,j=1

gij(q)(pi −Ai(q)pn+1)(pj −Aj(q)pn+1) + p2
n+1

)
− 1

2
,

where gij do not depend on qn+1. We find easily that K = pn+1 and {H,K} = 0
on

W =
{

(q, p);
n∑

i,j=1

gij(q)pipj = 1, pn+1 = 0
}
.

Hence W is coisotropic and the systems of horizontal rays are built by (n − 1)-
parameter families of two-dimensional bicharacteristics of W . They project into
Lagrangian submanifolds of the symplectic reduced space of bicharacteristics of Z.

In the above sense of genericity, the pairs (H,V ) with horizontal Hamiltonians
H are highly nongeneric; however, they are interesting from the point of view of
applications in control theory.

2. Some exact calculations. As a representative example of a horizontal
Hamiltonian system appearing in the literature (although nongeneric), we con-
sider the 3-dimensional Heisenberg group H (cf. [16]) endowed with the contact
(nonholonomic) distribution annihilated by the 1-form

ω = dz − xdy.

We consider the horizontal Hamiltonian system of the form

H(q, p) =
1
2

(p2
1 + (p2 + xp3)2), gij = δij .

To study the local properties of systems of rays provided by this Hamiltonian
we have to cover the space of horizontal geodesics M with four charts π(Ui), i =
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1, . . . , 4; Uj = {pj −Ajp3 > 0}∩{H−1( 1
2 )}, U2+j = {pj −Ajp3 < 0}∩{H−1( 1

2 )},
j = 1, 2; A1 ≡ 0, A2 = −x.

Without loss of generality we can work with two representative charts Ξi =
π(Ui), i = 1, 2, where the open set U1 on H−1( 1

2 ) is parameterized by (p2, p3, q)
and the open set U2 is parameterized by (p1, p3, q). Now we can calculate π in
both distinguished charts:

Proposition 2.1. A. There is a system of Darboux coordinates on Ξ1 in which
µ = ds1 ∧ dr1 + ds2 ∧ dr2 and π|U1 : (p2, p3, q) → (s1, s2, r1, r2) is given by the
equations

r1 = − p2,

r2 = − p3,

s1 = y +
1
p3

[(1− (p2 + xp3)2)
1
2 − (1− p2

2)
1
2 ],

s2 = z +
x

p3
(1− (p2 + xp3)2)

1
2 − 1

2p2
3

[arcsin(p2 + xp3)

+ (p2 + xp3)(1− (p2 + xp3)2)
1
2 − arcsin p2 − p2(1− p2

2)
1
2 ].

B. There is a system of Darboux coordinates on Ξ2 in which µ = ds1 ∧ dr1 +
ds2 ∧ dr2 and π|U2 : (p1, p3, q)→ (s1, s2, r1, r2) is defined by the equations

r1 = − p1 − yp3,

r2 = − p3,

s1 = x− 1
p3

[(1− (p1 + yp3)2)
1
2 − (1− p2

1)
1
2 ],

s2 = z − xy − y

p3
(1− (p1)2)

1
2 +

1
2p2

3

[arcsin(p1 + yp3)

+ (p1 + yp3)(1− (p1 + yp3)2)
1
2 − arcsin p1 − p1(1− p2

1)
1
2 ].

Now we find the corresponding generating functions of graphπi ⊂ (T ?X ×
T ?Ξ̄i, µ	 ωX), where Ξi = T ?Ξ̄i for some open neighbourhoods Ξ̄i ⊂ X.

Corollary 2.2. The two Lagrangian submanifolds, graphπ|Ui , i = 1, 2, are
generated , up to additive constants, by the following generating functions:

G1(q, r) = r1y + r2z −
1

2r2
[arcsin(r1 + xr2) + (r1 + xr2)(1− (r1 + xr2)2)

1
2

− arcsin r1 − r1(1− r2
1)

1
2 ],

and

G2(q, r) = r1x+ r2(z − xy)− 1
2r2

[arcsin(r1 − yr2) + (r1 − yr2)(1− (r1 − yr2)2)
1
2

− arcsin r1 − r1(1− r2
1)

1
2 ],

respectively.
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There are two simplest types of systems of rays in H. Now we describe their
representative examples.

