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Abstract. Existence of strong and weak solutions to stochastic inclusions xt − xs ∈∫ t
s
Fτ (xτ )dτ +

∫ t
s
Gτ (xτ )dwτ +

∫ t
s

∫
Rn Hτ,z(xτ )q(dτ, dz) and xt − xs ∈

∫ t
s
Fτ (xτ )dτ

+
∫ t
s
Gτ (xτ )dwτ +

∫ t
s

∫
|z|≤1Hτ,z(xτ )q(dτ, dz) +

∫ t
s

∫
|z|>1Hτ,z(xτ )p(dτ, dz), where p and q are

certain random measures, is considered.

1. Notations and definitions. We present here the basic definitions and
notations used in the paper. They are taken from [1] and [2], respectively. We
assume that there is given a complete filtered probability space (Ω,F , (Ft)t≥0, P ),
where the family (Ft)t0≤t≤T , 0 ≤ t0 < T < ∞, of σ-algebras Ft ⊂ F is assumed
to be increasing: Fs ⊂ Ft if s ≤ t. Throughout we assume that the following
usual hypotheses are satisfied: (i) F0 contains all the P -null sets of F and (ii)
Ft =

⋂
u>t Fu for all t, t0 ≤ t ≤ T ; that is, the filtration (Ft)t∈[t0,T ] is right

continuous. Let X be a set, B a σ-algebra of subsets. We shall say that a random
measure µ is given on B if for every A ∈ B, a random variable µ(A) is defined on
(Ω,F), and if the following condition is met: For any sequence (Ak) of disjoint
sets in B such that A =

⋃
k Ak the series

∑∞
k=1 µ(Ak) converges in probability to

µ(A).

If for disjoint sets A1, . . . , Ak, the variables µ(A1), . . . , µ(Ak) are mutually
independent, then we shall call µ a measure with independent values.
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Let Bm be the ring of all Borel sets A ⊂ [t0, T ]× Rm for which

(1)
∫
A

dudt

|u|m+1
<∞.

We shall denote by p a random measure with independent values that is defined
on Bm and for which p(A) has a Poisson distribution with parameter (1) for every
A ∈ Bm. We shall denote by q the random measure defined by the relation

(2) q(A) = p(A)− Ep(A).

It is possible to construct the measure p such that p(A) is indicated to the number
of discontinuities of a given homogeneous process (ξ)t0≤t≤T with independent
increments (see [1], pp. 34–35).

We suppose that for every t ∈ [t0, T ], a σ-algebra Ft of events is defined. Also
we suppose that p(A) is measurable with respect to Ft and that no matter what
the sets A1, . . . , Ak in [t, T ] × Rm may be, the quantities p(A1), . . . , p(Ak) are
independent of any event in Ft.

We denote by M(Ft) the collection of all n-dimensional nonanticipative ran-
dom processes (ft,u)t∈[t0,T ],u∈Rm depending on the parameter u ∈ Rm (see [2]).
Let M1

p(Ft) be the collection of all f ∈M(Ft) for which

T∫
t0

∫
Rm

E|ft,u|
dtdu

|u|m+1
<∞;

let M1
p (Ft) be the collection of all f ∈M(Ft) for which

P

{ T∫
t0

∫
Rm

|ft,u|
dtdu

|u|m+1
<∞

}
= 1;

let M2
q(Ft) be the collection of all f ∈M(Ft) for which

T∫
t0

∫
Rm

E|ft,u|2
dtdu

|u|m+1
<∞;

and let M2
q (Ft) be the collection of all f ∈M(Ft) for which

P

{ T∫
t0

∫
Rm

|ft,u|2
dtdu

|u|m+1
<∞

}
= 1.

