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Abstract. The property of forward invariance of a subset ofRn with respect to a differential
inclusion is characterized by using the notion of a perpendicular to a set. The obtained results are
applied for investigating the dependence of the small-time local controllability of a homogeneous
control system on parameters.

1. Introduction. The problem of small-time local controllability (STLC) at
a point x is an important topic in control theory because:

• it can be viewed as a particular case of the general problem of obtaining
higher order optimality conditions;
• it is equivalent to the continuity property of the optimal time function at x,

etc.

Necessary and sufficient conditions are known only for linear (cf. [14], [17],
etc.), piecewise linear (cf. [19]) and so called “odd systems” (cf. [1]). Some general
sufficient conditions (cf. [16], [6], [2], etc.) as well as some necessary conditions
(cf. [12], [15], [8], [10], etc.) are obtained for nonlinear control systems.

In this paper we characterize the property of forward invariance of a subset
of Rn with respect to a differential inclusion in terms of the notion of “perpen-
diculars” to a set. Basing on the obtained results we investigate how the STLC
property of a well-known control system (cf. [12], [9]) depends on parameters.

2. Forward invariant sets. Let us consider a system described by the dif-
ferential inclusion

(1) ẋ ∈ F (x), x ∈ Rn,
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under the following assumptions:

A1. The multivalued mapping F : Rn → Rn is compact valued;
A2. For every compact set K ⊂ Rn, there exists a positive real L such that

H(F (x), F (y)) ≤ L‖x− y‖ for any points x, y ∈ K,
where H(A,B) denotes the Hausdorff distance between the subsets A and B
of Rn defined by H(A,B) = max(H+(A,B), H+(B,A)), where

H+(A,B) = inf{α ≥ 0 : A ⊂ B + αB(0, 1)},
and B(x, r) ⊂ Rn is the ball with center x and radius r.

A3. The multivalued mapping F (·) has the Lipschitz-selection property (cf. [11],
[4]), i.e. for each x ∈ Rn and for each v ∈ F (x), there exist a compact
neighborhood U of x and a Lipschitz continuous mapping f : U → Rn such
that f(x) = v and f(y) ∈ F (y) for every y ∈ U .

We say that an absolutely continuous function x(·), defined on the interval
[0, T ], T > 0, is an admissible trajectory of (1) if x(t) satisfies (1) for almost every
t on [0, T ]. By R(x, T ), T > 0, we denote the reachable set of (1) from the point
x at time T , i.e. R(x, T ) is the set of all points y of Rn which can be reached
from x at time T by means of trajectories of (1). The system (1) is said to be
small time local controllable (STLC) at the point x if x belongs to the interior of
the set R(x, T ) for every time T > 0.

Definition 2.1. A set M ⊂ Rn is forward invariant with respect to the
system (1) if every solution of (1) starting from a point of M remains in M .

Definition 2.2. A set M ⊂ Rn is complete forward invariant with respect to
the system (1) and to the point x ∈ Rn iff:

(i) M is forward invariant with respect to (1);
(ii) every point y ∈M is reachable from the point x by means of a trajectory

of (1) which lies in M .

Let us define a multivalued mapping H : Rn ×Rn ⇒ R as follows:

H(p, x) = {〈p, v〉 : v ∈ F (x)},
where 〈., .〉 denotes the standard scalar product in Rn and let H∗(p, x) = max{r :
r ∈ H(p, x)}.

For M ⊂ Rn we denote

PM (x) = {y ∈ clM : ‖x− y‖ = dist(x,M)},
where clM denotes the closure of M and dist(x,M) denotes the distance between
the point x and the set M , i.e.

dist(x,M) = inf
y∈M
‖x− y‖

(here ‖.‖ denotes the standard Euclidian norm in Rn). We say that p ∈ Rn is a
perpendicular to M at x if x ∈ PM (x + αp) for some α > 0 (cf. [5]). We denote
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by N⊥M (x) the set of all unit perpendiculars to M at x ∈ ∂M (∂M denotes the
boundary of M). This set can be empty at some points y ∈ ∂M .

