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Abstract. A recent Olech-type lemma of Artstein-Rzezuchowski [2] and its generalization in
[7] are shown to follow from Visintin’s theorem, by exploiting a well-known property of extreme
points of the integral of a multifunction.

1. Main results. Let (2, F, ) be a nonatomic finite measure space, and let

F:0—2R bea given multifunction with measurable graph and closed values.
Recall that the integral of the multifunction F' over (2 is defined by

de/,LZ:{ffd,u:fe‘ch}a
2 2

where £}, denotes the set of all integrable a.e.-selectors of F' [4]. By nonatomicity
of the measure space, such an integral is always convex [4]. In this section (f)
will denote a given sequence in £L. Correspondingly, we define the pointwise
Kuratowski limes superior set by

L(w) := Ls(fx(w)) C F(w).
By the well-known identity
L) = & clffilw) k=)
L has a measurable graph and closed values (this would also have been true if

the graph of F' had been nonmeasurable). In [2] Artstein and Rzezuchowski gave
the following result.

1991 Mathematics Subject Classification: 28A20, 28B20.
The paper is in final form and no version of it will be published elsewhere.

[47]



48 E. J. BALDER
PROPOSITION 1.1 ([2]). Suppose that (fi) is uniformly integrable and such that
lim f Trdp = e,
0
where e is an extreme point of [ Fdu. Then there exists f, € LY such that

(1) lim ;;f |fr — fuldp = 0.

Of course, (1) implies e = [ f.dp; for this reason the result by Artstein and
Rzezuchowski can be seen as a variation on a theme started by Olech, who con-
sidered extremality of e in the closure of [ Fidp [13, 14, 3]. Recently, the present
author obtained the following extension of Proposition 1.1:

PROPOSITION 1.2 ([7]). Suppose that

sup [ |fildp < +o0
k (]

and

hlgn bf frdp = e,

where e is an extreme point of fQ Fdu. Moreover, suppose that e has the following
mazximality property:

(de,u—e)ﬂCO:{O},
Q

where C is the negative polar of the cone C of all y € R? satisfying
(min(y - fx,0)) s uniformly integrable.
Then there exists f. € L} C LY such that
(fx) converges in measure to f. and [, f.dp = e.

Clearly, the latter proposition extends the former one (which has of course
CY = {0}). The proof of Proposition 1.1 given in [2] is very simple, but it uses [1,
Theorem A], which has a fairly hard proof. The proof in [7] is possibly even more
complicated (depending upon one’s degree of familiarity with Young measure
theory). Artstein and Rzezuchowski observe in [2] that the following well-known
theorem by Visintin [18, 17] (see also Theorem 1.4 below) can be considered to
be a consequence of their result.

THEOREM 1.3 ([18]). Suppose that (fi) converges weakly (in o(L, L>)) to
some function fo € L1(£2;RY) such that

fo(w) is an extreme point of co F(w) a.e. (1)

(}) By Lemma A.2 the weak convergence itself already implies fo(w) € co L(w) C co F(w)
a.e.
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Then limy, fQ |fx — foldp = 0.

The purpose of this note is to stress that the converse is also true: Visintin’s
theorem immediately implies Proposition 1.1, via a well-known characterization
of the extreme points of [ Fdu. Moreover, the following extension of Visintin’s
result, which is due to the present author and essentially contained in [6] (cf. [17,
7]), can be used similarly to obtain Proposition 1.2.

THEOREM 1.4. Suppose that (fi) converges weakly (in o(L',L£>)) to some
function fo € L1(2;R?) such that

fo(w) is an extreme point of co L(w) a.e.(*)
Then limy, [, | fx — foldp = 0.

Note that closed convex hulls appear in the original results in [18] and [6]
that correspond to in Theorems 1.3, 1.4 (observe that [6] specifically deals with
an infinite-dimensional case, of which the present paper considers the finite-
dimensional variant). As was briefly indicated in [8, p. 28], the strengthening
in terms of convex hulls, as presented in the two theorems above, follows by an
obvious adaptation of the arguments in [6, 8], based on the fact that barycenters
of probability measures on a finite-dimensional Banach space already lie in the
convex hull — and not just the closed convex hull — of their support [15].

The connection between Propositions 1.1, 1.2 on the one side and Theo-
rems 1.3, 1.4 on the other side is provided by the following well-known result,
which will be applied to both F' and L.

LEMMA 1.5. Let G : 2 — 2R be g multifunction with measurable graph and
closed values. Suppose that e € R is an extreme point of [ Gdu. Then there
exists an essentially unique f € L, such that e = fQ fdp and

(2) f(w) is an extreme point of coG(w) a.e.

Proof. By definition of the set [ G, there exists at least one f € L} with
[ f = e. Suppose that f, f' € L, both satisfy e = [ f = [ f’. For any B € F
both g := f+1p(f'—f) and ¢’ := f'+15(f—f’) belong to L, and [(g+g’) = 2e.
Hence, it follows by the the extreme point property of e that [,(f — f') =0. So
by arbitrariness of the set B, we conclude that f = f’ a.e.