1. A beam of “parallel” rays L with fixed co-direction (p̂1, p̂2, p̂3) at each point
of the hyperplane {x = 0} is generated by the family

F (r, λ) = r1λ1 + r2λ2 + p̂2λ1 + p̂3λ2.

The corresponding Lagrangian submanifold π−1(L) ⊂ T ?X is generated by

R̃(q, λ) = λ1λ3 + λ2λ4 + p̂2λ1 + p̂3λ2 − λ3y − λ4z +
1

2λ4
[arcsin(λ3 + xλ4)

+ (λ3 + xλ4)(1− (λ3 + xλ4)2)
1
2 − arcsinλ3 − l3(1− λ2

3)
1
2 ].

One can directly calculate the corresponding two parameter family of geodesics-
rays (parameterized by s1, s2):

(6)

x(t) = t,

y(t) = s1 −
1
p̂3

((1− (p̂2 + tp̂3)2)
1
2 − (1− (p̂2)2)

1
2 ),

z(t) = s2 −
1
p̂3
t(1− (p̂2 + tp̂3)2)

1
2 +

1
2(p̂3)2

(arcsin(p̂2 + tp̂3)

+ (p̂2 + tp̂3)(1− (p̂2 + tp̂3)2)
1
2 − arcsin p̂2 − p̂2(1− (p̂2)2)

1
2 ).

These rays are not parallel in the metric sense; however, their direction on the
plane {x = 0} is constant and equal to (1, p̂2/(1− (p̂2)2)

1
2 , 0).

2. A bunch of rays L emanating from the origin is generated by the family
F (r, λ) ≡ 0. Then π−1(L) is generated by

R̃i(q, λ) = −Gi(q, λ),

in the chart Ξi. Now we only write down the bunch of rays around the direction
∂
∂x (i.e. in the chart Ξ1). It is enough to put s1 = s2 = 0 and replace p̂2 and p̂3

by λ1 and λ2 respectively, in formula (6). Here λ1, λ2 parameterize the geodesics
of the bunch. This description is local, i.e. realized in the corresponding chart;
however, it is obviously consistent with the well known representation obtained
in [16].

One can find that the first and the second formulae of (6) describe the pro-
jection of geodesics onto the plane (x, y). They are arcs of circles with center
at

x0 = −p2

p3
, y0 = s1 +

1
p3

(1− p2
2)

1
2

and radius R = 1/p3, provided p3 6= 0. If p3 → 0 and say s1 = 0 we obtain the
lines y = p2x/(1− p2

2)
1
2 through the origin. Making use of the third formula of

(6) we obtain the corresponding geodesics—liftings of the above circles and lines
(i.e. for the lines the liftings are z = p2x

2/2(1− p2
2)

1
2 ).



SYSTEMS OF RAYS 255

Example 2.3. An interesting horizontal curve on the Heisenberg group ap-
pearing in algebraic K-theory (see [3], Proposition 1.13) gives a well defined,
single-valued map ψ : P − {0, 1,∞} → H(Z) H(C) providing an elegant inter-
pretation of the dilogarithm function

∫
log(1− x)dxx . We have

ψ(x) =

 1 c log(1− x) c2
∫

log(1− x)dxx
0 1 c log x
0 0 1


and, by our identification with Euclidean space we write the horizontal curve

β(x) =
(
c log(1− x), c log x, c2

∫
log(1− x)

dx

x

)
.

(We consider a real analog of ψ. In the complex case of [3], c = 1
2πi .) Thus the

corresponding dilog-Lagrangian variety of gliding rays is given by the following
isotropic map (t, u)→ (r, s):

r1 = tu− et/c

(2e2t/c − 2et/c + 1)
1
2
,

r2 = − u,
s1 = c log(1− et/c)

+
1
u

{
et/c − 1

(2e2t/c − 2et/c + 1)
1
2
−
(

1−
(

et/c

(2e2t/c − 2et/c + 1)
1
2
− tu

)2) 1
2
}
,

s2 = c
t∫

0

s log(1− es/c)ds+
t

u

(
et/c − 1

(2e2t/c − 2et/c + 1)
1
2

)

− 1
2u2

{
arcsin

et/c

(2e2t/c − 2et/c + 1)
1
2
− arcsin

(
et/c

(2e2t/c − 2et/c + 1)
1
2
− tu

)

−
(

et/c

(2e2t/c − 2et/c + 1)
1
2
− tu

)(
1−

(
et/c

(2e2t/c − 2et/c + 1)
1
2
− tu

)2) 1
2

+
et/c

(2e2t/c − 2et/c + 1)

}
.