Given f ∈ M2
q (Ft) we denote by (

∫ T
t0

∫
Rm ft,uq(dt, du))t∈[t0,T ] its stochastic

integral over a random measure q. It is defined in a standard way and has all
standard properties (see [1], pp. 36–37). In particular it is a martingale (as a
function of t) and with probability 1 does not have discontinuities of the second
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kind. If f ∈M1
q (Ft) ∩M1

p (Ft), we set

(3)
T∫
t0

∫
Rm

ft,up(dt, du) =
T∫
t0

∫
Rm

ft,uq(dt, du) +
T∫
t0

∫
Rm

ft,u
dtdu

|u|m+1
.

The integral defined possesses quite similar properties to the previous one (see [1],
pp. 38–39). In particular, a process (

∫ T
t0

∫
Rm ft,up(dt, du))t∈[t0,T ] (as a function of

t) with probability 1 does not have discontinuities of the second kind. If for some
ε > 0, ft,u = 0 when |u| ≤ ε then

∫ T
t0

∫
Rm ft,up(dt, du) with probability 1 is a

piecewise function.
Given a measure space (X,B,m), a set-valued function < : X → Cl(Rn) is

said to be B-measurable if {x ∈ X : <(x) ∩ C 6= ∅} ∈ B for every closed set
C ⊂ Rn. For such a multifunction we define the subtrajectory integrals to be the
set Sp(<) = {g ∈ Lp(X,B,m,Rn) : g(x) ∈ <(x) a.e. }. It is clear that for Sp(<) to
be nonempty we must assume more than B-measurability of <. In what follows
we shall assume that the B-measurable set-valued function < : X → Cl(Rn)
is p-integrable bounded, p ≥ 1, i.e., that a real-valued mapping : X 3 x →
‖<(x)‖ ∈ R+ belongs to Lp(X,B,m,R+). It can be verified (see [2], Th. 3.2) that
a B-measurable set-valued mapping < : X → Cl (Rn) is p-integrable bounded,
p ≥ 1, if and only if Sp(<) is nonempty and bounded in Lp(X,B,m,Rn). Finally,
it is easy to see that Sp(<) is decomposable, i.e., 1Af1 + 1X\Af2 ∈ Sp(<) for
A ∈ B and f1, f2 ∈ Sp(<).

We have the following general result concerning the properties of subtrajectory
integrals (see [2], [3]).

Proposition 1. Let < : X → Cl(Rn) be B-measurable and p-integrable
bounded , p ≥ 1. Then Sp(<) is a nonempty bounded closed subset of Lp(X,B,
m,Rn). Moreover , if < takes on convex values then Sp(<) is convex and weakly
compact in Lp(X,B,m,Rn).

We shall also deal with upper and lower semicontinuous set-valued mappings.
Recall a set-valued mapping < with nonempty values in a topological space (Y, TY )
is said to be upper (lower) semicontinuous [u.s.c. (l.s.c.)] on a topological space
(X, TX) if <−(C) := {x ∈ X : <(x) ∩ C 6= ∅} (<−(C) := {x ∈ X : <(x) ⊂ C})
is a closed subset of X for every closed set C ⊂ Y . In particular, for < defined
on a metric space (X , d) with values in Comp(Rn) this is equivalent (see [2]) to
limn→∞ h(<(xn),<(x)) = 0 (limn→∞ h(<(x),<(xn)) = 0) for every x ∈ X and
every sequence (xn) in X converging to x. If moreover < takes convex values
then this is equivalent to upper (lower) semicontinuity of the real-valued function
s(p,<(·)) on Rn for every p ∈ Rn, where s(·, A) denotes the support function
of the set A ∈ Comp(Rn). We have the following continuous selection theorem
(see [2]).

Theorem (Michael). Let X be a metric space, Y a Banach space and F
from X into the closed convex subsets of Y be l.s.c. on X. Then there exists a
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continuous function f : X → Y such that f(x) ∈ F (x) for x ∈ X.

