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Abstract. This paper discusses asymptotic stability for nonautonomous systems by means
of the direct method of Liapunov. The existence of a positive time-invariant Liapunov function
with negative semi-definite derivative is assumed. The paper focuses on the extra conditions
needed in order to guarantee asymptotic stability. The proposed criterion is compared with the
standard results available for autonomous systems. A specialization and extension is obtained
for a class of linear nonautonomous systems.

1. Introduction. The classical Liapunov approach to the study of asymptotic
stability of an equilibrium of autonomous differential equations relies on the exis-
tence of a positive definite Liapunov function with negative definite time deriva-
tive. There exist however large classes of differential equations and associated nat-
ural continuously differentiable Liapunov functions V (x) which exhibit negative
semidefinite time derivatives. It was pointed out by Barbashin and Krasovskii [3,
4] that for these cases asymptotic stability is still guaranteed when {x : V̇ (x) = 0}
does not contain nontrivial solutions.

This result also follows from LaSalle’s invariance principle which itself is based
on the invariance of the limit sets of solutions of autonomous differential equa-
tions: it says that for some V with V̇ ≤ 0, bounded solutions converge to the
largest invariant set contained in {x : V̇ (x) = 0}. The result of Barbashin
and Krasovskii on asymptotic stability of the origin follows when V (0) = 0 and
V (x) > 0 outside 0, i.e. when V is positive definite.
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For nonautonomous systems the situation is more complex. Some of the results
above are no longer true. This is due to the lack of invariance of the limit sets
with respect to the flow. The existence of a positive definite Liapunov function
V (x) with negative definite V̇ (x, t) still implies asymptotic stability [8]. When
a negative semidefinite V̇ is allowed, LaSalle’s principle collapses in general for
nonautonomous systems, although e.g. for periodic systems it remains true.

Extension of the invariance principle to certain classes of systems that are e.g.
asymptotically autonomous, or almost periodic, has been a popular research field.
For such systems some weaker form of invariance, known as pseudo-invariance,
can be identified [7].

The results above arise mainly from a restriction of the class of vector fields
in order to deduce asymptotic stability by exploiting some form of invariance. In
this paper we are trying to relax the conditions imposed on the vectorfield but set
extra conditons on the derivative that guarantee asymptotic stability. We are in
fact for nonautonomous systems pursuing a ‘direct’ approach to asymptotic sta-
bility, closer in spirit to the theorem of Barbashin and Krasovskii for autonomous
systems—not as a corollary from a general statement akin to LaSalle’s invariance
principle. Explicitly: let ẋ = f(x, t) be a nonautonomous differential equation and
V (x) a positive definite continuously differentiable functional with V̇ (x, t) ≤ 0 .
The case V (x, t) where V depends explicitly on time will be examined in a forth-
coming paper. The problem is to find weak extra conditions on V̇ leading to
asymptotic stability.

In Section 2 we state and prove our main result. In Section 3 the conditions
of the main theorem are reformulated in integral form. This section is concluded
with a short discussion where the theorem is compared with other stability results
from the literature. In Section 4 we present a particular stability result for a class
of linear nonautonomous systems. It shows that for some special classes the
conditions of the main theorem may be weakened. We conclude the paper with
an example for which we announce some new stability results. In forthcoming
papers we will apply the theory to particular classes of systems in order to further
illustrate the approach.

2. An asymptotic stability criterion

Theorem 1. Let X be an open subset of Rn. Consider the differential equation

(1) ẋ = f(x, t)

where

f : X ×R→ Rn.

Assume existence and uniqueness of solutions. The following assumptions hold :

1. f is measurable in t for fixed x and continuous in x for fixed t.
2. 0 ∈ X , f(0, t) = 0 ∀t.



STABILITY OF NONAUTONOMOUS SYSTEMS 11

3. f is locally Lipschitz in x with bounded local Lipschitz function lx(t) in the
neighborhood of x.

Let V : U ⊂ X → R be a continuously differentiable map, for which there is
some neighborhood O ⊂ U of 0 such that the following properties hold :

Property 1. V is positive definite:

V (0) = 0 and V (x) > 0 for each x ∈ O, x 6= 0

Property 2. ∀x ∈ O, t ∈ R:

V̇ (x, t) := ∇V (x).f(x, t) ≤ 0

Property 3. For each q ∈ O , (q 6= 0), ∃ a finite s(q) > 0, such that for no
sequence (tj)j∈N →∞, when j →∞ (denoted as tj →∞), the following is true:

lim
tj→∞

V (x(tj + s(q); q, tj)) = V (q).