A characterization of the viability property of a target in terms of “perpen-
diculars” is presented in [18]. In this paper we prove the following

Theorem 2.1. The closed set M is forward invariant with respect to (1) if
and only if

(2) sup
p∈N⊥

M
(y)

H∗(p, y) ≤ 0 for every y ∈ ∂M.

R e m a r k 1. In fact, it is proved that if the set M is forward invariant (but
not closed), then the relation (2) is also satisfied.

P r o o f. First we prove that the relation (2) is necessary for forward invariance.
Let M be a forward invariant set with respect to the system (1) and let us suppose
that (2) is not true. This means that there exist a positive number ρ and a point
y ∈ ∂M such that N⊥M (y) 6= ∅ and

sup
p∈N⊥

M
(y)

max
v∈F (y)

〈p, v〉 = ρ > 0.

Thus we can find p ∈ N⊥M (y) and v ∈ F (y) such that

(3) 〈p, v〉 > ρ/2.

According to A3, there exists a compact neighborhood U of y and a Lipschitz
continuous mapping f : U → Rn such that f(y) = v and f(z) ∈ F (z) for every
point z ∈ U . We can find a positive T and a compact neighborhood V of y such
that for every point z0 ∈ V the differential equation

(4) ż = f(z)

has a solution z(., z0), starting from the point z0 ∈ V , defined on [0, T ] and
belonging to U .

The relation (3) implies that z(T, y) does not belong to clM for every T > 0
which is sufficiently small. Since the solutions of (4) depend on the starting point
z0 in a continuous way, it follows that also z(T, z0) does not lie in M for every
point z0 which belongs to a sufficiently small neighborhood of y. But this means
that there exists a solution of (4) starting from a point of M which leaves M at
time T . But this is impossible. So the forward invariance of the set M implies
the relation (2).

Next we prove that the relation (2) is sufficient for forward invariance. Let
(2) be satisfied. Let z(·) be an arbitrary trajectory of (1) starting from the point
z ∈M and defined on [0, T ]. Setting d(t) = dist(z(t),M), t ∈ [0, T ], we define an
absolutely continuous function.

The compactness of the curve

Z = {z(t) : t ∈ [0, T ]}
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implies compactness of the set

B(Z, r) = {y ∈ Rn : dist(y, Z) ≤ r},

where m is an arbitrary chosen point of M and

r = max(‖z(t)−m‖ : t ∈ [0, T ]).

Conditions A1 and A2 imply the existence of positive reals C, L such that for
every point z from B(Z, r),

(5) max{‖v‖ : v ∈ F (z), z ∈ B(Z, r)} ≤ C,
(6) H(F (z1), F (z2)) ≤ L‖z1 − z2‖ for z1, z2 ∈ B(Z, r).

Suppose z(·) and d(·) are differentiable at the point t (this is true for almost all
t).

Suppose z(t) does not belong to clM . Applying theorem 2.3.9 and proposition
2.5.4 from [5] we obtain

ḋ(t) =
〈

z(t)− q(t)
‖z(t)− q(t)‖

, ż(t)
〉
, where q(t) ∈ PMz(t).

We know that ż(t) ∈ F (z(t)) and

p(t) =
z(t)− q(t)
‖z(t)− q(t)‖

∈ N⊥M (q(t)).

Since

‖z(t)− q(t)‖ = dist(z(t),M) ≤ ‖z(t)−m‖ ≤ r
we get q(t) ∈ B(Z, r). Let us choose v ∈ F (q(t)) in such a way that

‖v − ż(t)‖ ≤ 2H(F (q(t), F (z(t)).

This implies (according to (2) and (6)) that

‖ḋ(t)‖ = 〈p(t), ż(t)〉 ≤ 〈p(t), v〉+ 〈p(t), ż(t)− v〉
≤ 0 + 2H(F (z(t)), F (q(t))) ≤ 2L‖z(t)− q(t)‖
= 2Ldist(z(t),M) = 2Ld(t).

