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Abstract. In this expository paper we present main results (from classical to recent) on
local classification of smooth distributions.

0. Introduction. This paper is devoted to the classification of germs of
smooth generic k-distributions on an n-manifold Mn (k-dimensional subbundles
of the tangent bundle TM) with respect to the natural equivalence (section 1).
We assume that k ≥ 2 (if k = 1 then we deal with fields of lines; all fields of lines
are locally equivalent).

The first arising question is the following: is the codimension of the orbit of
the germ at a generic point of a generic k-distribution on Mn

a) 0 (in this case the germ is stable and reducible to a model, i.e. a normal
form without parameters),

b) finite (in this case the germ is finitely determined and reducible to a poly-
nomial normal form; it might be both stable and unstable),

c) infinite (in this case functional moduli appear, and the germ is always
unstable).

It turns out that for generic germs the answer is either a) or c) depending on
the pair (k, n). The answer is a) if and only if k = n − 1 or k = 2, n = 4. In
the first case all generic germs are equivalent to the Darboux-Pfaff model. The
second case is also classical, but not so well-known. The equivalence of all generic
germs of 2-distributions on M4 was proved by Engel 100 years ago. The Darboux
and Engel models are given in section 2.

If 2 ≤ k ≤ n − 2 and (k, n) 6= (2, 4) then functional moduli appear: though
it seems that the latter was known at the beginning of the century the proof
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appeared only recently (B. Jakubczyk and F. Przytycki (1984); A. Vershik and
V. Gershkovich (1988)). The proof is based on simple “dimensional arguments”
and we repeat it in section 3. Asymptotically exact formal normal forms (normal
forms on the level of formal series containing the “right number” of functional
parameters) are given in section 4. They were obtained in the author’s paper,
1991. Recently it was proved that the same normal forms hold for 2-distributions
(R. Bryant and L. Hsu (1993)) and for 3-distributions on M5 (R. Bryant (1994)).

If the initial problem is the classification of distributions of some fixed struc-
ture then a generic germ might be stable for all (k, n). To each distribution one
can associate the growth vector (at any point). The growth vector of a generic
k-distribution on Mn is a fixed sequence depending on k and n only (section 5).
One can fix a different growth vector and consider the space of distributions on
Mn with this growth vector at every point. Distributions whose growth vector is
the same at all points are called regular. The simplest example of a regular dis-
tribution is an involutive k-distribution (the growth vector is (k, k, . . .)). By the
Frobenius theorem all involutive k-distributions are locally equivalent. It turns
out that the same is true for regular distributions whose growth vector belongs
to a certain set. Classification results for regular distributions were obtained by
A. Vershik and V. Gershkovich (1989), by A. Kumpera and C. Ruiz (1982), and
by the author (1990); we present some of them in section 6.

Another direction in the classification of distributions is related to the singu-
larities of fields of hyperplanes. Given a generic (n − 1)-distribution D on Mn

denote by S the subset of Mn consisting of points at which the germ of D is not
generic, i.e. is not equivalent to the Darboux model (this means that the Darboux
genericity conditions are violated). The first who considered germs at points of S
was J. Martinet (1970). Martinet showed that

1) S is a submanifold (for large n it can be stratified);
2) codimS = 1 if n is odd, and codimS = 3 if n is even;
3) if n is odd then the germ of D at a generic point of S is reducible to a

normal form without parameters (Martinet model).

In the even-dimensional case there is at least one numerical invariant (Mormul
(1988)). Normal forms of germs of (2k−1)-distributions on M2k at generic points
of S were obtained by the author (1988, 1992).

In the 3-dimensional case S is a surface, and Martinet genericity conditions
are violated at isolated points of S. Martinet conjectured that the germ of D at
each of these isolated points is stable, but B. Jakubczyk and F. Przytycki showed
(1979) that this is not true: there exists at least one numerical invariant. Later
the author proved (1989, 1992) that there are no other invariants and obtained a
polynomial normal form. So, the classification of typical singularities of fields of
planes on M3 is completed. Main results are given in section 8.

In sections 7 and 9 we present classification results and geometry of singular-
ities for fields of hyperplanes on Mn, n ≥ 4. A complete list of stable germs and
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a complete list of finitely determined typical singularities were obtained in the
author’s works (1989, 1990, 1992).

Results concerning singularities of 2-distributions on M4 were announced in
the author’s paper (1990a). We present them in section 10. The set of points at
which the germ of a generic distribution is not equivalent to the Engel model is the
union of two 2-dimensional surfaces; these surfaces are not transversal and their
intersection is a curve. One of the surfaces contains another curve invariantly
related to the distribution; the germ at any point outside the curves is stable;
classification of the other germs contains functional moduli.

