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Abstract. It is shown that ln2 imbeds isometrically into ln
2+1
4 provided that n is a prime

power plus one, in the complex case. This and similar imbeddings are constructed using ele-
mentary techniques from number theory, combinatorics and coding theory. The imbeddings are
related to existence of certain cubature formulas in numerical analysis.

1. General facts on imbeddings of ln2 into lNp . As usual, lNp denotes KN ,
K ∈ {R,C}, equipped with the p-norm

‖x‖p =
( N∑
j=1

|xj |p
)1/p

, x = (xj)Nj=1 ∈ KN .

Dvoretzky’s theorem, in the case of lp-spaces, states that for any ε > 0 there is
cε ≥ 1 such that for any n,N ∈ N with N ≥ cεn if p ≤ 2 and N ≥ cεnp/2 if p > 2,
there is a subspace Yn ⊂ lNp of dimension (Yn) = n such that

d(Yn, ln2 ): = inf{‖T‖ ‖T−1‖
∣∣ T : Yn −→ ln2 linear isomorphism} ≤ 1 + ε.

I.e. for p > 2, ln2 imbeds (1 + ε)-isomorphically into lNp where N = cεn
p/2,

cf. [FLM]. We study the case of ε = 0, i.e. the question of isometric imbeddings ln2
into lNp for a given n and p with N = N(n, p). We indicate isometric imbeddings
by ln2 ↪→ lNp . They only exist if p = 2k ∈ 2N is an even integer, cf. [L] (probably
a kind of folklore result). In this case of p = 2k such isometric imbeddings exist
and

N(n, k): = min{N
∣∣ ln2 ↪→ lN2k imbeds isometrically}
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is finite. We would like to estimate N(n, k) and find concrete imbeddings. The re-
cent book by Reznick [R] and papers of Lyubich-Vaserstein [LV] and Seidel [S] are
concerned with this problem, and together with the paper of Goethals-Seidel [GS]
on spherical designs motivated this paper.

The formula

(x2
1 + x2

2)2 =
8
9

[
x4

1 +
(√

3x2 − x1

2

)4

+
(√

3x2 + x1

2

)4]
, x = (x1, x2) ∈ R2

yields an isometric imbedding l22 ↪→ l34 : the l4-unit sphere in R3 contains a circular
section. The formula( 4∑

i=1

x2
i

)2 =
1
6

∑
1≤i<j≤4

[(xi + xj)4 + (xi − xj)4], x = (xi) ∈ R4,

giving an isometric imbedding l42 ↪→ l124 , was classically used in the context
of Waring’s problem, cf. [M]. We start with a characterization of imbeddings
ln2 ↪→ lN2k. By Sn−1 ⊂ Kn we denote the (n − 1)-sphere in Rn or Cn and by dσ
the (rotation invariant, normalized) Haar measure on Sn−1. Let Phom

2k,n denote the
space of homogeneous polynomials of degree 2k in n variables; in the complex
case this means all polynomials q(z1, . . . , zn, z̄1, . . . , z̄n) which are homogeneous
of degree k in each set of variables (z1, . . . zn) and (z̄1, . . . z̄n). Further, 〈·, ·〉 is the
standard scalar product in Kn.

Proposition 1. Let n, k,N ∈ N. The following are equivalent:
(1) There is an isometric imbedding ln2 ↪→ lN2k.
(2) There exist N points x1, . . . , xN ∈ Sn−1 and a probability sequence

(µs)Ns=1 ⊂ R+ (
N∑
s=1

µs = 1) such that for all polynomials p ∈ Phom
2k,n

(1.1)
N∑
s=1

µsp(xs) =
∫

Sn−1

p(y) dσ(y).

(3) There exist N points x1, . . . , xN ∈ Sn−1 and a probability sequence (µs)Ns=1

such that

(1.2)
N∑

s,t=1

µsµt
∣∣〈xs, xt〉∣∣2k =

∫
Sn−1

∫
Sn−1

∣∣〈x, y〉∣∣2kdσ(x)dσ(y) =: cnk.