So when z(t) does not belong to clM we have

(7) ‖ḋ(t)‖ ≤ 2Ld(t).

If z(t) ∈ intM , then ‖ḋ(t)‖ = 0.
Let z(t) ∈ clM . Then propositions 2.5.4 and 2.5.6 of [5] imply that the esti-

mate (7) is also true.
Since d(t) satisfies the relations d(0) = 0, ḋ(t) ≤ 2Ld(t) for almost every

t ∈ [0, T ] we conclude that d(t) = 0 for t ∈ [0, T ], i.e. z(t) ∈ clM for t ∈ [0, T ].
But this means that M = clM is a forward invariant set with respect to (1). This
completes the proof.
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Theorem 2.2. Let M ⊂ Rn be a complete forward invariant set with respect
to (1) and to a point x ∈M . Then

(8) sup
p∈N⊥

M
(y)

H∗(p, y) = 0 for every y ∈ ∂M

(for which N⊥M (y) 6= ∅).
P r o o f. Let us assume that (8) does not hold. Since M is forward invariant

with respect to the control system (1), theorem 2.1 implies that

(9) sup
p∈N⊥

M
(y)

H∗(p, y) ≤ 0

for every y ∈ ∂M (for which N⊥M (y) 6= ∅). Hence, our assumption means (accord-
ing to (9)) that there exist a point y ∈ ∂M and a positive number ρ such that
N⊥M (y) 6= ∅ and

(10) sup
p∈N⊥

M
(y)

max
v∈F (y)

〈p, v〉 = −ρ < 0.

The following cases are possible:

C a s e I: M = {x}. The assumption implies that there exists an element v ∈
F (x), ‖v‖ 6= 0, and this implies existence of a solution of the differential inclusion
that leaves M . But this contradicts the forward invariance of M . Therefore, case
I is impossible.

C a s e II: M ⊃ {x} and y ∈ ∂M , y 6= x. Let us fix an arbitrary element
p ∈ N⊥M (y). According to (10),

max
v∈F (y)

〈p, v〉 ≤ −ρ.

The assumptions A1 and A2 imply existence of a neighborhood V of y such that
for any point z from V ,

(11) max
v∈F (z)

〈p, v〉 ≤ −ρ/2 and max{‖v‖ : v ∈ F (z), z ∈ V } ≤ C.

Let us define the set

K = {z ∈ Rn : 〈p, z〉 ≥ (A− δ)‖z‖},
where A = ρ

2C , and 0 < δ < A.

Claim 1. There exist a constant D > 0 such that for every 0 < µ < D and
for every z ∈ K, ‖z‖ = 1, the point y + µz does not belong to M .

P r o o f. The definition of a perpendicular to a set implies that there exists
a point y′ = y + ‖y′ − y‖p such that ‖y′ − y‖ = dist(y′,M). We set D :=
2‖y′ − y‖(A− δ). Let us fix a real µ, 0 < µ < D. Then for every element z ∈ K,
‖z‖ = 1, we have 〈p, z〉 ≥ (A− δ)‖z‖ and hence

‖y′ − y − µz‖2 = 〈y′ − y − µz, y′ − y − µz〉 = ‖y′ − y‖2 − 2µ〈y′ − y, z〉+ µ2‖z‖2

= ‖y′ − y‖2 − 2µ‖y′ − y‖〈p, z〉+ µ2
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≤ ‖y′ − y‖2 − 2µ‖y′ − y‖(A− δ)‖z‖+ µ2

= ‖y′ − y‖2 − µ(2‖y′ − y‖(A− δ)− µ) < ‖y′ − y‖2.

Since ‖y′ − y‖ := dist(y′,M) the above inequality implies that y + µz does
not belong to M . This completes the proof of claim 1.

