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Introduction. The concept of quantum spaces has been under study for some
time now, and recently it has been attracting a growing amount of attention.
This is in part due to the interest in quantum groups, which are considered a
very promising concept by many, both physicists and mathematicians. It seems
that quantum groups appear quite naturally in low-dimensional quantum field
theory and statistical mechanics, they have also found important applications in
the theory of knots. Other potential hoped-for applications include a possible role
of quantum spaces in a future quantized theory of gravity.

The theory of quantum spaces, and quantum groups in particular, is at present
in a phase of rapid growth. One of the consequences of this is that the language
used in the field still remains somewhat ambiguous, even concerning the definition
of basic concepts. Here, the category of locally compact quantum spaces will be
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understood as the dual to the category of C? algebras [2]. The main objective of
the present notes is to motivate and describe this basic notion.

Compact quantum spaces. Let us begin by considering a compact Haus-
dorff space X, and the set C(X) of continuous complex valued functions on X.
C(X) is naturally endowed with the structure of a commutative algebra with unit
over the complex number field, equipped moreover with the anti-linear involution
? given by

(f?)(p) = f(p)

and the norm
‖f‖ = sup

p∈X
|f(p)|.

This norm can be seen to obey the condition

‖f?f‖ = ‖f‖2.

It is also known that the space C(X) is complete with respect to this norm.
Algebras (not necessarily commutative) with the above properties are known

as C? algebras. We see therefore that every compact Hausdorff space X is in a
natural way associated with a commutative C? algebra with unit, namely C(X).
What’s more, every continuous mapping between compact Hausdorff spaces, T :
X → Y , determines a C? homomorphism: T ? : C(Y )→ C(X), given by

(T ?f)(p) = f(T (p)).

In particular, when X consists of a single point, C(X) = C and any mapping
of X into Y determines a linear and multiplicative functional on C(Y ). In brief:
points of Y correspond to linear multiplicative functionals on C(Y ). The cele-
brated Gelfand–Naimark theorem states that this correspondence is one to one.
This leads to an important conclusion: Any commutative C? algebra with unit is
the algebra of continuous functions on a compact topological space. This space
may be identified with the set of linear multiplicative functionals (also known as
characters) on the algebra.

Stating it in the language of category theory: there exists a contravariant
isomorphism between the category of compact topological spaces and that of
commutative C? algebras with unit. Consequently, it is natural to make the fol-
lowing generalization: A compact quantum space corresponds, by an extension of
this isomorphism, to a noncommutative C? algebra with unit. It must be stressed
that it is not necessary (nor does it seem useful) to consider the quantum space
itself as a set.

It may be therefore said that the theory of quantum spaces is no more than
the theory of C? algebras. Such a point of view, however, misses much of the
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point. A similar example is the theory of probability: one could just as well say
that it is no more than measure theory. The fact is that although both probability
and measure theory may be reduced to a common denominator, they differ in the
kind of questions they ask and in their applications.

Returning to the main subject, one of the basic concepts of topology is that of
the Cartesian product of topological spaces. In the language of C? algebras, the
corresponding concept is that of the tensor product of algebras. This, however,
requires a definition of the tensor product that would operate within the cate-
gory of C? algebras. The problem boils down to properly defining the norm and
completion of the algebraic tensor product. To show how this is done, we quote
the following theorem due to Gelfand, Naimark and Segal:

Theorem. Every separable C? algebra has a faithful continuous representation
in B(H), the algebra of bounded linear operators on a Hilbert space H. Moreover,
this representation is isometric (norm-preserving).

It follows that the image of such a representation is a closed subalgebra of
B(H).

We say that a closed subalgebra A ⊂ B(H) is nondegenerate iff for every
nonzero x ∈ H, ax 6= 0 for some a ∈ A. The family of separable, nondegenerate
subalgebras of B(H) will be denoted as C?(H).

We are now ready to explain the construction of an adequate tensor product
of C? algebras: Consider the C? algebras A and A′. In virtue of the Theorem
quoted above, A and A′ may be identified with certain elements of C?(H). The
algebraic tensor product is contained in B(H)⊗B(H) ⊂ B(H ⊗H). Completing
the image of A⊗A′ with respect to the norm in B(H⊗H), we obtain a separable
C? algebra, which we identify as the tensor product of A with A′. It turns out that
the resulting algebra does not depend on the choice of (faithful) representations
of A and A′.

An important property of the Cartesian product is the existence of natural
projections onto the factors:

X × Y 3 (x, y) 7−→ x ∈ X,

X × Y 3 (x, y) 7−→ y ∈ Y.

Moreover, in the case of the Cartesian product of a space with itself there exists
a natural diagonal mapping:

X 3 x 7−→ (x, x) ∈ X ×X.

In the language of quantum spaces, the projections correspond to the natural
injective homomorphisms:

A 3 a 7−→ a⊗ I ∈ A⊗A′,
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A′ 3 a′ 7−→ I ⊗ a′ ∈ A⊗A′.