Sections 11 and 12 contain complete lists of all stable germs and all finitely
determined germs of k-distributions on Mn, for all k and n.

The classification results for smooth distributions have a number of appli-
cations for control theory, PDE’s, contact geometry. Recently the normal forms
were fruitfully applied to the problems of the sub-Riemannian geometry (R. Mont-
gomery (1993), R. Bryant and L. Hsu (1993), W. Liu and H. Sussmann (1994)).

1. Local equivalence of smooth distributions. All objects considered
below are assumed to be smooth (of class C∞).

1.1. A smooth k-distribution on an n-dimensional manifold Mn is a smooth k-
dimensional subbundle of the tangent bundle, i.e. a family {Σ(α) ⊂ TαMn}α∈Mn ,
where the subspace Σ(α) depends smoothly on the point α.

1.2. For example, a 1-distribution is a field of directions, an (n−1)-distribution
is a field of hyperplanes.

1.3. A k-distribution Σ on Mn can be given (at least locally) as a k-generated
module Σ=V = (v1, . . . , vk) of vector fields (over the ring of smooth functions) or
as an (n− k)-generated module Σ = W = (w1, . . . , wn−k) of differential 1-forms
(Pfaffian system). Then Σ(α) = V (α) or Σ(α) = W (α) where V (α) is a subspace
generated by the tangent vectors v1(α), . . . , vk(α), and W (α) is the subspace of
tangent vectors annihilated by the functionals w1|α, . . . , wn−k|α.

1.4. In order to classify distributions we have to find a suitable coordinate
system and suitable generators of the module (v1, . . . , vk) or (ω1, . . . , ωn−k) such
that the generators have form as simple as possible. This problem has a number
of applications (for control theory, partial differential equations, non-holonomic
dynamics, contact geometry).

1.5. It follows from 1.3 that a precise definition of local equivalence of distri-
butions should involve local equivalence of modules of vector fields or differential
1-forms. We call two germs of modules V and Ṽ of vector fields equivalent if there
exists a local diffeomorphism Φ such that Φ∗V = Ṽ . The latter equality means
that Φ carries the germ of any vector field from V to the germ of some vector
field from Ṽ , and Φ−1 carries the germ of any vector field from Ṽ to the germ of
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some vector field from V . The definition of local equivalence of Pfaffian systems
(modules of differential 1-forms) is similar.

1.6. There exists another, equivalent definition of the local equivalence of mod-
ules of vector fields or Pfaffian systems which is more convenient for applications.
Two local r-generated modules (g1, . . . , gr) and (g̃1, . . . , g̃r) are called equivalent
if there exists a local diffeomorphism Φ and a nondegenerate r× r matrix valued
function H such that

Φ.[g1, . . . , gr] = [g̃1, . . . , g̃r]H
(equality of two tuples). Here Φ. = Φ∗ for modules of vector fields, Φ. = Φ∗ for
Pfaffian systems, Φ.[g1, . . . , gr] = [Φ.g1, .., Φ.gr].

This definition is independent of the choice of the generators of the modules
and is equivalent to the definition of 1.5, even if the dimension of distributions is
not constant (Jakubczyk, Przytycki (1984): Appendix).

1.7. For example, two local (n−1)-distributions (fields of planes) (ω) and (ω̃)
are equivalent if and only if there exists a local diffeomorphism Φ and a germ H
of a nonvanishing function such that Φ∗ω = Hω̃.

2. Classical classification results

2.1. The simplest classification holds in the case k = 1 (fields of directions). A
1-distribution is generated, in suitable coordinates, by the vector field ∂

∂x1
(this

follows from the basic theorem on systems of ODE’s).

2.2. The case k = n−1 (fields of hyperplanes) is also classical, but it is much
more difficult. It follows from Darboux theorems on classification of differential
1-forms that a generic germ (1) of a field of hyperplanes on Mn is equivalent to
the Pfaffian equation

W = (dz + x1dy1 + . . .+ xkdyk) (n = 2k + 1),(2.1)
W = (dy1 + x2dy2 + . . .+ xkdyk) (n = 2k)(2.2)

(in suitable coordinates z, x1, y1, . . . , xk, yk if n = 2k + 1 and x1, y1, . . . , xk, yk if
n = 2k).

2.3. Distribution (2.1) (resp. (2.2)) is called the standard contact (resp. quasi-
contact) structure. The germ at a generic point of a generic globally defined field
of hyperplanes on an odd- (resp. even-) dimensional manifold is equivalent to
(2.1) (resp. (2.2)).