In what follows we shall also consider set-valued stochastic processes (Ft)t≥0,
(Gt)t≥0 and (Rt,z)t≥0,z∈Rn taking values from the space Comp(Rn) of all non-
empty compact subsets of n-dimensional Euclidean space Rn. They are assumed
to be nonanticipative (see [3]) and such that

∫∞
0
‖Ft‖pdt <∞, p ≥ 1,

∫∞
0
‖Gt‖2dt

< ∞ and
∫∞
0

∫
Rn ‖Rt,z‖2dtq(dz) < ∞, a.s., where q is a measure on the Borel

σ-algebra Bn of Rn and ‖A‖ := sup{|a| : a ∈ A}, A ∈ Comp(Rn). The space
Comp(Rn) is endowed with the Hausdorff metric h defined in the usual way,
i.e., h(A,B) = max{h(A,B), h(B,A)} for A,B ∈ Comp(Rn), where h(A,B) =
{dist(a,B) : a ∈ A} and h(B,A) = {dist(b, A) : b ∈ B}.

Denote by M1
s-v(Ft) and M2

s-v(Ft) the families of all nonanticipative set-
valued processes G = (Gt)t∈[t0,T ] such that P ({

∫ T
t0
‖Gt‖2dt < ∞} = 1) and∫ T

t0
E‖Gt‖2dt <∞, respectively. Similarly, we denote by M1

s-v(Ft, p), M2
s-v(Ft, q),

M1
s-v(Ft, p) andM2

s-v(Ft, q) the families of all nonanticipative set-valued processes
R = (Rt,u)t∈[t0,T ],u∈Rm depending on the parameter u ∈ Rm such that

P
({ T∫

t0

∫
Rm

‖Rt,u‖dtdu/|u|m+1 <∞
})

= 1,

P
({ T∫

t0

∫
Rm

‖Rt,u‖2dtdu/|u|m+1 <∞
})

= 1,

T∫
t0

∫
Rm

E‖Rt,u‖dtdu/|u|m+1 <∞

and
T∫
t0

∫
Rm

E‖Rt,u‖2dtdu/|u|m+1 <∞,

respectively. Immediately from the Kuratowski and Ryll-Nardzewski measurable
selection theorem (see [2]) it follows that for every F,G ∈ M1

s-v(Ft) and R ∈
M1
s-v(Ft, p) ∩M2

s-v(Ft, q) their subtrajectory integrals (see [3]): S2(F ) := {f ∈
M2(Ft) : ft(ω) ∈ Ft(ω), dt×P -a.e. }, S2(G) := {g ∈M2(Ft) : gt(ω) ∈ Gt(ω), dt×
P -a.e. }, S1

p(R) := {h ∈M1(Ft, p) : ht,z(ω) ∈ Rt,z(ω), P ×p-a.e. } and S2
q (R) :=

{h ∈ M2(Ft, q) : ht,z(ω) ∈ Rt,z(ω), P × q-a.e. } are nonempty. Indeed, let Σ=
{Z ∈ B+ ⊗ F : Zt ∈ Ft for each t ≥ 0}, where Zt denotes the section of Z
determined by t ≥ 0. It is a σ-algebra on R+ × Ω and a function f : R+ ×
Ω → Rn (a multifunction F : R+ × Ω → Cl(Rn)) is nonanticipative if and
only if it is Σ-measurable. Therefore, by the Kuratowski and Ryll-Nardzewski
measurable selection theorem every nonanticipative set-valued function admits a
nonanticipative selector. It is clear that for F ∈M2

s-v(Ft) such for selector belongs
toM2(Ft). Similarly, define on R+×Ω×Rn a σ-algebra Σ̃ = {Z ∈ B+⊗F⊗Bn :
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Zut ∈ Ft for each t ≥ 0 and u ∈ Rn}, where Zut = (Zu)t and Zu is the section of
Z determined by u ∈ Rn. We can repeat the foregoing arguments to obtain the
above result for nonanticipative set-valued processes depending on a parameter
u ∈ Rm.