2.1. Singular distribution. The situation becomes much more complicated for
another distribution on R3 annihilated by the 1-form

θ = dz + y2dx,

which is a stable 1-form with singularity of type Σ2,0 in the sense of Martinet
(cf. [11]). We consider the simplest horizontal Hamiltonian

H(q, p) =
1
2

(p2
2 + (p1 − y2p3)2),

and take the chart on the space of rays M , π(U), U = {p1 − y2p3 > 0} ∩
{H−1(1/2)}. We parameterize U by (p2, p3, x, y, z), where p1 = (1− p2

2)
1
2 + y2p3.
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As before we are interested in the generating function (distance function) of
the graph of the canonical map π along bicharacteristics of vH . Consider the
operator P parameterized by (x, y, r1, r2) and acting on smooth functions,

(7) P(x,y,r1,r2)(·) = r1 + 2xyr2 −
x∫

0

∂

∂y
(1− (·)2)

1
2 dx.

Proposition 2.4. The generating function for the above defined Lagrangian
submanifold graphπ ∈ Ξ is given by

G(x, y, z, r1, r2) = yr1 + zr2 −
x∫

0

(1−W (0, x, y, r1, r2)2)
1
2 dx+ xy2r2,

where
W (0, x, y, r1, r2) = lim

n→∞
(P(x,y,r1,r2))n(0).

The method of proof gives a computational algorithm which allows us to find
G by an iteration process. The successive approximations are given by

Gn(x, y, z, r1, r2) = yr1 + zr2 −
x∫

0

(1− (P(x,y,r1,r2))n(0))2)
1
2 dx+ xy2r2.

By straightforward computation we obtain an equation for W :

r1 + 2xyr2 −
x∫

0

∂

∂y
(1−W 2)

1
2 dx = W.

The canonical projection π in terms of W may be written as follows:

−p1 = − (1−W 2)
1
2 + y2r2,

−p2 = r1 + 2xyr2 −
x∫

0

∂

∂y
(1−W 2)

1
2 dx = W,

−p3 = r2,

s1 = y +
x∫

0

∂W/∂r1

(1−W 2)
1
2
dx,

s2 = z − xy2 +
x∫

0

∂W/∂r2

(1−W 2)
1
2
dx.

Abnormal geodesics relate to the global singularity structure of the space of
geodesics. In this context we can describe the systems of geodesics close to the
singular surface {y = 0}. The equation

G(r1, r2) =
x0∫
0

∂W
∂r1

W

(1−W 2)
1
2
dx

∣∣∣∣
y=0

= 0

parameterizes locally the set of geodesics passing through 0 and x = x0, y = 0.
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3. Stable systems of rays and their caustics. Let W be a smooth hyper-
surface of X. To W we associate the class of systems of rays which are defined
by phase functions on W . Let F̄ : W → R be a smooth function. By F : X → R
we denote its smooth extension to X. We define

LW,F = {p̄ ∈ T ?X : 〈p̄, u〉 = 〈dF, u〉 for all u ∈ TW},
where 〈p̄, u〉 denotes the evaluation of p̄ ∈ T ?X at a tangent vector u ∈ TX. We
also write LW,0 = LW .

Let ΦHt be the flow of the Hamiltonian vector field vH with Hamiltonian H.
We let

exp(W,F ) : LW,F → X, exp(W,F ) = πX ◦ ΦH1 |LW,F
be the corresponding exponential map. If F (a phase function on W ) is a constant
function then W may be treated as a wavefront. The set of critical values of
expW = exp(W,0) is called the focal set of W , and this is intuitively the light
caustic of the initial wavefront W in general, possibly inhomogeneous media. As
in the usual Riemannian case also for the horizontal case the focal set of W is
the bifurcation set of the family d : W × X × RN → R (cf. Remark 1.3) given
by the restriction of the extended distance function d : X × X × RN → R to
W ×X×RN , i.e. it consists of those points q ∈ X with dq : W ×RN → R having
a degenerate critical point at some (w, λ) ∈W ×RN .