2.4. There exists one more classical case investigated by Engel (Engel, 1889):
the case k = 2, n = 4. Engel proved that a generic germ of 2-distribution on R4

(1) We say that a statement holds for a generic germ if there exists an integer l and an open
dense subset Q of the space of l-jets such that the statement is true for all germs whose l-jet
belongs to Q. The genericity conditions under which a germ is reducible to one of the normal
forms below are given in sections 7–10.
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is equivalent to

(2.3) V =
(

∂

∂x2
,
∂

∂x1
+ x3

∂

∂x4
+ x2

∂

∂x3

)
or, in terms of Pfaffian systems,

(2.4) W = (dx4 − x3dx1, dx3 − x2dx1).

3. Functional moduli in the non-classical cases
(Jakubczyk and Przytycki (1984); Vershik and Gershkovich (1988))

3.1. By the non-classical cases we mean the local classification problem for
k-distributions on Mn, where 2 ≤ k ≤ n− 2, and (k, n) 6= (2, 4). In the classical
cases normal forms of generic germs are simple (contain no parameters); in the
non-classical cases it is not so, and, moreover, functional moduli appear even in
the classification of generic germs. This means that the orbit (equivalence class) of
a generic germ has infinite codimension in the space of all germs. The arguments
showing this are as follows.

3.2. To give a germ of a k-generated module of vector fields on Rn in local
coordinates one has to present kn functions in n variables. This means that the
functional dimension d1 of the space of all k-generated modules of vector fields
on Rn is equal to kn. Two modules are equivalent if the corresponding tuples
of generators are equivalent with respect to the action of the product of two
groups—the group of changes of coordinates and the group of nondegenerate
k × k matrix valued functions (see 1.6). A change of coordinates is defined by n
functions in n variables, therefore the functional dimension d2 of the group of all
possible transformations is equal to k2 + n. Simple arguments (based on the fact
that local classification of germs includes algebraic classification of jets of any
finite order) show that the codimension of any germ’s orbit is infinite if d2 < d1,
i.e. k2 + n < kn. It is easy to see that this inequality holds true for all the pairs
(k, n) such that k ≤ n except the classical cases k = 1, k = n−1 and k = 2, n = 4.

4. Normal forms of generic germs in the non-classical cases
(Zhitomirskĭı (1991); Bryant and Hsu (1993); Bryant (1994))

4.1. The attempt to obtain a complete classification of generic germs for the
non-classical pairs (k, n) seems to be hopeless. On the other hand, it is possible to
obtain asymptotically exact normal forms, which are valuable for applications. By
an asymptotically exact normal form we mean a family N of germs, parametrized
by a tuple of functions in n variables, such that a generic germ of a distribution is
formally (i.e. on the level of formal series) equivalent to some (not unique) germ
of N , and the number pk of numerical parameters of the family jkN (k-jets of the
germs from N) grows asymptotically (as k →∞) in the same way as the number
of modules mk appearing in the classification of the k-jets of generic germs, i.e.
pk/mk = 1 + o(1) as k → ∞. An asymptotically exact normal form N cannot



400 M. ZHITOMIRSKĬI

be essentially simplified (though two germs from N might be equivalent). Using
the arguments of section 3 one can conclude that a family N is an asymptotically
exact normal form if any germ is equivalent to some germ of N , and the elements
of N are parametrized by a tuple of kn− n− k2 functions in n variables.

4.2 (Zhitomirskĭı (1991)). Asymptotically exact normal forms of generic germs
of k-distributions on Mn are as follows. Let p = n − k (the codimension of a
distribution), s = [k/2]. Define

ω1 = dx1 +
s∑
j=1

xp+2j−1dxp+2j ,

ω2 = dx2 +
n∑

j=p+3

f2,j(x)dxj if k ≥ 3,

ω2 = dx2 + x2
n−1dxp+2 +

n∑
j=p+3

f2,j(x)dxj if k = 2,

ωm = dxm +
n∑

j=p+2

fm,j(x)dxj , m = 3, . . . , p.

Then the family of Pfaffian systems (ω1, . . . , ωp), with the functional parameters

f2,p+3, . . . , f2,n, f3,p+2, . . . , f3,n, . . . , fp,p+2, . . . , fp,n,

is an asymptotically exact normal form of generic germs of k-distributions on Mn.

