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Abstract. A recent Olech-type lemma of Artstein-Rzeżuchowski [2] and its generalization in
[7] are shown to follow from Visintin’s theorem, by exploiting a well-known property of extreme
points of the integral of a multifunction.

1. Main results. Let (Ω,F , µ) be a nonatomic finite measure space, and let
F : Ω → 2Rd

be a given multifunction with measurable graph and closed values.
Recall that the integral of the multifunction F over Ω is defined by∫

Ω

Fdµ :=
{ ∫
Ω

fdµ : f ∈ L1
F

}
,

where L1
F denotes the set of all integrable a.e.-selectors of F [4]. By nonatomicity

of the measure space, such an integral is always convex [4]. In this section (fk)
will denote a given sequence in L1

F . Correspondingly, we define the pointwise
Kuratowski limes superior set by

L(ω) := Ls(fk(ω)) ⊂ F (ω).

By the well-known identity

L(ω) =
∞
∩
p=1

cl{fk(ω) : k ≥ p},

L has a measurable graph and closed values (this would also have been true if
the graph of F had been nonmeasurable). In [2] Artstein and Rzeżuchowski gave
the following result.
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Proposition 1.1 ([2]). Suppose that (fk) is uniformly integrable and such that

lim
k

∫
Ω

fkdµ = e,

where e is an extreme point of
∫
Fdµ. Then there exists f∗ ∈ L1

F such that

(1) lim
k

∫
Ω

|fk − f∗|dµ = 0.

Of course, (1) implies e =
∫
f∗dµ; for this reason the result by Artstein and

Rzeżuchowski can be seen as a variation on a theme started by Olech, who con-
sidered extremality of e in the closure of

∫
Fdµ [13, 14, 3]. Recently, the present

author obtained the following extension of Proposition 1.1:

Proposition 1.2 ([7]). Suppose that

sup
k

∫
Ω

|fk|dµ < +∞

and
lim
k

∫
Ω

fkdµ = e,

where e is an extreme point of
∫
Ω
Fdµ. Moreover , suppose that e has the following

maximality property : ( ∫
Ω

Ldµ− e
)
∩ C0 = {0},

where C0 is the negative polar of the cone C of all y ∈ Rd satisfying

(min(y · fk, 0)) is uniformly integrable.

Then there exists f∗ ∈ L1
L ⊂ L1

F such that

(fk) converges in measure to f∗ and
∫
Ω
f∗dµ = e.

Clearly, the latter proposition extends the former one (which has of course
C0 = {0}). The proof of Proposition 1.1 given in [2] is very simple, but it uses [1,
Theorem A], which has a fairly hard proof. The proof in [7] is possibly even more
complicated (depending upon one’s degree of familiarity with Young measure
theory). Artstein and Rzeżuchowski observe in [2] that the following well-known
theorem by Visintin [18, 17] (see also Theorem 1.4 below) can be considered to
be a consequence of their result.

Theorem 1.3 ([18]). Suppose that (fk) converges weakly (in σ(L1,L∞)) to
some function f0 ∈ L1(Ω; Rd) such that

f0(ω) is an extreme point of coF (ω) a.e. (1)

(1) By Lemma A.2 the weak convergence itself already implies f0(ω) ∈ coL(ω) ⊂ coF (ω)
a.e.
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Then limk

∫
Ω
|fk − f0|dµ = 0.

The purpose of this note is to stress that the converse is also true: Visintin’s
theorem immediately implies Proposition 1.1, via a well-known characterization
of the extreme points of

∫
Fdµ. Moreover, the following extension of Visintin’s

result, which is due to the present author and essentially contained in [6] (cf. [17,
7]), can be used similarly to obtain Proposition 1.2.

Theorem 1.4. Suppose that (fk) converges weakly (in σ(L1,L∞)) to some
function f0 ∈ L1(Ω; Rd) such that

f0(ω) is an extreme point of coL(ω) a.e.(1)

Then limk

∫
Ω
|fk − f0|dµ = 0.

Note that closed convex hulls appear in the original results in [18] and [6]
that correspond to in Theorems 1.3, 1.4 (observe that [6] specifically deals with
an infinite-dimensional case, of which the present paper considers the finite-
dimensional variant). As was briefly indicated in [8, p. 28], the strengthening
in terms of convex hulls, as presented in the two theorems above, follows by an
obvious adaptation of the arguments in [6, 8], based on the fact that barycenters
of probability measures on a finite-dimensional Banach space already lie in the
convex hull – and not just the closed convex hull – of their support [15].

