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1. The result. I would like to start with formulating the result. In it, several
concepts appear, with which the reader may be not so familiar. In the second
part, these then will be discussed in more detail. The background material, and
much more, can be found in [5].

Let P be a (pseudo-)differential operator, acting on sections of an orthogonal
vector bundle E over an n-dimensional manifold X. All objects will be smooth,
that is, infinitely differentiable. Because our results will be of a (micro-)local
nature, we may use a local trivialization of E, in which P is a square matrix
of (pseudo-)differential operators. We will assume that in an orthogonal local
trivialization the principal symbol p(x, ξ) of P is a real symmetric matrix; this is
the case in many applications.

An important scalar function on the cotangent bundle T∗X of X is

∆(x, ξ) : = det p(x, ξ), (1.1)

the determinant of the principal symbol of P . Away from its zeros, P behaves
as an elliptic system. The set N ⊂ T∗X \ 0 where ∆ vanishes is called the
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characteristic variety of P . At points of N the polarization space ker p(x, ξ) has
a positive dimension. At points (x, ξ) ∈ N where d∆(x, ξ) 6= 0, the simple zeros
of ∆, N is a smooth conical hypersurface in T∗X.

If dim ker p(x, ξ) = k, then ∆ has a zero of order ≥ k at (x, ξ). Therefore, at the
simple zeros of ∆, the polarization space is one-dimensional and, modulo elliptic
factors, the analysis can be reduced to considering a scalar operator with simple
characteristics. For such operators the analysis modulo smoothing operators can
be reduced to analysis of the operator ∂/∂x1, through conjugation with an elliptic
Fourier integral operator, cf. [4, Sec. 6]. The translation of these results to the
polarization properties of singular solutions to the original system has been carried
out by Dencker [3].

For effects which are truly specific for systems we therefore must turn to the
singular part Σ of N , where ∆ = 0 and d∆ = 0. For a generic symbol Σ is
stratified and the top stratum is a smooth codimension 3 submanifold of T∗X,
transversally to which N looks like a quadratic cone. Modulo elliptic summands,
P can be reduced to a symmetric 2× 2-system.

We now assume that n ≥ 3. Our main result is that, by replacing the 2 × 2
operator P by APAT , with A a suitable elliptic Fourier integral operator, the
full Taylor expansion of the principal symbol at Σ can be brought into the very
simple standard form

p(x, ξ) =
(
∓ξ1 ± ξ2 x1ξ3
x1ξ3 ξ1 + ξ2

)
. (1.2)

Note that in this case

∆ = ∓ξ21 ± ξ22 − x2
1ξ

2
3 . (1.3)

The two sign choices in (1.2) lead to drastically different behaviour of the solu-
tions. For the plus sign, the operator is hyperbolic with respect to the variable
x1. Close to Σ, the bicharacteristic curves in the regular part of the characteristic
set N form helices, narrowly winding around smooth curves in Σ. Along with it,
the polarization space rotates rapidly. For the minus sign, the operator is hyper-
bolic with respect to x2. The bicharacteristic curves in N approach Σ and bounce
away like a hyperbola approaching the intersection of its asymptotes. During the
change of direction, the polarization space makes a quarter turn.

It should also be noted that this behaviour is very different from the so-called
conical refraction, which only occurs in special cases, for instance if the medium
is homogeneous (but non-isotropic).

This result appeared in Indagationes Mathematicae [2], in the volume on the
occasion of the 70th birthday of Prof. Dr. J. Korevaar. In the paper, we also
verify that the normal form (1.2) can be applied to Maxwell’s equations and the
equations for elastodynamics, for generic inhomogeneous media. The standard
form (1.3) for ∆ has been obtained before by Arnol’d, cf. [1, Sec. 8.1–8.4].

The normal form (1.2) for P suggests that the solutions behave as if the system
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were equal to

P =
1
i

(
∓ ∂
∂x1
± ∂

∂x2
x1

∂
∂x3

x1
∂
∂x3

∂
∂x1

+ ∂
∂x2

)
. (1.4)

Our goal is to understand properties of the solutions, such as propagation of the
polarization of high-frequency solutions, by analyzing this model system. This in-
formation should complement the results on propagation of singularities obtained
by [6] using energy estimates.

2. Background. We are concerned with systems of k linear partial differential
equations, of order m, for k unknown functions. Equivalently, this can be written
as an equation (

P (x,
1
i

∂

∂x
)u
)
(x) = 0, x ∈ Rn, (2.1)

in which P is a k×k-matrix of linear partial differential operators and the solution
u(x) is a vector-valued, Ck-valued, function.