4.3. Consider a particular case of 2-distributions. In this case it is more conve-
nient to give an asymptotically exact normal form in terms of vector fields. From
normal form in 4.2 one can pass to the normal form(

∂

∂x1
,

∂

∂x2
− x1

∂

∂x3
− x2

1

∂

∂x4
− f1(x)

∂

∂x5
− . . .− fn−4(x)

∂

∂xn

)
with functional parameters f1, . . . , fn−4.

If n = 4 then this normal form contains no parameters and is equivalent to
Engel’s normal form given in 2.4.

4.4. Consider another particular case of (2n − 1)-distributions on R2n+1,
n ≥ 2. In this case the normal form in 4.2 is as follows:

(dx1 + x3dx4 + x5dx6 + . . .+ xn−2dxn−1,

dx2 + f1(x)dx5 + f2(x)dx6 + . . .+ fn−4(x)dxn)

if n is odd, and

(dx1+x3dx4+x5dx6+. . .+xn−1dxn, dx2+f1(x)dx5+f2(x)dx6+. . .+fn−4(x)dxn)

if n is even.
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4.5. One more example: k = 3, n = 5. In this case the normal form contains
one functional parameter, and a distribution is equivalent to the Pfaffian system

(dx1 + x3dx4, dx2 + f(x)dx5).

4.6. Conjecturally, a generic germ is equivalent to a normal form given in 4.2
not only formally, but also smoothly. This is proved by R. Bryant and L. Hsu for
2-distributions (1993); answering the author’s question R. Bryant also proved that
a generic germ of a 3-distribution on M5 is smoothly equivalent to the normal
form given in 4.5.

5. Growth vector. Regular distributions

5.1. Classification of distributions of some fixed structure might contain no
functional moduli. For example, any involutive k-distribution (i.e. a module of
vector fields which is a Lie algebra) is locally equivalent to ( ∂

∂x1
, . . . , ∂

∂xk
).

5.2. We will consider distributions of more general structure: regular distribu-
tions with a fixed growth vector (the involutive case is the case of trivial growth
vector).

Let V = (v1, . . . , vk) be a module of local vector fields on Mn. Let V1 = V ,
and V2 be the minimal module containing all vector fields from V1 and all their Lie
brackets (for example, if k = 2 then V2 is generated by v1, v2 and [v1, v2]). We will
write V2 in the form V2 = [V1, V1]. Define now V3 = [V2, V1], i.e. V3 is a minimal
module of vector fields containing the fields from V1, V2 and all the Lie brackets
[v, µ], v ∈ V1, µ ∈ V2. Define in the same way Vi = [Vi−1, V1], i = 4, 5, . . . We
have a sequence of modules V1 ⊂ V2 ⊂ V3 ⊂ . . . The sequence ai(α) = dim Vi(α)
is called the growth vector of V at the point α. A distribution V is called regular
if all the modules Vi define distributions, i.e. ai(α) does not depend on a point
α ∈ Mn (examples below show that this is not always true even for generic
distributions on Mn).

The sequence ai = dimVi stabilizes for any regular distribution V (there exists
m such that am = am+1). The growth vector of a regular distribution is denoted
by (a1 = k, a2, . . . , am). If am = n then the distribution is called non-holonomic
or bracket generating.

5.3. A generic germ of a k-distribution inRn is regular and bracket generating.
It has a so-called maximal growth vector (it depends just on k and n). If (k, n) =
(2, 6) then the growth vector is (2, 3, 5, 6). If (k, n) = (2, 9) then the growth vector
is (2, 3, 5, 8, 9).

5.4. Let us consider some examples of 2-distributions on R4. The distribution
(2.3) has the growth vector (2, 3, 4) at every point of R4, therefore it is regular.
The distribution

(5.1)
(
v1 =

∂

∂x3
, v2 =

∂

∂x4
− x2

3

∂

∂x1
− x3x4

∂

∂x2

)
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has the growth vector (2, 3, 4) at a generic point of R4 (x3 6= 0 or x4 6= 0), and
the growth vector (2, 2, 4) at points of the plane x3 = x4 = 0.

The distributions

(5.2)
(
v1 =

∂

∂x3
, v2 =

∂

∂x4
− x3

∂

∂x1
− x2

3x4
∂

∂x2

)
,

and

(5.3)
(
v1 =

∂

∂x3
, v2 =

∂

∂x4
− x3

∂

∂x1
− (x3

3/3 + x3x
2
4)

∂

∂x2

)
have the growth vector (2, 3, 4) at a generic point of R4 (x3 6= 0 or x4 6= 0), and
the growth vector (2, 3, 3, 4) at points of the plane x3 = x4 = 0.