We assume that the distribution V is obtained from a semi-definite bilinear
form 〈·, ·〉g on the cotangent bundle T ?X, depending smoothly on the base point.
Let hg : T ?X → TX be the vector bundle homomorphism, T ?qX 3 p→ u ∈ TqX,
where for unique fixed u we have 〈p, η〉g = η(u) for all η ∈ T ?qX. We assume hg
is a constant rank map and Vq = hg(T ?qX).

Suppose W is transversal to V . Then at the transversality points the image
space hg(LW ) is normal (transversal) to the induced distribution V ∩ TW ; we
call it the normal bundle to W and denote by NVW . We see that in contrast to
the Riemannian case, NVW , which exists independently of LW , does not define
any special system of rays on M . If V is integrable, then ΦH1 (C), where

C = {p̄ ∈ T ?X : hg(p̄) ∈ NVW},
is a coisotropic submanifold of T ?X (cf. [15]). If V is not integrable then only the
co-normal bundle T ?WX has a symplectic meaning.

Any local system of rays L in M ∼= T ?N is generated by a Morse family
F : N ×Rk → R. We recall that the corresponding generating family for π−1(L)
is written in the form

(8) R̃(q, λ) = −G(q, λ1) + F (λ1, λ2),

where λ = (λ1, λ2) are Morse parameters of the family R̃.
If we fix geometry, i.e. an inhomogeneous optical medium, then the function

G is given. Any Lagrangian submanifold L of M represents an optical system
of rays. Its counterimage π−1(L) is an optical Lagrangian submanifold of T ?X,
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i.e. it fulfills an eikonal equation (cf. [4]). Thus we describe the space of optical
systems of rays by the general deformations of Lagrangian submanifolds in M .
In this approach (see also [7]) we need a slightly modified notion of Lagrange
equivalence and Lagrange stability.

Let (L̄1, p̄1), (L̄2, p̄2) be two germs of Lagrangian submanifolds in (T ?X,ωX).
Following the standard lines of the theory of Lagrangian singularities [1] we say
that (L̄1, p̄1), (L̄2, p̄2) are equivalent if there exists a germ of symplectomorphism
Φ : (T ?X, p̄1) → (T ?X, p̄2) such that Φ(L̄1) ⊂ L̄2, and Φ preserves the πX -fiber
structure of T ?X.

Let (R̃1(q, λ), (πX(p̄1), 0)), (R̃2(q, λ), (πX(p̄2), 0)), (q, λ) ∈ X×Λ be two Morse
families for (L̄1, p̄1) and (L̄2, p̄2) respectively. If (L̄1, p̄1) and (L̄2, p̄2) are equiva-
lent, then there exists a diffeomorphism φ : (X,πX(p̄1))→ (X,πX(p̄2)), a family
of diffeomorphisms Θ : (X×Λ, (πX(p̄1), 0))→ (Λ, 0) and a smooth function-germ
f : (X,πX(p̄1))→ R such that

R̃2 ◦ (φ ◦ π1, Θ) = R̃1 + f ◦ π1,

where π1 : X × Λ → X is the canonical projection. This is the so-called R+-
equivalence of local unfoldings of functions [1].

Now we introduce the notion of stability of local systems of rays in (M,µ). Let
α1, α2 ∈M and li = π−1(αi), i = 1, 2, be two corresponding rays in (T ?X,ωX).

Definition 3.1. Let (L,α) ⊂ (M,µ) be a system of rays. We call it stable if
there exists an open neighbourhood of L (in the space of Lagrange embeddings
endowed with the Whitney C∞-topology), say OL, and an open neighbourhood
U of α, such that for every L′ ∈ OL and every p̄ ∈ l = π−1(α) there exist α′ ∈ U
and p̄′ ∈ l′ = π−1(α′) such that the germs of Lagrangian submanifolds (π−1(L), p̄)
and (π−1(L′), p̄′) are equivalent.

We see that if the germ (π−1(L), p̄) is stable (Lagrange stable [1]) for every
p̄ ∈ π−1(α) then (L,α) is stable in the sense of our definition. We notice that
in the formulae (8) we apply only deformations depending on the parameters
(λ1, λ2).