Then (1) is asymptotically stable at the origin.

The formula x(tj+s(q); q, tj) is standard notation for the state at time tj+s(q)
corresponding to the solution of (1) with initial condition q at time tj .

For completeness we recall the definitions of stability and asymptotic stability
[8]:

• stability; the system (1) is stable at the origin if for any ε > 0 and for any
t0, there exists a δ(ε, t0) > 0 such that |x0| < δ implies |x(t;x0, t0)| < ε, t ≥ t0
• attractivity; the system (1) is attractive at the origin if for each t0 there

exists a neighborhood of the origin such that for any x0 in this neighborhood the
following holds: limt→∞ x(t;x0, t0) = 0
• asymptotic stability; the system (1) is asymptotically stable at the origin if

it is stable and attractive.

P r o o f. Take an open ball Bε(0) with radius ε and centered at the origin,
small enough such that Bε(0) is included in O.

Let α be the minimum value of V on the sphere Sε(0). The number α exists
since V is continuous on Sε(0); α > 0 by Property 1.

Let U1 := {x : x ∈ O and V (x) < α}. Then 0 ∈ U1 and U1 is open. Consider
an open ball Bδ(0) ⊂ U1. Then with x0 ∈ Bδ(0), t0 arbitrary, the state x(t;x0, t0)
belongs to Bε(0) for t ≥ t0 by Property 2. Therefore the origin is stable.

Since the system is stable, there always exists a ball Bδ1(0) such that any
trajectory x(t;x0, t0), x0 ∈ Bδ1(0), t ≥ t0 and t0 arbitrary, stays inside Bδ/2(0) ⊂
Bδ(0). For such a trajectory, by compactness of Bδ(0) there exists an increasing
sequence of times ti > t0, with ti →∞ as i→∞ such that

lim
ti→∞

x(ti;x0, t0) = p

with p ∈ Bδ(0). Assume that p 6= 0.
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Let xi denote x(ti;x0, t0) with x0 ∈ Bδ1(0). Consider the sequence x(ti +
s(p);x0, t0), ti → ∞,with the sequence ti considered above and with s(p) asso-
ciated with p according to Property 3. By continuity of solutions of differential
equations with respect to initial conditions (cfr. assumption 3 on f), there exists
K > 0, such that:

|x(ti + s(p);xi, ti)− x(ti + s(p); p, ti)| ≤ |xi − p|eK.s(p)

Indeed, all solutions of (1) with initial condition x0 ∈ Bδ1(0) remain in the com-
pact set Bε(0) and by assumption 3 on the differential equation (1) the constant
K can be taken to be the maximum of the bounded Lipschitz functions lx(t)
associated with a finite covering of Bε(0). Then

(2) lim
i→∞

|x(ti + s(p);xi, ti)− x(ti + s(p); p, ti)| = 0

since limi→∞ xi = p. Since both x(ti + s(p);xi, ti) and x(ti + s(p); p, ti) belong
to Bε(0) for al i and since V is continuous and therefore uniformly continuous on
Bε(0), (2) implies that

(3) lim
i→∞

|V (x(ti + s(p);xi, ti))− V (x(ti + s(p); p, ti))| = 0.

Consider the sequence of elements V (x(ti + s(p); p, ti)) with ti → ∞ .These ele-
ments belong to the interval [0, V (p)] by Property 1 and Property 2. Then there
exists a subsequence tisub

→ ∞ of the sequence (ti) corresponding to a subse-
quence isub →∞ such that

(4) lim
tisub

→∞
V (x(tisub

+ s(p); p, tisub
)) = a

where a < V (p) by Property 3.
From the triangle inequality we obtain with xisub

:= x(tisub
;x0, t0)

(5) |V (x(tisub
+ s(p);xisub

, tisub
))− a|

≤ |V (x(tisub
+ s(p);xisub

, tisub
))− V (x(tisub

+ s(p); p, tisub
))|

+|V (x(tisub
+ s(p); p, tisub

))− a|

and by (3) and (4) we obtain from (5)

(6) lim
isub→∞

V (x(tisub
+ s(p);xisub

, tisub
)) = a < V (p).

On the other hand, since limi→∞ x(ti;x0, t0) = p and since V is continuous at p

(7) lim
i→∞

V (x(ti;x0, t0)) = V (p).