The diagonal mapping, however, does not have a quantum equivalent: the map-
ping

A⊗A 3
∑

ai ⊗ bi 7−→
∑

aibi

is not an algebra homomorphism in general.

Examples. Many examples of quantum spaces may be presented as algebras
with a finite number of generators and relations. Consider such a finite set of gen-
erators (I, ai) and relations Rk. We form a ?-algebra with unit, A, as the quotient
of the free algebra in the generators (I, ai) by the two-sided ideal generated by
the relations Rk. Next, we consider the set {π} of ?-representations of A in B(H).
If for every x ∈ A, supπ ‖π(x)‖ exists, it determines a semi-norm in A. By quoti-
enting A additionally by the ideal generated by elements of vanishing semi-norm
and completing, we obtain the so-called universal C? algebra generated by (I, ai)
with relations Rk.

As an example, we now present the quantum disk [3]. Let µ be a real number,
0 < µ < 1, and z a generator subject to the relation

zz? − z?z = µ(I − z?z)(I − zz?).

It turns out that such an algebra admits only two types of inequivalent represen-
tations:
• π(z) ∈ C, |z| = 1,

• π(z)fn = ( nµ
1+nµ)1/2fn−1,

where (fn)∞n=0 form an orthonormal basis in the Hilbert space H. The algebra
Aµ described here is well known as the Toeplitz algebra.

Observe that the mapping

z 7−→ eiφ ∈ C(S1)

extends to a homomorphism of Aµ onto C(S1). In this sense, the usual circle is a
subset of the quantum disk.

The following nontrivial fact can be shown: the group SU(1, 1) of two by two
complex matrices (

α β
γ δ

)

such that β = γ, δ = α, and |α|2 − |β|2 = 1, acts on Aµ as an automorphism
group:

ζ = (αz + β)(γz + δ)−1 ∈ Aµ



QUANTUM SPACES 41

satisfies the same relation as z; this justifies the term quantum disk, being in
precise analogy with the action of SU(1, 1) on the unit disk in C, as its group of
biholomorphisms.

What’s more, it is possible to contemplate a quantum extension of a well-
known construction of closed Riemann surfaces of genus > 1. Any such surface Σ
can be presented as the quotient of the disk by the action of a discrete subgroup of
SU(1, 1), isomorphic to π1(Σ). The quantum version of this would be to consider
the subalgebra

AΣ = {x ∈ Aµ : ϕg(x) = x for all g ∈ π1Σ},

where ϕ denotes the SU(1, 1) action on Aµ.
To make this precise, it would however be necessary to take into account

that one should be quotienting the open disk, while Aµ is a quantum version of
the closed disk with boundary. Before this can be done, one needs a notion of
noncompact quantum space.

Another example which we shall present is the quantum sphere S3
q [8]. Let α

and γ be the generators, q a real parameter (0 < q ≤ 1), and take the following
set of relations:

αγ = qγα,

αγ? = qγ?α,

γγ? = γ?γ,

α?α+ γ?γ = I,

αα? + q2γ?γ = I.

When q is set to 1 we obtain a commutative algebra; by inspecting the last
two relations we see that, after suitable completion, it is the algebra C(S3). In
the general case, the universal C? algebra obtained from this set of generators
and relations by the procedure previously described will be called the algebra of
functions on the quantum sphere, C(S3

q ).
Just as is the case for the classical sphere (i.e. at q = 1), also for q 6= 1 we

can find an action of S1 on C(S3
q ) by C?-algebra automorphisms. This action is

determined by the formulas

S1 3 eit 7−→ σt : C(S3
q )→ C(S3

q ),

σt(α) = eitα, σt(γ) = e−itγ.

In the algebra C(S3
q ) we may distinguish the set of elements left invariant by

the action σ. It forms a C? algebra with unit, and therefore corresponds to a
certain compact quantum space. In the case q = 1 this algebra is C(S2), and the
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construction we have outlined is known as the Hopf fibration: S2 ∼ S3/S1. What
we have obtained is therefore a quantum generalization of the Hopf fibration [4].

It must be mentioned that choosing the particular form of “quantum defor-
mation” of S3 displayed above has a deep justification. It is known that the
classical sphere S3 is itself endowed with the structure of a (topological) group;
this is the group SU(2) of unitary two by two complex matrices of determinant 1.
We have claimed that any topological notion referring to compact spaces can be
translated into the language of commutative C? algebras. In particular, a group
multiplication is simply a continuous mapping from G×G to G, subject to cer-
tain additional conditions (namely associativity, existence of a unit and of inverse
elements). Speaking in terms of C(G), what corresponds to group multiplication
on G is a (unital C?) homomorphism

∆ : C(G)→ C(G)⊗ C(G),

called the coproduct. Explicitly:

C(G) 3 f 7−→ ∆(f) ∈ C(G)⊗ C(G) ∼ C(G×G)

is given by
(∆(f))(g1, g2) = f(g1g2).

Of course, the coproduct obeys certain properties derived from the axioms of
group multiplication. We may take these as the basic axioms, and, in the spirit of
the theory of quantum spaces, drop the requirement that C(G) be commutative.
This leads to the theory of quantum groups [9], which are a very important special
class of quantum spaces.