Therefore distributions (5.1)–(5.3) are not regular. Nevertheless, they corre-
spond to typical singularities of 2-distributions on M4 (see section 10).

6. Classification results for regular distributions

6.1 (Zhitomirskĭı (1990)). Let WA be the set of germs of all regular completely
non-holonomic k-distributions (k ≥ 2) on Mn having the growth vector A (the
first coordinate of A is equal to k, the last one is equal to n). There are three
types of the growth vector A such that the classification of generic germs within
WA contains no functional moduli. They are as follows.

1) A = (n − 1, n). It follows from the Darboux theorem that a generic germ
of DA is equivalent to (2.1) or (2.2).

2) A = (n− 2, n− 1, n), n ≥ 4. All germs from D(n−2,n−1,n) are equivalent to
the germ (

∂

∂x2
,

∂

∂x1
+ x3

∂

∂x4
+ x2

∂

∂x3
,

∂

∂y1
, . . . ,

∂

∂yn−4

)
.

3) A = (n − 3, n − 2, n − 1, n), n ≥ 5. All germs from D(n−3,n−2,n−1,n) are
equivalent to the germ(

∂

∂x2
,

∂

∂x1
+ x4

∂

∂x5
+ x3

∂

∂x4
+ x2

∂

∂x3
,

∂

∂y1
, . . . ,

∂

∂yn−5

)
.

6.2 (Vershik and Gershkovich (1989), Zhitomirskĭı (1990)). Classification of
germs of regular distributions having a fixed growth vector of any other type
contains functional moduli.

6.3. For regular distributions on R3 and R4 we can formulate classification
results stronger than in 6.1. If n = 3 or n = 4 then all germs of regular bracket
generating k-distributions on Mn are equivalent (the pair (k, n) is the only in-
variant) to the germ dz + xdy (k = 2, n = 3), or dx1 + x2dy2 (k = 3, n = 4, the
coordinate x1 does not occur), or to the germ (2.3) (k = 2, n = 4). This follows
from genericity conditions under which a germ is equivalent to Darboux or Engel
normal forms (we discuss the genericity conditions in sections 7–10).
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6.4. The classification results above are based on the following reduction the-
orem. Let V = (v1, . . . , vk) be a regular bracket generating distribution on Mn.
Assume that k ≤ n−2 and dim[V, V ] = dimV +1 (see 5.2). Then V is equivalent
to a distribution of the form(

v1(x), v2(x),
∂

∂y1
, . . . ,

∂

∂yk−2

)
,

where x = (x1, . . . , xn−k+2), vi(x) are vector fields of the form
∑
aij(x) ∂

∂xj
.

6.5. The Goursat condition. Given a module V of vector fields define a se-
quence of modules V (1), V (2), . . ., where V (1) = V , V (j+1) = [V (j), V (j)]. Note
that in the general case this sequence of modules differs from the sequence V1,
V2, . . . (see section 5). A distribution V on Mn satisfies the Goursat condition if
dimV (j+1)(p) = min(n, dimV (j)(p)+1) for all points p ∈Mn. The normal forms
given in section 6.1 correspond to the Goursat normal forms in terms of Pfaffian
systems (see Goursat (1923)). The results of section 6.1 do not follow from the
Goursat results since the Goursat normal forms fail for “exceptional” distributions
satisfying the Goursat condition (see, for example, Kumpera and Ruiz (1982)). If
(n − k) ≥ 4 then there is no general relation between regular distributions with
the minimal growth vector (k, k + 1, k + 2, . . . , n) and k-distributions satisfying
the Goursat condition (there are regular distributions with the minimal growth
vector which do not satisfy the Goursat condition, and there are non-regular dis-
tributions which satisfy the Goursat condition). If n − k = 3 then every regular
distribution with the minimal growth vector satisfies the Goursat condition, but
the converse is not true. If n − k ≤ 2 then a distribution satisfies the Goursat
condition if and only if it is a regular distribution with the minimal growth vector.
Classification results for distributions satisfying the Goursat condition can be
found in the work by A. Kumpera and C. Ruiz (1982).

7. Singularities of fields of hyperplanes on M2k+1, k ≥ 2

7.0. First occurring singularities were studied by J. Martinet (1970). Classi-
fication of degenerations of codimension ≤ 4 was obtained by the author (1989,
1992).