Let us denote by D the family of all n-dimensional Ft-adapted cádlág (see [5])
processes (xt)t∈[to,T ] such that E supt0≤t≤T |xt|

2 <∞.
Given F,G ∈M2

s-v(Ft), R ∈M1
s-v(Ft, p) ∩M2

s-v(Ft, q), by( t∫
t0

Fτdτ
)
t∈[t0,T ]

,
( t∫
t0

Gτdwτ
)
t∈[t0,T ]

,

( t∫
t0

∫
Rm

Rτ,uq(dτ, du)
)
t∈[t0,T ]

and
( t∫
t0

∫
Rm

Rτ,up(dτ, du)
)
t∈[t0,T ]

,

we denote their set-valued stochastic integrals with respect to Lebesgue mea-
sure dt, Ft-Brownian motion (wt)t≥0 and Poisson measures q and p, respec-
tively. These integrals (see [4]), understood as families of subsets of M(Ft),
are defined by

∫ t
t0
Fτdτ = {

∫ t
t0
fτdτ : f ∈ S2(F )},

∫ t
t0
Gτdwτ = {

∫ t
t0
gτdwτ :

g ∈ S2(G)},
∫ t
t0

∫
Rm Rτ,uq(dτ, du) = {

∫ t
t0

∫
Rm hτ,uq(dτ, du) : h ∈ S2

q (R)} and∫ t
t0

∫
Rm Rτ,up(dτ, du) = {

∫ t
t0

∫
Rm hτ,up(dτ, du) : h ∈ S2

p(R)}. Given 0 ≤ α < β <

∞ we also define
∫ β
α
Fsds := {

∫ β
α
fsds : f ∈ S2(F )},

∫ β
α
Gsdws := {

∫ β
α
gsdws :

g ∈ S2(G)},
∫ β
α

∫
Rn Rs,uq(ds, du) := {

∫ β
α

∫
Rn hs,uq(ds, du) : h ∈ S2

q (R)} and∫ β
α

∫
Rn Rs,up(ds, du) := {

∫ β
α

∫
Rn hs,up(ds, du) : h ∈ S2

p(R)}.

2. Existence of strong solutions. Let F = {(Ft(x))t∈[t0,T ] : x ∈ Rn},
G = {(Gt(x))t∈[t0,T ] : x ∈ Rn} and H = {(Ht,u(x))t∈[t0,T ],u∈Rm : x ∈ Rn} be
measurable.

Stochastic inclusions corresponding to F,G and H are understood as relations
of the form

(4) xt − xs ∈
t∫
s

Fτ (xτ )dτ +
t∫
s

Gτ (xτ )dwτ +
t∫
s

∫
Rm

Hτ,u(xτ )q(dτ, du)

and

xt − xs ∈
t∫
s

Fτ (xτ )dτ +
t∫
s

Gτ (xτ )dwτ +
t∫
s

∫
|u|≤1

Hτ,u(xτ )q(dτ, du)(5)

+
t∫
s

∫
|u|>1

Hτ,u(xτ )p(dτ, du)

that are to be satisfied for every t0 ≤ s < t ≤ T by a stochastic process
x = (xt)t∈[t0,T ] ∈ D such that F ◦ x ∈ Mp

s-v(Ft), G ◦ x ∈ M2
s-v(Ft) and H ◦ x ∈

M2
s-v(Ft, q), where F ◦ x = (Ft(xt))t≥0, G ◦ x = (Gt(xt))t≥0 and H ◦ x =
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(Ht,z(xt))t≥0,z∈Rn . Every stochastic process (xt)t∈[t0,T ] without discontinuities
of second kind and satisfying the conditions mentioned above is said to be a
strong solution to stochastic inclusions (3) or (4), respectively.

In what follows we shall assume that some of the following conditions (A1)–
(A2) are satisfied.

(A1) F,G,H are measurable.

(A2) F,G,H are are linearly bounded on D, i.e., there is a number C > 0 such
that for every x one has ‖Ft(x)‖2 + ‖Gt(x)‖2 +

∫
Rm ‖Ht,z(x)‖2q(dz) ≤

C(1 + |x|2) for each t ∈ [t0, T ].