Claim 2. Let q ∈ Rn \ K, ‖q‖ = 1, µ > 0 and 0 < ε < µmin(1, δ
1+ρ/(2C) ).

Let z(·) be an arbitrary solution of (1) starting from the point y+ µq and defined
on [0, T ] such that z(t) ∈ V for every t ∈ [0, T ]. Then ‖y − z(t)‖ ≥ ε for every
t ∈ [0, T ].

P r o o f. Let z(·) be a solution of (1) starting from the point y+µq and defined
on [0, T ] such that z(t) ∈ V for every t ∈ [0, T ].

If 0 < t < µ−ε
C then

‖y − z(t)‖ =
∥∥∥y − z(0)−

T∫
0

ż(τ)dτ
∥∥∥

=
∥∥∥− µq − T∫

0

ż(τ) dτ
∥∥∥ ≥ µ− T∫

0

‖ż(τ)dτ‖ ≥ µ− tC > ε.

Since q 6∈ K we have that 〈p, q〉 < (A− δ)‖q‖. Moreover, the equalities A = ρ
2C ,

‖q‖ = 1, the choice of ε and (11) imply that if t ≥ µ−ε
C then

‖y − z(t)‖ ≥ 〈p, y − z(t)〉

= −µ〈p, q〉 −
t∫

0

〈p, ż(τ)dτ〉 > µ

(
δ − ρ

2C

)
‖q‖+

tρ

2

≥ µ
(
δ − ρ

2C

)
+

(µ− ε)ρ
2C

= µδ − ερ

2C
> ε.

Both considered cases complete the proof of claim 2.
Let us fix a real µ, 0 < µ < D, such that x 6∈ B(y, µ) ⊂ V . Since y ∈ ∂M there

exists a point yε ∈M ∩B(y, µ) such that ‖yε − y‖ < min(ε, µ). The definition of
a complete forward invariant set with respect to (1) and to x implies that there
is a solution zε(·) of (1) defined on an interval [0, Tε] such that

z(0) = x, z(Tε) = yε, z(t) ∈M, t ∈ [0, Tε].

The continuity of z(·) and our choice of yε imply that the compact subset

NT = {t ∈ [0, Tε] : ‖z(t)− y‖ = µ}

of [0, Tε] is not empty. Let t = max{t : t ∈ NT }. Then z(t) ∈ B(y, µ)∩V for every
t ∈ [t, Tε]. We set

q :=
z(t)− y

µ
.
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If q ∈ K, then claim 1 implies that z(t) = y + µq 6∈ M . But this is impossible.
Hence q ∈ Rn \K. Then according to claim 2 we obtain

‖y − yε‖ = ‖y − z(Tε)‖ ≥ ε,
which contradicts the choice of yε.

C a s e III: M ⊃ {x} and y = x. Let us fix an arbitrary element p ∈ N⊥M (x)
and let x′ 6∈ M be such that x ∈ PM (x′) and p = x′−x

‖x′−x‖ . As in case II, one can
prove the existence of a compact neighborhood V of x such that

(12) max
v∈F (z)

〈p, v〉 ≤ −ρ/2

for every point z ∈ V . We define the set

L = {z ∈ Rn : 〈p, z〉 ≥ A‖z‖},
where A := ρ

2C . It can be directly checked that L is a convex closed cone in Rn.

Claim 3. There exists a positive T such that every solution z(·) of (1) starting
at x and defined in [0, T ] satisfies the inequality

〈p, x− z(t)〉 ≥ tρ/2.
P r o o f. Without loss of generality (according to A1 and A2), we may think

that
max{v ∈ F (z) : z ∈ V } ≤ C.