7.1. Let W =(ω) be a generic 2k-distribution on M2k+1. There exists a subset
R ⊂W , of codimension ≥ 4, such that the germ of W at any point of M2k+1−R
is equivalent to one and only one of the germs (2.1), (7.1), (7.2), (7.3), where
(7.1)–(7.3) are the following germs:

(7.1) (dy1 + x2dy2 + . . .+ xkdyk + x2
1dz),

(7.2) (dy1 + x2dy2 + . . .+ xkdyk + (x1y2 + x2
1z)dz),

(7.3) (dy1 + x2dy2 + . . .+ xkdyk + (x1y2 + x3
1/3 + x1z

2)dz).

Normal form (2.1) holds at generic points of M2k+1, normal form (7.1) at
generic points of a stratified codimension 1 submanifold S ⊂M2k+1, and normal
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forms (7.2) and (7.3) at generic points of a stratified codimension 2 submanifold
S1 ⊂ S (the codimension of S1 in M2k+1 equals 3).

7.2. Denote by S the set of points at which the form ω∧ (dω)k vanishes. The
germ at α ∈M2k+1 of W is equivalent to (2.1) if and only if α 6∈ S. The germ is
equivalent to (7.1) if and only if the following conditions hold true:

a) α ∈ S;
b) j1α(ω ∧ (dω)k) 6= 0;
c) (ω ∧ (dω)k−1)|α 6= 0;
d) Ker(ω ∧ (dω)k−1)|α + TαS = TαM

2k+1.

N o t e. If a point α satisfies b) and c) then S is a smooth hypersurface near
α, and dimKer(ω ∧ (dω)k−1)|α = 2.

7.3. Denote by S1 a subset of S consisting of points violating at least one of
the conditions b)–d). The germ of W at α ∈ S1 is equivalent to (7.2) or (7.3) if
and only if α satisfies b) and c), and

e) Ker(ω ∧ (dω)k−1)|α + TαS1 = TαS.

N o t e. Near a point α satisfying b) and c), S1 is a smooth codimension 2
submanifold of S.

7.4. To distinguish degenerations corresponding to (7.2) and (7.3) take a vol-
ume form µ on S and introduce a vector field X on S by the relation Xcµ =
(ω ∧ (dω)k−1)|S (we assume that the conditions b) and c) hold true). Any point
α violating d) is a singular point of X; the spectrum of X at α consists of (n− 3)
zero eigenvalues and two more eigenvalues λ1 and λ2 whose sum is zero. Therefore
only the following cases are possible: λ1 and λ2 are real non-zero numbers (the
hyperbolic case), λ1 and λ2 are pure imaginary numbers (the elliptic case), and
the parabolic case where both λ1 and λ2 are zero. The condition e) is equivalent
to the condition λ1λ2 6= 0, so it excludes the parabolic case. Normal form (7.2)
corresponds to the hyperbolic case, and normal form (7.3) to the elliptic one.

8. Singularities of fields of planes on M3

8.0. First occurring singularities were studied by J. Martinet (1970). A nu-
merical modulus corresponding to point singularities was found by B. Jakubczyk
and F. Przytycki (1979). Classification was completed by the author (1989, 1992).

8.1. The germ at any point of a generic 2-distribution W = (ω) on M3

is equivalent to one and only one of the germs (8.1), (8.2), (8.3), (8.4), where
(8.1)–(8.4) are the following germs:

(8.1) (dz + xdy),
(8.2) (dz + x2dy),
(8.3) (dy + (xy + x2z + bx3z2)dz),
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(8.4) (dy + (xy + x3/3 + xz2 + bx3z2)dz),

where b is an invariant distinguishing non-equivalent germs. Normal form (8.1)
holds at generic points of M3, (8.2) at generic points of a hypersurface S ⊂M3,
and (8.3), (8.4) at isolated points of S.

8.2. The germ is equivalent to (8.1) if and only if

a) (ω ∧ dω)|α 6= 0.

If the 2-distribution is given as a 2-module V = (v1, v2) of vector fields
then this condition is equivalent to the condition span(v1(α), v2(α), [v1, v2](α)) =
TαM

3.

8.3. A generic 2-distribution satisfies the condition

b) j1α(ω ∧ dω) 6= 0 for any α ∈M3.

This condition implies that the set S consisting of points violating a) is a
smooth surface. The germ at α ∈ S is equivalent to (8.2) if and only if b) holds,
and

c) Kerω|α 6= TαS.

8.4. Assume that b) holds. Take a volume form µ on S and define a vector
field v on S by the relation Xcµ = ω|S . Any point α ∈ S violating c) is a singular
point of X, the sum of the eigenvalues λ1 and λ2 of X at α is 0. The germ at
α ∈ S is equivalent to (8.3) (resp. (8.4)) if and only if b) holds, c) is violated,
and λ1 and λ2 are real non-zero (resp. pure imaginary) numbers.