(A3) There are k, ` ∈ L2(B+) and m ∈ L2(B+ × Bn) such that h(Ft(x2)(ω),
Ft(x1)(ω)) ≤ k(t)|x1 − x2|, h(Gt(x2)(ω), Gt(x1)(ω)) ≤ `(t)|x1 − x2| and
h(Ht,z(x2)(ω), Ht,z(x1)(ω)) ≤ m(t, z)|x1 − x2| a.e. for each t ≥ 0 and
x1, x2 ∈ Rn.

(A4) F , G and H are l.s.c. for fixed t ∈ [t0, T ].

As in [5], the following existence theorem can be proved.

Theorem 2. Let ϕ ∈ L2(Ω,F0,Rn). Suppose F , G and H satisfy (A1),
(A2) and are such that E

∫ T
t0
‖(F ◦ 0)t‖2dt < ∞, E

∫ T
t0
‖(G ◦ 0)t‖2dt < ∞ and

E
∫ T
t0

∫
Rn ‖(H ◦0)t,z‖2dtq(dz) <∞. Then inclusions (3) and (4) have at least one

strong solutions satisfying an initial condition xt0 = ϕ with probability 1.

3. Existence of weak solutions. We begin with recalling some notations
connected with limit theorems for random processes with values in a metric space
(X, ρ). A process (ξt)t∈[t0,T ] with values in X is said to be stochastically continuous
at a point t1 ∈ [t0, T ] if for every ε > 0, limt→t1 P{ρ(ξt, ξt1) > ε} = 0. It
is said to be stochastically continuous from the right at t1 if for every ε > 0,
limt→t1,t>t1 P{ρ(ξt, ξt1) > ε} = 0. We have the following (see [1], p. 2) property
of stochastically continuous processes.

Proposition 2. For every process (ξt)t∈[t0,T ] with values in X, there is a
separable process stochastically equivalent to it. If a process (ξt)t∈[t0,T ] is stochas-
tically continuous at all points t ∈ [t0, T ] with possible exception of a finite number
of points, then there exists a separable measurable process that is stochastically
equivalent to a process (ξt)t∈[t0,T ].

We often need to deal with sequences of processes whose finite distributions
converge to a particular limiting distribution. It turns out that under rather broad
assumptions, we may treat the relevant process as converging to some limiting
process in probability. More precisely, we have the following theorem (see [1],
p. 9).

Theorem A. Supoose that a sequence (ξnt )t∈[t0,T ] of random processes with
values in Rm is stochastically continuous from the right at every point t ∈ [t0, T ]
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such that for every k and t1, . . . , tk in [t0, T ], the joint distribution of the values of
ξnt1 , . . . , ξ

n
tk

converges weakly to a limiting distribution, and that for every ε > 0,

(6) lim
h→0

lim
n→∞

sup
|s1−s2|≤h

P{|ξns1 − ξ
n
s2 | > ε} = 0.

Then there is a sequence of random processes (xnt )t∈[t0,T ], n = 0, 1, . . ., on the
probability space (Ω′,F ′, P ′), where Ω′ = [0, 1], F ′ is a σ-algebra of Borel sets
of the interval [0, 1], and P ′ is the Lebesgue measure on [0, 1], such that : x0

t is
stochastically continuous, xnt converges in probability to x0

t for every t, and for
n > 0, the finite distributions of the processes (xnt ) − t ∈ [t0, T ] and (ξnt )t∈[t0,T ]

coincide.

R e m a r k 1. Let be (ξnt )t∈[t0,T ] a sequence of processes that are stochastically
continuous from the right and that satisfy the conditions (6). Suppose that

(7) lim
C→∞

lim
n→∞

sup
t0≤t≤T

P{|ξnt | > C} = 0.

Then it is possible to exhibit a sequence (nk) of positive integers such that the
limiting distributions for finite-dimensional distributions of the processes ξnk

t exist
as k → ∞. In fact, the condition (7) implies compactness of the sequence of
distributions of the quantities ξnk

t1 , . . . , ξ
nk
t`

no matter what t1, . . . , tnk

` and ` are.