Let us fix a real T > 0 such that

{z ∈ Rn : ‖z − x‖ ≤ CT} ⊂ V.
Let z(·) be an arbitrary solution of (1) starting from x and defined on [0, T ]. Then
for every t ∈ [0, T ],

‖z(t)− x‖ =
∥∥∥ t∫

0

ż(τ)dτ
∥∥∥ ≤ tC,

which means that z(t) ∈ V for every t ∈ [0, T ]. But then (12) implies that

〈p, x− z(t)〉 = −
t∫

0

〈p, ż(τ)dτ〉 ≥ −
t∫

0

max
v∈F (z(t))

〈p, v〉dτ ≥ tρ

2
.

This completes the proof of claim 3.

Since x ∈M and M is complete forward invariant with respect to (1) and x,
there exists a solution zx(·) of (1) defined on some interval [0, Tx] such that

zx(0) = x, zx(Tx) = x, zx(t) ∈M, t ∈ [0, Tx].

If we suppose that Tx ≤ T then claim 3 implies that ‖x − zx(Tx)‖ ≥ Txρ/2.
But this is impossible because of the relation zx(Tx) = x.

Therefore Tx > T . Then the inequalities ‖x − zx(T )‖ ≥ Tρ/2 > 0 imply the
existence of a compact neighborhood W of x such that zx(T ) 6∈ W . Continuing
as in case II, we find that case III is also impossible.
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So, we have considered all possible cases obtaining a contradiction in each
case. This shows that our assumption (that the relation (8) is not valid) is false.
This completes the proof of theorem 2.2.

3. Homogeneity and small-time local controllability. Because of the
difficulties connected with the study of reachable sets of nonlinear control sys-
tems, it seems reasonable to consider some relatively simple class of them. In our
opinion, one possible choice is the class of systems which are “homogeneous” with
respect to some dilation. This class of nonlinear systems represents the so called
“graded approximations” of smooth control systems. These approximations lead
to computationally feasible results in the fields of differential equations and con-
trol theory. Roughly speaking these approximations retain information relevant to
the study of “structurally stable” properties associated with the original system.

First we give some definitions which we use further (for details cf. [3], [7] etc.).
Let m = (m1, . . . ,mn)T be a vector of positive integers and ε be a positive

real. A map δmε : Rn → Rn, for which δmε (x1, . . . , xn) = (εm1x1, . . . , ε
mnxn), is

called a dilation. A function h : Rn → R is called homogeneous of degree s with
respect to δmε if h(δmε x) = εsh(x) for some positive integer s.

Let k ≥ max{mi : 1 ≤ i ≤ p}. The dual dilation δ∗mk,ε : Rn → Rn is defined by
δ∗mk,ε (p1, . . . , pn) = (εk−m1p1, . . . , ε

k−mnpn).
Let us recall the following maps (defined in the previous section):

H(p, x) = {〈p, v〉 : v ∈ F (x)} and H∗(p, x) = max{r : r ∈ H(p, x)},

where x ∈ Rn and p ∈ Rn.

Definition 3.1. H∗ (as well as the underlying control system) is homoge-
neous with respect to (δmε , δ

∗m
k,ε ) if H∗(δ∗mk,εp, δ

m
ε x) = εsH∗(p, x) for some positive

integer s.

Next we show how to apply the obtained results for studying the STLC prop-
erty of homogeneous control systems at the origin. The main idea is the following:
We look for a complete forward invariant set with respect to the control system
and to the origin of the following type:

M = {x ∈ Rn : G(x) ≤ 0},

where G : Rn → R is a suitable chosen function.
The homogeneity of H∗ with respect to the dilation δmε (x) and its dual dilation

δ∗mk,ε (p) implies that we should seek a homogeneous solution of (8) (cf. [7], p. 259).
This means the following: Assuming that y ∈ ∂M and that G is analytic in an
open neighborhood of y, we look for a function G which could be represented as a
finite linear combination of monomials homogeneous of degree k with respect to
δmε . Let dG(y) denote the gradient of G at the point y. Assuming that dG(y) 6= 0,
we have dG(z) 6= 0 when z belongs to some neighborhood Γy of y. Since in this
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case N⊥M (z) = dG(z), the relation (8) becomes

(13) H∗(dG(z), z) = 0, z ∈ Γy ∩ ∂M.