The connection between Propositions 1.1, 1.2 on the one side and Theo-
rems 1.3, 1.4 on the other side is provided by the following well-known result,
which will be applied to both F and L.

Lemma 1.5. Let G : Ω → 2Rd

be a multifunction with measurable graph and
closed values. Suppose that e ∈ Rd is an extreme point of

∫
Gdµ. Then there

exists an essentially unique f ∈ L1
G such that e =

∫
Ω
fdµ and

(2) f(ω) is an extreme point of coG(ω) a.e.

P r o o f. By definition of the set
∫
G, there exists at least one f ∈ L1

G with∫
f = e. Suppose that f , f ′ ∈ L1

G both satisfy e =
∫
f =

∫
f ′. For any B ∈ F

both g := f+1B(f ′−f) and g′ := f ′+1B(f−f ′) belong to L1
G, and

∫
(g+g′) = 2e.

Hence, it follows by the the extreme point property of e that
∫
B

(f − f ′) = 0. So
by arbitrariness of the set B, we conclude that f = f ′ a.e.

Next, suppose that there exists a nonnull set B ∈ F such that for every
ω ∈ B the property (2) does not hold. For this reason, there exist for each ω ∈ B
a number Nω of points x1,ω, · · · , xNω,ω in G(ω), all of which are distinct from f(ω),
and corresponding scalars λ1,ω, · · · , λNω,ω ≥ 0 such that

∑
i λi,ωxi,ω = f(ω) and∑

i λi,ω = 1. By reducing for affine dependence, the number Nω can be reduced
to so as to be at most d+ 1 (just as in the proof of Carathéodory’s theorem). Of
course, by adding arbitrary points xi,ω 6= f(ω) with corresponding λi,ω’s set equal
to zero, we can ensure Nω = d+ 1. By an obvious measurable selection argument
(see the proof of [10, IV.11]) we find that there exist d+ 1 measurable functions
g1, · · · , gd+1 from B into Rd and d + 1 measurable scalar functions α1, · · · , αd+1
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from B into [0,1] such that for a.e. ω in B: (i) g1(ω), · · · , gd+1(ω) lie in G(ω) and
are all distinct from f(ω), (ii)

∑
i αi(ω)gi(ω) = f(ω), and (iii)

∑
i αi(ω) = 1. For

n ∈ N define Bn to be the set of all ω ∈ B for which max1≤i≤k |gi(ω)| ≤ n. The
Bn increase monotonically to B, so there exists n – fixed from now on – with
µ(Bn) > 0. Let us define hi := 1Ω\Bn

f + 1Bngi, i = 1, · · · , d + 1. Clearly, the
functions h1, · · · , hd+1 belong to L1

G. Further, from (ii)-(iii) above it follows that∑
i αihi = f a.e. By Lyapunov’s theorem [10, IV.17] it follows that there exists

a measurable partition {C1, · · · , Cd+1} of Ω such that e =
∫
f =

∫ ∑
i αihi =∑

i

∫
Ci
hi. By the essential uniqueness of f , established above, we conclude that

f =
∑
i 1Ci

hi a.e., which amounts to having f =
∑

1Ci
gi a.e. on Bn. But there

must be i with µ(Bn ∩ Ci) > 0, and then we have a contradiction with the fact
that a.e. on Bn the values gi(ω) are distinct from f(ω).

Let us now prove the Artstein-Rzeżuchowski result by means of Theorem 1.3.

P r o o f o f P r o p o s i t i o n 1.1. By Lemma 1.5 there exists an essentially
unique f∗ ∈ L1

F with e =
∫
f∗dµ. Define α := lim supk

∫
|fk − f∗|. Then there

exists a subsequence (fkj
) with limk

∫
|fkj
− f∗| = α. By the Dunford-Pettis

theorem there exists a further subsequence (fkn
) of (fkj

) which converges weakly
(in σ(L1,L∞)) to some function f0 ∈ L1

Rd . But then also e =
∫
f0, so f∗ = f0

a.e. by the essential uniqueness of f∗. Further, by Lemma 1.5 the extreme point
condition of Theorem 1.3 is precisely fulfilled. So this theorem gives limn

∫
|fkn−

f∗| = 0, which proves that α = 0.