Corollary 1. If the processes (ξnt )t∈[t0,T ] satisfy the conditions of Remark 1,
then for some sequence (nk) of positive integers it is possible to construct pro-
cesses (xnk

t )t∈[t0,T ] on the probability space (Ω′,F ′, P ′) having the same finite-
dimensional distributions as ξnk

t and converging in probability to some process
(x0
t )t∈[t0,T ] as k →∞.

R e m a r k 2. The results of Corollary 1 can be extended to r sequences of
stochastic processes (see [1], Corollary 2, p. 13).

We can now formulate sufficient conditions for the existence of weak solution
to the stochastic inclusion (5). Let us note that by a weak solution to (5) we
mean a system [(Ω′,F ′, (F ′t)t∈[t0,T ], P

′), (ξ′t)t∈[t0,T ], (w′t)t∈[t0,T ], p
′, q′] consisting of

a probability filtered space (Ω′,F ′, (F ′t)t∈[t0,T ], P
′), an F ′t-adapted stochastically

continuous process (ξ′t)t∈[t0,T ], an F ′t-Brownian motion (w′t)t∈[t0,T ] and Poisson
measures p′, q′ such that (ξ′t)t∈[t0,T ] satisfy (5) if in this inclusion we replace wt,
p, q with w′t, p

′, q′. The proof of such an existence theorem will follow from
the existence theorem given in [1] (see [1], p. 59–73) and Michael’s continuous
selection theorem. We shall assume that the following conditions (A3)–(A6) are
satisfied.

(A3) F,G,H are are linearly bounded, i.e., there is a number K > 0 such
that ‖Ft(x)‖2 + ‖Gt(x)‖2 +

∫
|u|≤1

‖Ht,u(x)‖2du/|u|m+1 ≤ K(1 + |x|2).

(A4) F , G are l.s.c. on [t0, T ]× Rn.
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(A5) H is bounded in every bounded region of x and u, is measurable with
respect to u∈Rm for fixed t ∈ [t0, T ] and x ∈ Rn, and is l.s.c. for almost
all u with respect to t and x.

(A6) For all t1 ∈ [t0, T ] and x1 ∈ Rn,

lim
t→t1,x→x1

∫
|u|≤1

h
2
(Ht,u(x), Ht1,u(x1)

du

|u|m+1
= 0.

Theorem 2. Suppose F , G and H take compact convex values and are such
that conditions (A3)–(A6) are satisfied and let ϕ : Ω → Rn be Ft0-mesurable and
such that E|ϕ|2 <∞. Then there is at least one weak solution

[(Ω′,F ′, (F ′t)t∈[t0,T ], P
′), (ξ′t)t∈[t0,T ], (w′t)t∈[t0,T ], p

′, q′]

to (5) such that the distribution of ξ′t0 coincides with the distribution of ϕ.

P r o o f. By virtue of Michael’s continuous selection theorem there are continu-
ous functions a, b : [t0, T ]×Rn → Rn such that a(t, x) ∈ Ft(x) and b(t, a) ∈ Gt(x)
for (t, x) ∈ [t0, T ]×Rn. Moreover, Michael’s continuous selection theorem implies
the existence of a function f : [t0, T ]×Rn×Rm → Rn that is measurable with re-
spect to u ∈ Rm and continuous with respect to (t, x) ∈ [t0, T ]×Rn and such that
f(t, x, u) ∈ Ht,u(x) for (t, x, u) ∈ [t0, T ]×Rn×Rm. Immediately from properties
of F , G and H it follows that the following conditions are satisfied:

|a(t, x)|2 + |b(t, x)|2 +
∫
|u|≤1

|f(t, x, u)|2 du

|u|m+1
≤ K(1 + |x|2)

and

lim
t→t1,x→x1

∫
|u|≤1

|f(t, x, u)− f(t1, x1, u)|2 du

|u|m+1
= 0.