Next, suppose that there exists a nonnull set B € F such that for every
w € B the property (2) does not hold. For this reason, there exist for each w € B
anumber N, of points z1 4, - -, Tn,, « in G(w), all of which are distinct from f(w),
and corresponding scalars Ai o, -+, An, o > 0 such that ). \; yz;, = f(w) and
> i Aiw = 1. By reducing for affine dependence, the number N,, can be reduced
to so as to be at most d + 1 (just as in the proof of Carathéodory’s theorem). Of
course, by adding arbitrary points x; ., # f(w) with corresponding \; .,’s set equal
to zero, we can ensure N, = d+ 1. By an obvious measurable selection argument
(see the proof of [10, IV.11]) we find that there exist d + 1 measurable functions
g1, ga+1 from B into R? and d + 1 measurable scalar functions ay, - -, gyq
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from B into [0,1] such that for a.e. win B: (i) g1(w), -, ga+1(w) lie in G(w) and
are all distinct from f(w), (ii) >, @;(w)gi(w) = f(w), and (iii) >, a;(w) = 1. For
n € N define B,, to be the set of all w € B for which max;<;<j |g;(w)| < n. The
B,, increase monotonically to B, so there exists n — fixed from now on — with
p(Brn) > 0. Let us define h; := 1g\p, f + 1B,9i, @ = 1,---,d + 1. Clearly, the
functions Ay, -, hay1 belong to £}, Further, from (ii)-(iii) above it follows that
> ah; = f ae. By Lyapunov’s theorem [10, IV.17] it follows that there exists
a measurable partition {C4,---,Cy41} of 2 such that e = [ f = [ > a;h; =
> o, h;. By the essential uniqueness of f, established above, we conclude that
[ =72>_;1c;h; a.e., which amounts to having f = > 1¢,g; a.e. on B,. But there
must be ¢ with u(B, N C;) > 0, and then we have a contradiction with the fact
that a.e. on B, the values g;(w) are distinct from f(w). m

Let us now prove the Artstein-Rzezuchowski result by means of Theorem 1.3.

Proof of Proposition 1.1. By Lemma 1.5 there exists an essentially
unique f, € L} with e = [ f.du. Define a := limsupy, [ |fx — f«|. Then there
exists a subsequence (fy,) with limy [|fx, — f«| = a. By the Dunford-Pettis
theorem there exists a further subsequence (fx,) of (fx;) which converges weakly
(in o(L, L)) to some function fo € Lg.. But then also e = [ fo, so f. = fo
a.e. by the essential uniqueness of f.. Further, by Lemma 1.5 the extreme point
condition of Theorem 1.3 is precisely fulfilled. So this theorem gives lim,, [ |fx, —
f«| = 0, which proves that « = 0. =

Next, let us deduce Proposition 1.2 in a slightly more involved way from
Theorem 1.4 by means of the same Lemma 1.5. Here we shall use the biting
lemma and facts about w?-convergence that have been gathered in the appendix.

Proof of Proposition 1.2. Again, there exists f, € L}, with e = [ f.dp,
and f, is essentially unique by Lemma 1.5. Let (fx;) be an arbitrary subsequence
of (fx). By Lemma A.1 (f},) has a further subsequence (f, ) which w?-converges
to some fy € E%{d. Let (Bp) denote the corresponding sequence of “bites”, which
decreases monotonically to a null set. Fix any y in the cone C'. Then

y-e= f y - fo + lim inf fy'fkn
B¢ B,
for any p. So by definition of the cone C it follows easily that y-e > [,y - fo.
Hence, we conclude that [ fo — e belongs to C?; by Lemma A.3 the same vector
also belongs to [ L —e. So our maximality hypothesis implies that [ fo = e,
which gives f, = fp a.e., in view of the essential uniqueness of f,.
Now we apply Lemma 1.5. This gives that the extreme point condition of
Theorem 1.4 is precisely met. So the latter theorem gives for any p

lim [ 1fx, = foldp = 0.
2\B,
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Since the bites B, decrease to a null set, this gives that ( fz, ) converges in measure
to f.. Now an arbitrary subsequence of (f) has been shown to possess a further
subsequence which converges to f. in measure. Therefore, we conclude that (f%)
itself converges in measure to f.. m

Remark 1.6. By Lemma A.3 and the above proof, we havee = [ f, = [ fo €
J L in Proposition 1.2. So a slightly sharper formulation [7] would have been to
require e to be an extreme point of f Ldy, rather than of [ Fdu. This observation
also signifies that it is not really necessary to work with the hypothesis that the
graph of F' is measurable, for, by an earlier observation, the graph of L is always
measurable, irrespective of the measurability of the graph of F.

Appendix. Here we gather some facts related to the biting lemma and w?-
convergence. First, recall the following definition [9], which weakens the notion of
weak convergence: a sequence (f,) in E}{d is said to w?-converge to fy € Eﬁd if
there exists a sequence (B,) of “bites” in F, monotonically decreasing to a null
set (i.e., Bpy1 C B, for all p and p(N,B,) = 0), such that for every p

(fn |Bg)n converges weakly (in o(LY(Bg), L>(Bg))) to fo |Bg -
The following result seems due to Gaposhkin [11]; it has been independently
rediscovered by many other authors (e.g., see [9, 16]).

LEMMA A.1 (biting lemma). Suppose that (fi) is a sequence in Ly, such that
sup [ | fildp < +oo.
koo

Then (fi) has a subsequence which w?-converges to some function in L’%{d.

The following fact, which is essentially Proposition C in [1], is certainly not
elementary. Another proof follows by applying [15] to Example 2.3 of [5](?).

LEMMA A.2 ([1]). Suppose that (f,) is a sequence in E%{d which w?-converges
to fo € Ehd. Then
folw) € coLs(fn(w)) a.e.

The next fact comes from [7, Theorem 2.2] and the observation in the last
footnote; whether it could also be proven by Aumann’s well-known identity [4]
and the previous lemma is an open question to the present author.

LEMMA A.3 ([7]). Suppose that (fy) is a sequence in L, which w*-converges
to fo € L%{d and is such that

sup [ 1fldn < o
"0

(%) By Example 2.2 of [5] it is easy to check that 7: on its p. 574 coincides a.e. with our
present fq.
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Then

(1]
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[ fodpe [ Ldp.
2 2
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