Since V (x(t;x0, t0) is nonincreasing by Property 2 and ≥ 0 by Property 1, its
limit exists and equals V (p) by (7). Therefore

(8) V (x(t;x0, t0) ≥ V (p), ∀t.
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But (6) states that V (x(tisub
+ s(p);xisub

, tisub
)) < V (p) for tisub

large enough.
This is in contradiction with (8) since all states

x(tisub
+ s(p);xisub

, tisub
)

belong to the trajectory x(t;x0, t0).
Therefore our original assumption that p 6= 0 is impossible. This proves that

the only positive limit point of x(t;x0, t0) is the origin. Since the system is stable,
asymptotic stability of the origin follows.

3. Reformulation of Property 3. The appeal of the direct method of Li-
apunov arises from the fact that the stability properties of (1) are examined
without a knowledge of its solutions. Property 3 involves trajectories and so it
seems that most of the appeal of Liapunov’s approach has been lost. In the au-
tonomous case however, the theorem of Barbashin and Krasovskii or more general
LaSalle’s invariance principle are extremely valuable contributions to the stabil-
ity literature in spite of the fact that they also rely on information of particular
trajectories—those restricted to the subset defined by {x : V̇ (x) = 0}.

Property 3 is the crucial extra condition needed besides the negative semidef-
initeness of V̇ (x, t), in order to guarantee asymptotic stability of (1). It plays a
role similar to the conditions on the trajectories one finds in the statements of
the theorem of Barbashin and Krasovskii or LaSalle’s invariance principle. These
theorems suggest to formulate Property 3 in terms of V̇ (x, t) which is easily done
as follows.

With p, s(p) and the sequence (ti) as above, the following holds:

(9) V (x(ti + s(p); p, ti))− V (x(ti; p, ti)) =
s(p)∫
0

dV (x(ti + τ ; p, ti))
dτ

dτ.

With
s(p)∫
0

dV (x(ti + τ ; p, ti))
dτ

dτ =
s(p)∫
0

dV (x(ti + τ ; p, ti))
dx

· dx(ti + τ ; p, ti)
dτ

dτ

and since
dx(ti + τ ; p, ti)

dτ
= f(x(ti + τ ; p, ti), ti + τ)

and also since V (x(ti; p, ti)) = V (p), (9) is rewritten as

(10) V (x(ti + s(p); p, ti))− V (p) =
s(p)∫
0

V̇ (x(ti + τ ; p, ti), ti + τ)dτ.

Property 3 is then immediately rephrased as follows:
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Property 4. For each p ∈ O there is a positive s(p) such that for no sequence
ti →∞

lim
ti→∞

s(p)∫
0

V̇ (x(ti + τ ; p, ti), ti + τ)dτ = 0.

By (10) and since V̇ ≤ 0, Property 3 (or equivalently Property 4) states that
for each initial state p there exists a time interval s(p) such that for no sequence
of initial times ti tending to infinity, the V -values at x(ti + s(p); p, ti) tend to the
constant value V (p). This implies—since V is nonincreasing along trajectories—
that V does not tend to the constant V (p) along intervals [ti , ti + s(p)]. Recall
that in the case of autonomous systems asymptotic stability is guaranteed by
the theorem of Barbashin and Krasovskii if V̇ ≤ 0 and there are no trajectories
leaving V invariant, i.e. belonging to the set {x : V̇ (x) = 0}. In this context
Property 4 is then best interpreted as the preclusion of a type of invariance of V
so as to guarantee asymptotic stability. We would like to emphasize—as already
mentioned in the Introduction—that we have not assumed any form of invariance
on the limit sets of the flow itself.

4. Weaker form of the asymptotic stability property for linear time-
variant systems. Consider the linear time-variant system

(11) ẋ = A(t)x.

Assume there exists a positive definite quadratic form W (x) := xTPx such that

Ẇ (x, t) = xT (AT (t)P + PA(t))x =: xTQ(t)x ≤ 0.

Then for any solution x(t0 + s;x0, t0) of (11) the following is true: W (x(t0 +
s;x0, t0)) ≤W (x0).