Let λ→ F (λ) be a generating function for (L, 0). Using the usual infinitesimal
stability condition for local unfoldings (cf. [10]) we have

Proposition 3.2. (L, 0) is a stable system of rays if and only if

mq0 ⊂
〈

1,
∂G

∂qi

〉
Eq0

+
〈
∂(F −G)
∂λj

〉
Eq0,0

,

for all q0 ∈ l = π−1(0), where Eq0 is the local algebra of germs at q0 of smooth
functions on X, and mq0 denotes the maximal ideal of Eq0 . By 〈1, ∂G∂qi 〉Eq0 we
denote the submodule of Eq0,0 generated by ∂G

∂qi (q, λ), i = 1, . . . , n + 1, and l is
defined by the system of equations ∂G

∂λj
(q, 0) = 0, j = 1, . . . , n.
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Now we use this condition to the concrete case considered in Section 2. For
G1 we calculate

∂G1

∂x
= −(1− (r1 + xr2)2)

1
2 ,

∂G1

∂y
= r1,

∂G1

∂z
= r2,

and for G2, respectively (see Corollary 2.2),
∂G2

∂x
= r1,

∂G2

∂y
= xr2 − (1− r2

1)
1
2 ,

∂G2

∂z
= r2.

Then by straightforward check we obtain

Corollary 3.3. Let (M,µ) be the space of rays corresponding to the Heisen-
berg group endowed with the contact distribution. Then the stable systems of rays
(L,α) ⊂ (T ?N,µ) are Lagrange equivalent to those having the following generat-
ing functions with simple singularities: F (r) = ±r2

1±r2
2 (type A1); F (r) = r3

1±r2
2

(type A2); F (r) = ±r4
1 ± r2

2 (type A3); F (r) = r5
1 ± r2

2 (type A4); F (r) = r3
1 ± r3

2

(type D4).

The similar result is true for a larger class of optical systems, see e.g. [5].

R e m a r k 3.4. Let F be the generating function for a system of rays (L,α).
Let (L̄, p̄0) be the corresponding Lagrangian submanifold germ in (T ?X,ωX). We
assume that the set of critical points Σ of the Lagrange projection πX |L̄ : L̄→ X
is described by the parameterization r → σ(r). This is a weak assumption since
rank(∂

2(F−G)
∂r q)(q0, 0) = n, where q0 = πX(p̄0). By means of the equations

∂(F −G)
∂r

(γr(s), r) ≡ 0,

we define the family of rays r → γr(s) passing through Σ, i.e. γr(0) = σ(r). Then
we deduce that the mapping

(r, s)→ (p, q) =
(
− ∂G

∂q
(γr(s), r), γr(s)

)
has a maximal rank at (0, 0). Thus we showed that at any point of Σ the corre-
sponding ray passing through that point on L̄ is transversal to Σ (cf. the proof
of Theorem 1 in [4]). This fact helps us to prove the existence on Σ of a smooth
field of directions. So for smooth Σ the Euler characteristic χ(Σ) has to be zero.
This observation was used in [4] to show that the optical realization of the “flying
saucers” as optical caustics is not possible. In a different way this fact may be
obtained by considering the stable local families of systems of rays (Lt, α) whose
deformations preserve the restricted form of generating families

−G(q, r) + Ft(r),

(t a parameter), excluding the appearance of global structure caustics.

R e m a r k 3.5. In general, systems of rays (L,α) ⊂ (M,µ) are generated by
Morse families, say (r, λ) → F (r, λ). Looking at the stability criterion for F we



260 S. JANECZKO

easily see that F must be a trivial Morse family, i.e. only systems of rays L which
are transversal to the cotangent bundle structure T ?N are stable in M .

Acknowledgements. I would like to thank to Professors J. J. Duistermaat,
D. Siersma and J. Stienstra for helpful comments and discussions. I would also like
to thank the referee for valuable suggestions. This work was partially supported
by a Commission of the European Communities grant.

References

[1] V. I. Arno ld, S. M. Guse in-Zade and A. N. Varchenko, Singularities of Differentia-
ble Maps, Vol. 1, Birkhäuser, Boston, 1985.
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