Since for 0 ≤ l < k and q ∈ Phom
2l,n the polynomial p defined by p(x) =

q(x)〈x, x〉k−1 is in Phom
2k,n with q|Sn−1 = p|Sn−1 , we have for K = R that (1.1)

holds for all even polynomials of degree ≤ 2k, provided (1)–(3) are true. If the
points (−x1, . . . ,−xN ) are added and the µ’s divided by 2, formula (1.1) holds
for all polynomials of degree ≤ 2k + 1. Thus these points and weights constitute
a cubature formula of degree 2k + 1 in n variables on Sn−1 ⊂ Rn. Concrete
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imbeddings ln2 ↪→ lN2k are thus equivalent to symmetric cubature formulas on
Sn−1. For equal weights this is called a spherical design, cf. [GS].

The equivalence of (1) and (2) is in [R] and [LV], the equivalence of (2) and (3)
follows from results of [GS]. We use the equivalence of (1) and (3) later to con-
struct imbeddings ln2 ↪→ lN2k; if we have points (xs) and weights (µs) with (1.2),
the imbedding is given by x 7→

(
(µs/cnk)1/2k〈x, xs〉

)N
s=1

. To start, here is a direct
elementary proof of Proposition 1.

P r o o f. (2)⇒ (1). Let x ∈ Kn be fixed. Applying (2) to p(y) =
∣∣〈x, y〉∣∣2k, we

find, using rotation invariance of σ,
N∑
s=1

µs
∣∣〈x, xs〉∣∣2k =

∫
Sn−1

∣∣〈x, y〉∣∣2kdσ(y) = ‖x‖2k2
∫

Sn−1

|y1|2kdσ(y) = cnk‖x‖2k2 .

Thus x 7→
(
(µs/cnk)1/2k〈x, xs〉

)N
s=1

yields ln2 ↪→ lN2k.

(1) ⇒ (3). Any isometric imbedding ln2 ↪→ lN2k has the form x 7→
(
〈x, zs〉

)N
s=1

with zs ∈ Kn. Define

xs: = zs/‖zs‖2, µs: = ‖zs‖2k2 /
N∑
t=1

‖zt‖2k2 :
N∑
s=1

µs = 1.

Let m denote the Haar measure on the orthogonal (unitary in the complex case)
group O(n) which by U ∈ O(n) 7→ Ue ∈ Sn−1 for fixed e ∈ Sn−1 induces σ on
Sn−1. Using the assumption and the O(n)-invariance of ‖ · ‖2, we find for x ∈ Kn

and U ∈ O(n)

( N∑
t=1

‖zt‖2k
)( N∑
s=1

µs
∣∣〈x, xs〉∣∣2k) =

N∑
s=1

∣∣〈x, zs〉∣∣2k
= 〈x, x〉k = 〈U∗x, U∗x〉k =

N∑
s=1

∣∣〈x, Uzs〉∣∣2k
=

N∑
s=1

∫
O(n)

∣∣〈x, Uzs〉∣∣2kdm(U) =
N∑
s=1

‖zs‖2k
∫

Sn−1

∣∣〈x, y〉∣∣2kdσ(y)

=
( N∑
s=1

‖zs‖2k
)
· cnk · 〈x, x〉k.

This yields for x = xt

cnk = cnk〈xt, xt〉k =
N∑
s=1

µs
∣∣〈xt, xs〉∣∣2k

indepedently of t ∈ {1, . . . , N}. Multiply by µt and sum over t to get (3).
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(3) ⇒ (2). For x ∈ Kn, l ∈ N, let x⊗l = x ⊗ . . . ⊗ x ∈ Knl

denote the
l-fold tensor product. Then 〈x⊗l, y⊗l〉 = 〈x, y〉l for x, y ∈ Kn. As in [GS] or [KT],
consider

ξ: =
N∑
s=1

µsx
⊗k
s ⊗ x̄⊗ks −

∫
Sn−1

x⊗k ⊗ x̄⊗kdσ(x) ∈ Kn2k

.