Consider now the solutions of (11) x(ti + s;xi, ti) and x(ti + s; p, ti) with xi
and ti defined above, then because of linearity of (11) their difference also satisfies
(11) and therefore

W (x(ti + s;xi, ti)− x(ti + s; p, ti)) ≤W (xi − p).
With i → ∞ (i.e. when ti → ∞ and xi → p) the right hand side tends to zero.
Since it is independent of s this relation implies that

(12) |(x(ti + s;xi, ti)− x(ti + s; p, ti)| → 0

uniformly in s as functions defined on [0 , ∞).
Let (xi, ti) be defined as in Section 3 (i.e. belonging to the solution x(t0 +

s;x0, t0) and such that xi → p, for i→∞) then by stability

xT (ti + s; p, ti)Px(ti + s; p, ti)) ≤ pTPp ∀s
and also

xT (ti + s;xi, ti)Px(ti + s;xi, ti) ≤ xTi Pxi ≤ xT0 Px0 ∀s.
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In other words there exists a compact ball B in Rn that contains all points
x(ti + s; p, ti) and x(ti + s;xi, ti) with s ≥ 0. Since W is uniformly continuous on
B, it follows that

(13) W (x(ti + s;xi, ti))−W (x(ti + s; p, ti))→ 0

uniformly in s as functions defined on [0 , ∞) when ti →∞.
Indeed, given ε, by uniform continuity of W there exists a number δ such that

|W (x(ti + s;xi, ti))−W (x(ti + s; p, ti))| < ε

if
|(x(ti + s;xi, ti))− (x(ti + s; p, ti))| < δ

the latter being satisfied for ti larger than some number N by uniform convergence
to zero of

(x(ti + s;xi, ti))− (x(ti + s; p, ti))
when ti →∞ (cf. (12)). Since

−ε < W (x(ti + s;xi, ti))−W (x(ti + s; p, ti)) < ε

for ti > N and since W is nonincreasing, the limit of the middle term, with ti
fixed, exists for s→∞ (and is equal to the difference of the limits of both terms).
Therefore

−ε ≤ lim
s→∞

W (x(ti + s;xi, ti))− lim
s→∞

W (x(ti + s; p, ti)) ≤ ε

for ti > N , i.e.

(14) | lim
s→∞

W (x(ti + s;xi, ti))− lim
s→∞

W (x(ti + s; p, ti))| → 0 for ti →∞.

On the other hand—assuming Properties 1, 2, 3—the following is true (see Section
2):

(15) lim
s→∞

W (x(tisub
+ s; p, tisub

))→ a when tisub
→∞

with a < W (p) as above.
From (14) and (15) we obtain by the triangle inequality

lim
isub→∞

( lim
s→∞

W (x(tisub
+ s;xisub

, tisub
))) = a < V (p).

This leads to a contradiction as shown in Section 2. We obtain the following
theorem:

Theorem 2. Consider the linear system ẋ = A(t)x. Assume there exists a pos-
itive definite matrix P such that W = xTPx has negative semi-definite derivative.
If A(t) is measurable and bounded and there is no sequence ti → ∞ such that
(with p 6= 0)

∞∫
0

Ẇ (x(ti + s; p, ti)) ds→ 0 for ti →∞

then ẋ = A(t)x is asymptotically stable.
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Example. We announce the following theorem which is derived based on
Theorem 2 above. For details one is referred to a forthcoming paper [1]. Consider
the following time-variant differential equation

(16) ẋ = −m(t)m(t)Tx

with x(t) and m(t) n-dimensional. This equation or related versions arise in identi-
fication and control problems and have been studied extensively ([2], [5]). Usually
x(t) represents the parameter error that is driven to zero, based on an observation
of the error mT (t)x(t).

A set of stability results is related to the notion of persistency of excitation of
m(t). Let m(t) be a regulated function. It is called persistently exciting if there
exists T > 0 such that ∀s

(17) αI ≤
s+T∫
s

m(t)m(t)T dt ≤ βI

with α > 0 and β > 0. It has been shown ([5], [2]) that this is a necessary and suf-
ficient condition for exponential stability, (trajectories are bounded above and
below by exponentials). The importance of this result is that it accomodates a
wide class of signals, beyond the (almost) periodicity constraint of Lasalle’s prin-
ciple, still securing asymptotic stability. We now present the following (weaker)
sufficient condition for asymptotic stability.

Theorem 3. Let m(t) be regulated and bounded. A sufficient condition for
asymptotic stability of (16) is that for each t there exists a T (t) > t such that

(18) αI ≤
T (t)∫
t

m(τ)m(τ)T dτ ≤ βI

with β ≥ α > 0.

Theorem 3 represents a generalization of the stability results concerning (16)
featuring in [2, 5]. Indeed the sufficient condition is relaxed in that the integration
interval T (t) − t is no longer constant. As an example consider the differential
equation ẋ=−(1/t)x for t≥1. This differential equation is asymptotically stable
as can be verified by direct computation. This follows also from (18) for T (t) = 2t
but the equation does not satisfy (17).
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