In particular, the algebra C(S3
q ) described above provides an example of a

quantum group, denoted SUq(2). The coproduct is determined by the formulas

∆(α) = α⊗ α− qγ? ⊗ γ,

∆(γ) = γ ⊗ α+ α? ⊗ γ.

It may be verified that ∆ fulfills the axioms dual to those of group multiplication.
The quotient construction of the quantum sphere S2

q sketched above has the-
refore also provided us with an example of a quantum homogeneous space for the
quantum group SUq(2) [5].

Remarks on noncompact quantum spaces. Up to now, we have been
considering the category of compact quantum spaces, motivating its definition by
the classical version of the Gelfand–Naimark theorem. To proceed to the case
of locally compact, but noncompact spaces, we quote a generalization of this
theorem:
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Theorem. Every commutative C? algebra may be identified with an algebra of
continuous functions on a locally compact topological space. If the algebra has a
unit element, this space is moreover compact. In the contrary case, we are dealing
with the algebra of continuous functions on a noncompact space, subject to the
condition of vanishing at infinity.

Denote the algebra of continuous functions vanishing at infinity on a non-
compact space X by C∞(X). It turns out that in the noncompact case there is
a problem with properly defining the morphisms of function algebras. One may
easily find a continuous mapping F : X → Y between two topological spaces, such
that the corresponding dual mapping F ? is not a homomorphism between C∞(Y )
and C∞(X); that is, F ? might not preserve the condition of vanishing at infin-
ity. F ? may indeed be defined, as a homomorphism from Cb(Y ) to Cb(X), where
Cb denotes the algebra of all continuous bounded functions. Trying to describe a
noncompact topological space X by its algebra of all bounded continuous func-
tions Cb(X) is not, however, the right idea: the latter is a C? algebra with unit,
and therefore (by Gelfand–Naimark) corresponds uniquely to a certain compact
topological space (namely, the Čech–Stone compactification of X).

To describe a solution to the problem of uniquely associating with any locally
compact topological space a certain function algebra, and an algebra morphism
with any continuous mapping, we point out the following fact: knowing C∞(X)
allows one to determine Cb(X). Indeed,

f ∈ Cb(X)⇒ for every g ∈ C∞(X), fg ∈ C∞(X).

In fact, Cb(X) is the largest algebra which contains C∞(X) as a “sufficiently
large” ideal. By this we mean the following property: for any a ∈ Cb(X) which is
a strictly positive function, aC∞(X) is dense in C∞(X). We therefore define the
morphisms in the category of commutative C? algebras in the following way:

F ? ∈ Mor(C∞(Y ), C∞(X)) iff F ? : C∞(Y )→ Cb(X) is a homomorphism,

and F ?(C∞(Y ))C∞(X) is dense in C∞(X).
We are now ready to describe the “quantum extension” of this construction.

Let A be a C? algebra, not necessarily with unit. By the second Gelfand–Naimark
theorem, there exists a faithful representation of A in B(H), i.e. A ∈ C?(H). We
treat A as playing the role of C∞(X), while for that of Cb(X) we take the so-called
algebra of multipliers of A, M(A):

M(A) = {a ∈ B(H) : aA,Aa ⊂ A}.

For a pair of C? algebras A,B we will define Mor(A,B) as the class of C?-
homomorphisms ϕ : A→M(B) such that ϕ(A)B is dense in B. It turns out that
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any such homomorphism extends in a canonical way to a homomorphism from
M(A) to M(B), and the composition of morphisms can be defined.

It therefore remains to interpret, within the language of algebras, the notion of
a continuous, not necessarily bounded function. What motivates the suitable qu-
antum extension in this case is the following property, which holds for continuous
functions: if f is continuous on a locally compact space X, then f(I+f?f)−1/2 is
continuous and bounded on X. This leads us to introduce the following definition:
given an algebra A ∈ C?(H), an operator T (in general unbounded) on H will be
called affiliated with A if

T (I + T ?T )−1/2 ∈M(A),

and (I + T ?T )−1/2A is a dense set in A. The set of affiliated operators is to
be considered as the quantum version of the set of continuous, not necessarily
bounded functions on a locally compact space [11]. The operators affiliated with
an algebra do not, however, in general themselves form an algebra.

Concluding remarks. What we have described in the present notes is of
course only the point of departure for the theory of quantum spaces; at present,
this theory is at a rather early stage, and much remains to be developed. It does,
however, seem possible to translate into the language of C? algebras most of
the notions and constructions of classical topology; for instance, some amusing
examples of surgery on quantum spaces have been displayed. Another promising
direction is the study of quantum spaces equipped with additional structures.
Here the most studied example are compact matrix quantum groups, though
interesting examples of noncompact quantum groups have also been constructed
[7, 12]. Perhaps the most interesting problem is that of finding a satisfactory
formulation of the notion of differential structure on a quantum space [1] (some
examples can be found in [8, 6, 10]).

The authors wish to thank Professor S. L. Woronowicz for providing an outline
of his lecture.
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