From this relation we could try to find the unknown function G. Suppose that
there exists a locally Lipschitz function which coincides with the homogeneous
functions found as above on the corresponding neighborhoods Γ . Applying the
next proposition 3.1, we could prove the forward invariance of M . And hence, if
the origin belonged to the boundary of M , then this system could not be STLC
at the origin.

Proposition 3.1. Let G : Rn → R be a locally Lipschitz function, Gi : R→
R, i = 1, . . . , s, be continuously differentiable functions, z ∈ Rn,

(14) M = {x ∈ Rn : G(x) ≤ G(z)}, 0 6∈ ∂G(x) for every x ∈M.

Let us assume that if G is differentiable at a point y of ∂M , then

(15) dG(y) ∈ {dGi(y) : i = 1, . . . , s} and H∗(dGi(y), y) ≤ 0, i = 1, . . . , s.

Then M is forward invariant with respect to (1).

P r o o f. Let y be an arbitrary point of the set ∂M such that N⊥M (y) 6= ∅ and p
be an arbitrary element of the set N⊥M (y). Then proposition 2.5.7 and corollary 1
of theorem 2.4.7 in [5] imply that there exist λ > 0 such that λp ∈ ∂G(y). From
theorem 2.5.1 of [5] we see that there exist positive reals αi > 0, i = 1, . . . , β,∑β
i=1 αi = 1 and sequences {yµi }∞µ=1, limµ→∞ yµi = y, i = 1, . . . , β, such that

λp =
∑β
i=1 αi limµ→∞ dG(yµi ). Then (15) implies that

max
v∈F (y)

λ〈p, v〉 = λ max
v∈F (y)

β∑
i=1

αi〈 lim
µ→∞

dG(yµi ), v〉

≤ λ
β∑
i=1

αi max
v∈F (y)

lim
µ→∞

〈dG(yµi ), v〉

≤ λ
β∑
i=1

αi max
v∈F (y)

lim
µ→∞

max{〈dGj(yµi ), v〉 : j = 1, . . . , s}

= λ

β∑
i=1

αi max
v∈F (y)

max{〈dGj(y), v〉 : j = 1, . . . , s} ≤ 0.

Applying theorem 2.1, we complete the proof.

R e m a r k 3.1. Analogously, if G : Rn → R is a locally Lipschitz function,
z ∈ Rn,

(16) M = {x ∈ Rn : G(x) ≥ G(z)}, 0 6∈ ∂G(x) for every x ∈M,
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and assuming that if G is differentiable at a point y from ∂M , then

(17) dG(y) ∈ {dGi(y) : i = 1, . . . , s} and H∗(−dGi(y), y) ≤ 0, i = 1, . . . , s,

it can be proved that M is forward invariant with respect to (1).

As an application, we investigate the STLC property of the following three-
dimensional polynomial control system (Σ):

ẋ = u, x(0) = 0,
ẏ = x, y(0) = 0,

ż = y2 −Ax4, z(0) = 0,

where u ∈ [v, w], v < 0 < w.
To our knowledge, this control system is considered in the literature only in

the case w = −v. First it was shown that this system is STLC at the origin for
sufficiently large values of w (cf. [13]). In [9] it is proved that this system is not
STLC at the origin when Av2 ≤ 2

3 and it is claimed that this system is STLC
at the origin in the contrary case. In what follows we show what happens when
u ∈ [v, w], v < 0 < w.

Let us assume that w > 0 and Aw2 > 2
3 (the case when v < 0, Av2 >

2
3 can be considered in the same way). Setting m = (1, 2, 5)T and k = 5, we
define the dilation δmε (x, y, z) = (εx, ε2y, ε5z) and its dual dilation δ∗mk,ε (p, q, r) =
(ε4p, ε3q, r). For this system we have

H(x, y, z, p, q, r, u) = pu+ qx+ r(y2 −Ax4)

and hence,

H∗(x, y, z, p, q, r) =
{
pw + qx+ r(y2 −Ax4) if p ≥ 0,
pv + qx+ r(y2 −Ax4) if p ≤ 0.