Next, let us deduce Proposition 1.2 in a slightly more involved way from
Theorem 1.4 by means of the same Lemma 1.5. Here we shall use the biting
lemma and facts about w2-convergence that have been gathered in the appendix.

P r o o f o f P r o p o s i t i o n 1.2. Again, there exists f∗ ∈ L1
F with e =

∫
f∗dµ,

and f∗ is essentially unique by Lemma 1.5. Let (fkj
) be an arbitrary subsequence

of (fk). By Lemma A.1 (fkj ) has a further subsequence (fkn) which w2-converges
to some f0 ∈ L1

Rd . Let (Bp) denote the corresponding sequence of “bites”, which
decreases monotonically to a null set. Fix any y in the cone C. Then

y · e =
∫
Bc

p

y · f0 + lim inf
n

∫
Bp

y · fkn

for any p. So by definition of the cone C it follows easily that y · e ≥
∫
Ω
y · f0.

Hence, we conclude that
∫
f0 − e belongs to C0; by Lemma A.3 the same vector

also belongs to
∫
L − e. So our maximality hypothesis implies that

∫
f0 = e,

which gives f∗ = f0 a.e., in view of the essential uniqueness of f∗.
Now we apply Lemma 1.5. This gives that the extreme point condition of

Theorem 1.4 is precisely met. So the latter theorem gives for any p

lim
n

∫
Ω\Bp

|fkn − f∗|dµ = 0.
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Since the bites Bp decrease to a null set, this gives that (fkn
) converges in measure

to f∗. Now an arbitrary subsequence of (fk) has been shown to possess a further
subsequence which converges to f∗ in measure. Therefore, we conclude that (fk)
itself converges in measure to f∗.

R e m a r k 1.6. By Lemma A.3 and the above proof, we have e =
∫
f∗ =

∫
f0 ∈∫

L in Proposition 1.2. So a slightly sharper formulation [7] would have been to
require e to be an extreme point of

∫
Ldµ, rather than of

∫
Fdµ. This observation

also signifies that it is not really necessary to work with the hypothesis that the
graph of F is measurable, for, by an earlier observation, the graph of L is always
measurable, irrespective of the measurability of the graph of F .

Appendix. Here we gather some facts related to the biting lemma and w2-
convergence. First, recall the following definition [9], which weakens the notion of
weak convergence: a sequence (fn) in L1

Rd is said to w2-converge to f0 ∈ L1
Rd if

there exists a sequence (Bp) of “bites” in F , monotonically decreasing to a null
set (i.e., Bp+1 ⊂ Bp for all p and µ(∩pBp) = 0), such that for every p

(fn |Bc
p
)n converges weakly (in σ(L1(Bcp),L∞(Bcp))) to f0 |Bc

p
.

The following result seems due to Gaposhkin [11]; it has been independently
rediscovered by many other authors (e.g., see [9, 16]).

Lemma A.1 (biting lemma). Suppose that (fk) is a sequence in L1
Rd such that

sup
k

∫
Ω

|fk|dµ < +∞.

Then (fk) has a subsequence which w2-converges to some function in L1
Rd .

The following fact, which is essentially Proposition C in [1], is certainly not
elementary. Another proof follows by applying [15] to Example 2.3 of [5](2).

Lemma A.2 ([1]). Suppose that (fn) is a sequence in L1
Rd which w2-converges

to f0 ∈ L1
Rd . Then

f0(ω) ∈ co Ls(fn(ω)) a.e.

The next fact comes from [7, Theorem 2.2] and the observation in the last
footnote; whether it could also be proven by Aumann’s well-known identity [4]
and the previous lemma is an open question to the present author.

Lemma A.3 ([7]). Suppose that (fn) is a sequence in L1
Rd which w2-converges

to f0 ∈ L1
Rd and is such that

sup
n

∫
Ω

|fn|dµ < +∞.

(2) By Example 2.2 of [5] it is easy to check that η∗ on its p. 574 coincides a.e. with our
present f0.
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Then ∫
Ω

f0dµ ∈
∫
Ω

Ldµ.
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