A plane wave with frequency vector ξ ∈ Rn and vector-valued amplitude func-
tion a(x) is a function of the form

u(x) = ei〈x,ξ〉a(x). (2.2)

One can localize the investigation of u(x) by multiplying it with a smooth cutoff
function with support in the desired neighbourhood. The Fourier analysis says
that every compactly supported distribution can be written as an integral over
ξ ∈ Rn of plane waves. Singularities of the distribution come from the high
frequency contributions, in the sense that the distribution is smooth if the Fourier
coefficients c(ξ) are rapidly decreasing as |ξ| → ∞. That is, if for every N

c(ξ) = O(|ξ|−N ) as |ξ| → ∞. (2.3)

In this sense the investigation of singularities and of high frequency asymptotics
are viewed as equivalent subjects.

One can localize the high frequency contributions also in ξ-space, by using
cutoff functions with support in narrow cones. Or by replacing ξ by τξ, keeping
ξ in a small neighbourhood of a given nonzero ξ0 ∈ Rn and letting τ → ∞.
The analysis of high-frequency waves with both x and ξ localized, and the corre-
sponding analysis of singularities of distributions, is sometimes called micro-local
analysis.

After a general substitution of variables, the linear phase function x 7→ τ〈x, ξ〉
in the oscillatory factor will appear as the general real-valued function τϕ(x), at
least if ξ 6= 0. Thus, in a coordinate-invariant setting, the high-frequency waves
are of the form

u(x) = eiτϕ(x)a(x), (2.4)
in which the phase function ϕ(x) is a general real-valued smooth function of x.
The frequency parameter τ is thought of as being large. The direction of the wave
at x is determined by the total derivative dϕ(x), which in the coordinate-invariant
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terminology is a linear form on the tangent space TxX of the x-manifold X. That
is, dϕ(x) belongs to the dual space (TxX)∗ of TxX. The TxX, together, for all
x ∈ X, form the cotangent bundle T∗X of X. This is the phase space of classical
mechanics, if the manifold X is the configuration space = the manifold of the
positions.

The phenomenon which makes micro-local analysis work is that, asymptoti-
cally for high frequencies, linear partial differential operators act as multiplica-
tions by scalars, if we only look at the leading term of the asymptotic expansion.
That is, there is a k × k-matrix p(x, ξ), depending smoothly on (x, ξ) ∈ T∗X,
such that

P (eitϕa)(x) = τmp(x, dϕ(x))eiτϕ(x)a(x) +O(τm−1), τ →∞, (2.5)

for any real-valued smooth phase function ϕ(x) and Ck-valued smooth amplitude
function a(x). The matrix-valued function p(x, ξ) is uniquely determined by this
property and is called the principal symbol of the operator P . For each x ∈ X,
ξ 7→ p(x, ξ) is a homogeneous polynomial of degree m, hence in the asymptotics
(2.5) we could equally well have inserted the frequency parameter τ in p as a factor
in front of dϕ(x). One says that (2.4) is an asymptotic solution of Pu = 0, if Pu
is of smaller order than τm as τ →∞.

The operator P is called elliptic at (x, ξ) if p(x, ξ) is invertible. Clearly, u(x)
can only be an asymptotic solution if the amplitude vector a(x) belongs to
ker p(x, ξ), the polarization space of P at (x, ξ). Therefore, high-frequency so-
lutions with nonzero amplitude vector can only occur if (x, ξ) lies in

N = {(x, ξ) ∈ T∗M ; det p(x, ξ) = 0},
the characteristic set of P .

We have now discussed almost all concepts mentioned in our normal form
result, except for the pseudo-differential operators and Fourier integral operators.

In order to introduce pseudo-differential operators, we may start with the
Fourier inversion formula, which states that

u(x) = (2π)−n
∫

Rn

∫
Rn

ei〈x−y,ξ〉u(y)dy dξ, (2.6)

valid for any temperate distribution in Rn. Applying the linear partial differential
operator P and differentiating under the integral sign, we get

(Pu)(x) = (2π)−n
∫

Rn

∫
Rn

ei〈x−y,ξ〉P (x, ξ)u(y)dy dξ, (2.7)

in which the polynomial ξ 7→ P (x, ξ), called the total symbol of P is obtained by
formally substituting i−1∂/∂xj by ξj at every place. Clearly the principal symbol
p(x, ξ) is equal to the homogeneous part of degree m of P (x, ξ).