It can be calculated that

H∗(δmε (x, y, z), δ∗mk,ε (p, q, r)) = ε4H∗(x, y, z, p, q, r).

This means that H∗ is homogeneous of degree s = 4 with to respect to the
dilation δmε (x, y, z) and its dual dilation δ∗mk,ε (p, q, r). For that reason we look for
a complete invariant set M of the form

M = {(x, y, z) : G(x, y, z) ≥ 0}

where G is a continuous function homogeneous of degree k = 5 with respect to the
dilation δmε . For this choice of M we have N⊥M (x, y, z) = −dG(x, y, z) for every
point (x, y, z) ∈ Rn where the function G is differentiable.

Assuming that (x0, y0, z0) ∈ ∂M and G is analytic in a neighborhood Γ of
(x0, y0, z0), we represent G as a linear combination of homogeneous monomials:

G(x, y, z) = z +Bxy2 + Cx3y +Dx5, (x, y, z) ∈ Γ.
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There are two homogeneous functions Gw and Gv satisfying (13). We find them
as follows: It can be directly checked that

dG(x, y, z) = (By2 + 3Cx2y + 5Dx4, 2Bxy + Cx3, 1),

and −dG(x, y, z) = N⊥M (x, y, z).
First we consider the case when

(18) p = −∂G
∂x

(x0, y0, z0) > 0.

Then−∂G/∂x(x, y, z) > 0 in a (possibly smaller) open neighborhood of (x0, y0, z0)
which we denote by Γ too. The condition (13) implies that

−(Bwy2 + 3Cwx2y + 5Dwx
4)w − (2Bwxy + Cwx

3)x− (y2 −Ax4) = 0,

i.e.
(Bw + 1)y2 + (3Cww + 2B)x2y + (5Dw + 2C +A)x4 = 0.

Since x and y take infinitely many values in Γ ∩ ∂M , the last equality implies
that

(19)
Bw = − 1

w
< 0, Cw = − 2

3w
Bw =

2
3w2

,

Dw =
1

5w
(A− C) =

1
5w

(
A− 2

3w2

)
.

The relation (18) reduces to the inequality

Bwy
2 + 3Cwx2y + 5Dwx

4 ≤ 0,

which is satisfied for every w for which y/x2 (x 6= 0) does not belong to the
interval [R−w , R

+
w ], where

R±w =
1±

√
1
3 +Aw2

w
.

So, if x 6= 0 and y/x2 6∈ [R−w , R
+
w ] then

Gw(x, y, z) = z +Bwxy
2 + Cwx

3y +Dwx
5

where Bw, Cw and Dw satisfy (19).
As above, one can show that if x 6= 0 and y/x2 6∈ [R−v , R

+
v ], where

(20) R±v =
1±

√
1
3 +Av2

v
.

then
Gv(x, y, z) = z +Bvxy

2 + Cvx
3y +Dvx

5,

where Bv, Cv and Dv satisfy the relations

(21) Bv = −1
v
< 0, Cv = − 2

3v
Bv =

2
3v2

, Dv =
1
5v

(A− C) =
1
5v

(
A− 2

3v2

)
.
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We set

s =

√
1
3

+Aw2 > 1, K =
1− s
w

< 0, vc =
w

2− 3S
>

1
2K

,

and consider the following cases:
C a s e I: 0 > v ≥ vc. We assert that in this case the control system (Σ) is not

STLC at the origin. Clearly, it is sufficient to prove this only for the case v = vc.
The proof is based on remark 3.1. We construct a locally Lipschitz continuous
function Gc by setting

Gc(x, y, z) =
{
Gw(x, y, z) if y ≤ Kx2,
Gv(x, y, z) if y ≥ Kx2.