9. Singularities of fields of hyperplanes on M2k

9.0. It was proved by J. Martinet (1970) that first occurring degenerations
have codimension 3. This means that if V is a generic (2k − 1)-distribution on
M2k then the set S consisting of points at which the germ of V is not equivalent to
the Darboux-Pfaff model (2.2) is a stratified submanifold of Mn of codimension 3.
Moduli corresponding to the first occurring singularities (germs at points of S)
were found by P. Mormul (1988). Classification results for germs at points of S
were obtained in the author’s works (1988, 1992).

9.1. For a generic field of hyperplanes W = (ω) on M2k, k ≥ 3 (resp. k = 2)
there exists a subset R ⊂ M2k, of codimension ≥ 4, such that the germ of W
at any point α ∈ M2k − R is equivalent to one of the germs (2.2), (9.1) or (9.2)
(resp. (2.2), (9.3), (9.4)), where (9.1)–(9.4) are the following germs:

(9.1) (dy1 + x2dy2 + . . .+ xk−1dyk−1 + x1yk(1 + λ+ x2)dxk + x1xkdyk),
(9.2) (dy1 + x2dy2 + . . .+ xk−1dyk−1

+ (x1xk(2λ+ x2)− x1yk)dxk + (x1xk + x1yk(2λ+ x2))dyk),
(9.3) (dy + (1 + λ+ y)xvdu+ xudv + ν(y)x2uv2du),
(9.4) (dy + (xu(2λ+ y)− xv)du+ (xu+ xv(2λ+ y))dv + ν(y)x2uv2du).
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Here λ is a real parameter distinguishing non-equivalent germs, λ ∈ (0, 1) for
normal forms (9.1) and (9.3), λ > 0 for normal forms (9.2) and (9.4). The families
(9.3) and (9.4) are parametrized also by an arbitrary function in one variable ν(y);
this function is also an invariant distinguishing non-equivalent germs.

Normal form (2.2) holds at generic points of M2k, the other normal forms at
generic points of a codimension 3 stratified submanifold S ⊂M2k.

9.2. The germ at α ∈M2k is equivalent to (2.2) if and only if

a) (ω ∧ (dω)k−1)|α 6= 0.

If k = 2 then this condition can be easily formulated in terms of a 3-module
V of vector fields defining the 3-distribution: [V, V ](α) = TαM

2k (see 5.2).

9.3. Take a volume form µ on M2k and define a vector field X on M2k by
the relation Xcµ = ω∧ (dω)k−1. Every singular point of W (a point violating a))
is a singular point of X. Let S be the set of singular points of W . Assume that
α ∈ S and

b) (ω ∧ (dω)k−2)|α 6= 0.

Then one can prove that the spectrum of X at α consists of (2k − 3) zero
eigenvalues, and the sum of the other eigenvalues λ1, λ2 and λ3 is zero. Normal
form (9.1) (resp. (9.2)) holds at points α ∈ S satisfying b) and some other gener-
icity conditions; one of them is as follows: λ1, λ2 and λ3 are real non-zero numbers
(resp. λ1,2 = a± ib, where a 6= 0, b 6= 0, and λ3 is a real non-zero number, up to
numbering).

9.4. Reduction to (9.1) and (9.3) is possible by a Cr-transformation, for
any r <∞, but, in general, a germ cannot be reduced to (9.1) or (9.3) by a C∞

transformation. This does not concern normal forms (9.2) and (9.4) (reduction to
the latter normal forms is possible by a C∞ transformation).

10. Singularities of 2-distributions on M4 (Zhitomirskĭı (1990a))

10.1. Let V = (v1, v2) be a generic 2-distribution on M4. There exist two
2-dimensional surfaces S1 ⊂M4, S2 ⊂M4, and a curve R ⊂ S2 such that

• the intersection of S1 and S2 is a smooth curve L (S1 and S2 are not
transversal);
• the germ of V at a point α 6∈ S1 ∪ S2 is equivalent to the germ (2.3);
• the germ of V at a point α ∈ S1 − L is equivalent to the germ (5.1);
• the germ of V at a point α ∈ (S2− (L∪R)) is equivalent to one of the germs

(5.2), (5.3).

10.2. The surface S1 consists of points at which dimV2 = 2, and the surface
S2 of points at which dimV3 < 4 (see notations in section 5). The curve R
consists of points at which the distribution V is not transversal to S2. This curve
is transversal to L. The transversality of V and S1 holds at any point α ∈ S1−L.
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The growth vector at points of S1−L equals (2, 2, 4), and at points of S2−(L∪R)
it is (2, 3, 3, 4).