Consider now the stochastic equation

ξt = ξt0 +
t∫

t0

a(t, s, ξs)ds+
t∫

t0

b(t, s, ξs)dws(8)

+
t∫

t0

∫
|u|≤1

f(t, s, ξs, u)q(ds, du)

+
t∫

t0

∫
|u|>1

f(t, s, ξs, u)p(ds, du).

Let us consider a sequence of subdivisions of the interval [t0, T ]: t0 = tn0 <
tn1 < . . . < tnn = T such that limn→∞maxk(tnk+1 − tnk ) = 0 and define a random
variable ξnk by the relations: ξn0 = ϕ,



STOCHASTIC INCLUSIONS 285

ξnk+1 = ξk + a(tnk , , ξ
n
k )∆tnk(9)

+ b(tnk , , ξ
n
k )[wtn

k+1
− wtn

k
]
tnk+1∫
tnk

∫
|u|≤1

f(tnk , s, ξtnk , u)q(ds, du)

+
tnk+1∫
tnk

∫
|u|>1

f(tnk , s, ξtnk , u)p(ds, du),

where ∆tnk = tnk+1 − tnk . Define ξnt and ζnt by taking ξnt = ξnk for t ∈ [tnk , t
n
k+1]

and ζnt =
∫
tt0

∫
|u|≤1

uqn(ds, du) +
∫ t
t0

∫
|u|>1

upn(ds, du), where (pn) is a sequence
of Poisson measures with independent values defined on [t0, T ] × Rm for which
Epn(A) =

∫
A
udtdu/|u|m+1, and qn(A) = pn(A)−Epn(A). As in [1] (pp. 64–67)

we verify that for each of the processes ξnt , ζnt , wt, the conditions of Remark 1
are fulfilled. Therefore, by Corollary 1 it is possible to choose a sequence (nk)
of positive integers and to construct processes xnk

t , znk
t and wnk

t defined on a
probability space (Ω′,F ′, P ′) such that their joint finite-dimensional distributions
coincide for every k with the joint finite-dimensional distribution of the processes
ξnk
t , ζnk

t , wt, and such that xnk
t → ξ′t as k → ∞, and wnk

t → w′t as znk
t → ζ ′t in

probability, where ξ′t, ζ
′
t and w′t are certain random processes. It can be verified

(see [1], p. 65) that there are Poisson measures p′nk
and p′ with independent values

such that

znt =
t∫

t0

∫
|u|≤1

uq′nk
(ds, du) +

t∫
t0

∫
|u|>1

up′nk
(ds, du)

and

ζt =
t∫

t0

∫
|u|≤1

uq′(ds, du) +
t∫

t0

∫
|u|>1

up′(ds, du),

where Ep′nk
(A) = Ep′(A) =

∫
A
dtdu/|u|m+1, q′nk

(A) = p′nk
(A) − Ep′nk

(A) and
q′(A) = p′(A)− Ep′(A). Finally, as in [1] (pp. 68–73), it may be verified that ξ′t
satisfies (7) if in this equation we replace w, p, q with w′, p′, q′. On the other
hand, for every t0 ≤ s < t ≤ T we have

ξ′t − ξ′s =
t∫
s

a(τ, ξ′τ )dτ +
t∫
s

b(τ, ξ′τ )dw′τ +
t∫
s

∫
|u|≤1

f(τ, ξ′τ , u)q′(dτ, du)

+
t∫
s

∫
|u|>1

f(τ, ξ′τ , u)p′(ds, du) ∈
t∫
s

Fτ (ξ′τ )dτ +
t∫
s

Gτ (ξ′τ )dw′τ

+
t∫
s

∫
|u|≤1

Hτ,u(ξ′τ )q′(dτ, du) +
t∫
s

∫
|u|>1

Hτ,u(ξ′τ )p′(ds, du).
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Therefore,

[(Ω′,F ′, (F ′t)t∈[t0,T ], P
′), (ξ′t)t∈[t0,T ], (w′t)t∈[t0,T ], p

′, q′]

is a weak solution to (5).
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