If Gc is differentiable at the point (x, y, z) then

dG(x, y, z) ∈ {dGw((x, y, z), dGv((x, y, z)}
and therefore ∂G

∂z (x, y, z) = 1. According to theorem 2.5.1 of [5] we find that
0 6∈ ∂G(x, y, z) for every point (x, y, z) ∈ R3.

Since the roots of the equation z2 − 2z/w + 1/w2(2/3−Aw2) = 0 are

z1,2 = (1± (1/3 +Aw2)1/2)/w,

and K = z1, we have

(22) 〈−dGTw(x, y, z), (u, x, y2 −Ax4)〉
= −(w − u)/w[y2 − 2yx2/w + x4/w2(2/3−Aw2)] ≤ 0

for every (x, y, z) such that y ≤ Kx2. Taking into account that Aw2 = s − 1/3,
it can be calculated that

(23) K = [1− (1/3 +Av2
c )1/2]/vc.

Since the roots of the equation z2 − 2z/vc + 1/vc2(2/3−Avc2) = 0 are

z1,2 = (1± (1/3 +Avc
2)1/2)/vc,

and K = z2 (cf. (23)) we have

(24) 〈−dGTvc
(x, y, z), (u, x, y2 −Ax4)〉

= −(vc − u)/vc[y2 − 2yx2/vc + x4/vc
2(2/3−Avc2)] ≤ 0

for every (x, y, z) such that y ≥ Kx2.
The inequalities (22) and (24) show that the inequalities for H∗ of remark 3.1

are satisfied.
The relation Gw(x,Kx2, z) = Gvc(x,Kx2, z) implies the continuity of Gc. So,

we found that Gc(·) is a continuous piecewise analytic function (hence, it is locally
Lipschitz) such that 0 6∈ ∂G(x, y, z) for every point (x, y, z) ∈ R3. According to
remark 3.1 we conclude that the control system (Σ) is not STLC at the point 0.

C a s e II: v < vc. We show that the control system (Σ) is STLC at the origin.
Let q(·) be an arbitrary periodic trajectory for which the control u satisfies the
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following feedback law:

u(x, y, z) =
{
w if y ≤ Kx2,
v if y > Kx2.

It can be directly checked that the function Gc is strictly decreasing along q(·).
Then we construct the following admissible trajectory:

(i) using the control function u(·) ≡ w we start from the point (0, 0, 0) and
reach the periodic trajectory q(·);

(ii) using the control satisfying the feedback law defined above we make N
turnovers along the periodic trajectory q(·);

(iii) using the control u(·) ≡ v and starting from a suitable point of the periodic
trajectory q(·), we reach a point P = (xp, yp, zp) for which xp = yp = 0.

It can be checked directly that zp < 0 for sufficiently large values of N . It is
trivial to show that there exist A±, B±, A > 0 and B > 0 such that the points

(0, 0, A), (±A, 0, A±), (0,±B,B±)

belong to the reachable set starting from the origin for some positive time. Then
lemma 3 of [2] implies that the control system (Σ) is STLC at the origin.

In such a way we proved the following

Proposition 3.2. Let us consider the control system (Σ).

(i) If Av2 ≤ 2
3 and Aw2 ≤ 2

3 then (Σ) is not STLC at the origin.
(ii) Let Aw2 > 2

3 . We set

Sw =

√
1
3

+Aw2 > 1, Kw =
1− Sw
w

< 0, 0 > vc =
w

2− 3Sw
>

1
2Kw

.

Then
• if v < vc the system (Σ) is STLC at the origin;
• if v ≥ vc the system (Σ) is not STLC at the origin.
(iii) Let Av2 > 2

3 . We set

Sv =

√
1
3

+Av2 > 1, Kv =
1− Sv
v

> 0, 0 < wc =
v

2− 3Sv
<

1
2Kv

.

Then
• if w > wc the system (Σ) is STLC at the origin;
• if w ≤ wc the system (Σ) is not STLC at the origin.
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