If one now replaces the polynomial ξ 7→ P (x, ξ) in (2.7) by a more general
smooth function of x and ξ, which has an asymptotic expansion as |ξ| → ∞
in homogeneous terms pm−j(x, ξ) of decreasing order, then the operator P is
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called a pseudo-differential operator of order m, with principal symbol equal to
p(x, ξ) = pm(x, ξ). The assumptions are that for each integer j ≥ 0, pm−j is
a smooth function of (x, ξ) for ξ 6= 0, which is homogeneous of degree m− j:

pm−j(x, τξ) = τm−jpm−j(x, ξ), τ > 0. (2.8)

The asymptotic assumptions are that for each J ≥ 1:

P (x, ξ)−
J−1∑
j=0

pm−j(x, ξ) = O(|ξ|m−J) as |ξ| → ∞, (2.9)

locally uniformly in x and with similar estimates for all the derivatives. Such
a function P (x, ξ) is called a symbol of order m. Of course, in the case of systems,
the symbols are taken to be matrix-valued. Like for differential operators, the
pseudo-differential operator P is called elliptic if the principal symbol p(x, ξ) is
invertible whenever ξ 6= 0.

Basic properties are that a pseudo-differential operator P maps the Sobolev
space Hs(X) continuously to Hs−m(X). Also, if Q is a pseudo-differential opera-
tor of order µ, then PQ is a pseudo-differential operator of order m+µ. Moreover,
the principal symbol of PQ is equal to the product of the principal symbols of P
and of Q, in this order. The last property follows from the fact that the asymptotic
formula (2.5) also holds for arbitrary pseudo-differential operators P .

A basic application of the calculus of pseudo-differential operators is that if
the pseudo-differential operator P of order m is elliptic, then it has a parametrix
Q, which is a pseudo-differential operator of order −m, such that PQ − I and
QP − I are of order −∞. One says: P has a pseudo-differential inverse, modulo
a smoothing operator. A well-known consequence is that every elliptic differential
operator on a compact manifold X is Fredholm. It therefore has a well-defined
index

indP = dim kerP − dim cokerP. (2.10)

The next generalization consists of replacing the linear phase function

(x, y) 7→ 〈x− y, ξ〉

in (2.7) by a more general real-valued smooth function ψ(x, y, θ). If x, resp. y,
are points in a smooth manifold X, resp. Y , then ψ is a smooth real-valued
function on X × Y ×RN , for some N . It is also assumed that the phase function
ψ is a homogeneous function of degree 1 of the auxiliary variable θ, at least for
sufficiently large |θ|. That is,

ψ(x, y, τθ) = τψ(x, y, θ), τ ≥ 1, |θ| ≥M. (2.11)

An operator A from functions on Y to functions on X, given locally by integral
formulas like

(Au)(x) =
∫
eiψ(x,y,θ)A(x, y, θ)u(y)dy dθ, (2.12)
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in which ψ is a phase function as just described and the amplitude A satisfies the
usual symbol estimates with ξ replaced by θ, is called a Fourier integral operator.
Pseudo-differential operators are clearly a special case, with X = Y . Actually, for
a coordinate-invariant definition of pseudo-differential operators on manifolds X,
it is natural to allow more general phase functions, because linearity in x does
not make global sense in a general manifold.

For Fourier integral operators, an application of the method of stationary phase
yields that (2.5) now takes the form that (Pu)(x) is asymptotically given by u(y),
where the point

(y, η) = (y, dϕ(y)) ∈ T∗Y

is related to a point (x, ξ) ∈ T∗X by the condition that

ξ =
∂ψ

∂x
(x, y, θ), (2.13)

η = −∂ψ
∂y

(x, y, θ), (2.14)

for some θ such that

∂ψ

∂θ
(x, y, θ) = 0. (2.15)

The relation between (y, η) and (x, ξ) is not arbitrary: if it is a smooth mapping
Ψ from T∗Y to T∗X, then it is a canonical transformation of the phase spaces,
as defined in Hamiltonian mechanics. The homogeneity of ψ also implies that
it commutes with multiplication in the fibre by τ > 0, at least away from the
zero section. An important fact is also that every homogeneous canonical trans-
formation arises in this way from a suitable phase function ψ, so corresponds to
a Fourier integral operator A.

A consequence of the calculus is the theorem of Egorov that if the Fourier inte-
gral operator is elliptic, and P is a pseudo-differential operator in Y with principal
symbol equal to p, then APA−1 is a pseudo-differential operator in X with prin-
cipal symbol equal to p ◦ Ψ. That is, a conjugation by means of elliptic Fourier
integral operators can be used to transform a symbol by means of a substitution
of variables given by an arbitrary homogeneous canonical transformation. In this
way it becomes clear now that our normal form result is equivalent to the state-
ment that the symbol can be brought into the standard form by a combination
of the following operations:
(i) Left and right multiplication by suitable invertible matrix-valued symbols.
(ii) Substitution of phase space variables by means of a suitable homogeneous

canonical transformation.
It is in the second step that symplectic geometry comes in.
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