10.3. The germ of any V at a point α∈Mn is equivalent to (2.3) (resp. (5.1))
if and only if the growth vector at α equals (2, 3, 4) (resp. (2,2,4)).

10.4. Take a local volume form µ on M4 and define a 1-form ω by the
equation ω(Y ) = µ(v1, v2, [v1, v2], Y ) (for any local vector field Y ). Now define a
vector field Z by the relation Zcµ = ω ∧ dω. Every singular point of V (a point
at which the growth vector is not equal to (2, 3, 4)) is a singular point of Z. If
dimV3(α) < 4 then the spectrum of Z at α consists of two zero eigenvalues and
two more eigenvalues λ1, λ2 whose sum is zero. The germ at α is equivalent to
(5.2) (resp. (5.3)) if and only if the growth vector at α equals (2, 3, 4) and the
eigenvalues λ1 and λ2 are real non-zero (resp. pure imaginary).

11. Stable germs. A complete description of stable germs of 2-distributions
on M3 follows from the results by B. Jakubczyk and F. Przytycki (1979). The
other results of this section were obtained in the author’s works (1988, 1990a,
1992).

11.1. A germ of a distribution D at a point α ∈ M is called stable if for
any neighbourhood U of α there exists a neighbourhood A of D (in the Whitney
topology) such that for any distribution D̃ ∈ A there exists a point α̃ ∈ U such
that the germ of D̃ at α̃ is equivalent to the germ of D at α.

11.2. A complete description of stable germs of k-distributions on Mn is
as follows. There are no stable germs if (k, n) is not a “classical” pair, i.e. if
2 ≤ k ≤ n − 2 and (k, n) 6= (2, 4) (see section 3). Every stable germ of a 2k-
distribution on M2k+1, k ≥ 2, is equivalent to one of the germs (2.1), (7.1), (7.2)
and (7.3) (Zhitomirskĭı (1992)). Every stable germ of a 2-distribution on M3 is
equivalent to one of the germs (8.1), (8.2) (Jakubczyk and Przytycki (1979)).
Every stable germ of a (2k−1)-distribution in M2k, k ≥ 3, is equivalent to one of
the germs (2.2), (9.1), (9.2) (the existence of the invariant λ in normal forms (9.1),
(9.2) is not in conflict with stability; Zhitomirskĭı (1988, 1992)). Every stable germ
of a 3-distribution on M4 is equivalent to the germ (dy1 +x2dy2) (the germ of the
standard quasi-contact structure) (Zhitomirskĭı (1988)). Every stable germ of a
2-distribution on R4 is equivalent to one of the germs (2.3), (5.1), (5.2) and (5.3)
(Zhitomirskĭı (1992)).

12. Finitely determined germs (Zhitomirskĭı (1992))

12.1. A germ (v1, . . . , vk) is called k-determined if it is equivalent to any
germ (ṽ1, . . . , ṽk) such that jkṽi = jkvi, i = 1, . . . , k. A germ is called finitely
determined if it is k-determined for some k <∞.

12.2. Every stable germ of a k-distribution on Mn is finitely determined.
Namely, germs (2.1), (2.2) and (8.1) are 1-determined, germs (2.3), (5.1), (7.1) and
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(8.2) are 2-determined, germs (5.2), (5.3), (7.2), (7.3), and (9.2) are 3-determined.
Germ (9.1) is 3-determined with respect to Cr-equivalence, for any r < ∞ (see
9.4).

12.3. Every germ of a generic field of planes onM3 is finitely determined: germ
(8.1) is 1-determined, (8.2) is 2-determined, (8.3) and (8.4) are 5-determined.

12.4. Let W = (ω) be a generic field of hyperplanes on M2k+1, k ≥ 2. At
some isolated singular points α ∈ S (see definition of S in 7.2) we encounter the
degeneration (ω|S)|α = 0 (i.e. Kerω|α = TαS). If α is such a point then the germ
of W at α is not stable, but it is 5-determined. The normal form corresponding
to this degeneracy contains k moduli, it can be found in (Zhitomirskĭı (1992)).

12.5. Any finitely determined germ of a generic field of planes on M2k, k ≥ 2,
is stable. The same is true for finitely determined germs of generic 2-distributions
on M4. Finitely determined non-stable germs of generic k-distributions on Mn

exist only in the case where n is odd and k = n − 1 (germs (8.3), (8.4) in the
3-dimensional case, and the degeneration described in 12.4).
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