The rotation invariance of σ yields after an elementary calculation

0 ≤ 〈ξ, ξ〉 =
N∑

s,t=1

µsµt
∣∣〈xs, xt〉∣∣2k − cnk.

By assumption, the right hand side is zero. Thus ξ = 0 in Kn2k

. This means,
written in coordinates, that all monomials of degree 2k in Phom

2k,n are integrated
exactly by the cubature formula (xs, µs), i.e. (1.1) holds for all monomials and
thus for all p ∈ Phom

2k,n.

Corollary 1. If ln2 ↪→ lN2k, also ln2 ↪→ lN2l for 1 ≤ l ≤ k.

P r o o f. As noted before, if (1.1) holds for p ∈ Phom
2k,n, it also holds for p ∈

Phom
2l,n , 1 ≤ l ≤ k.

Corollary 2. [R, LV]. For K = R, l22 ↪→ lk+1
2k .

P r o o f. Take xs: = exp(πi(s + 1/2)/(k + 1)) ∈ C = R2 for s = 0, . . . , k and
µs = (k + 1)−1. Then (3) holds, since for any t = 0, . . . , k

1
k + 1

k∑
s=0

∣∣〈xt, xs〉∣∣2k =
1

k + 1

k∑
j=0

cos
( πj

k + 1

)2k

(∗)
=

1
2π

2π∫
0

(cosx)2kdx =
∫
S1

∣∣〈x, e1〉∣∣2kdσ(x) = c2k.

Here (∗) is true since all trigonometric polynomials of degree 2k are integrated
exactly by a coresponding formula; this is easily checked for the exponentials
e−ilx, |l| ≤ 2k.

Corollary 3. If ln2 (C) ↪→ lN2k(C), then l2n2 (R) ↪→ l
N(k+1)
2k (R).

P r o o f. l2n2 (R) ≡ ln2 (C) ↪→ lN2k(C) ≡ lN2k(l22(R))
↪→ lN2k(lk+1

2k (R)) = l
N(k+1)
2k (R).

Corollary 3 is useful in the context of the cubature formula, since points
(xs) ⊆ Cn, (µs) with (3) can often be constructed using complex exponentials
(see below) which then, by using Corollary 3 and the explicit construction of
Corollary 2, can be translated into explicit cubature formulae for S2n−1(R).
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2. Estimates on the dimension number N(n, k). Since dim Phom
2k,n ∼ n2k,

Proposition 1 would seem to indicate that N ∼ n2k points are needed for cu-
bature formula (1.1) and thus for any imbedding ln2 ↪→ lN2k. On the other hand,
Dvoretzky’s theorem, by putting naively ε = 0 for p = 2k, would suggest that
only N ∼ np/2 = nk are needed. These orders are, in fact, upper and lower bounds
for N(n, k) :

Proposition 2. For any 2 ≤ n, k ∈ N, L(n, k) ≤ N(n, k) ≤ U(n, k), where

L(n, k): =


(
n+ k − 1

k

)
, K = R(

n+ [k+1
2 ]− 1

[k+1
2 ]

)(
n+ [k2 ]− 1

[k2 ]

)
, K = C,

U(n, k): =


(
n+ 2k − 1

2k

)
, K = R(

n+ k − 1
k

)2

, K = C.

Clearly, L(n, k) ∼ nk, U(n, k) ∼ n2k, up to constants depending on k. In the
real case, this can be found in [LV] and [R]; the upper bound is classical, see [M].

P r o o f f o r K = R. Hilbert’s formula for x ∈ Rn∫
Sn−1

∣∣〈x, y〉∣∣2kdσ(y) = cnk‖x‖2k2

shows that ‖ · ‖2k is in the (closed) convex hull of the polynomials
{〈·, y〉2k

∣∣ y ∈ Sn−1} in the positive cone of Phom
2k,n. By Carathéodory’s theorem,

N(n, k) is thus bounded from above by dim Phom
2k,n =

(
n+2k−1

2k

)
.

As for the lower bound, if N were <
(
n+k−1

k

)
= dim Phom

k,n , for any given set
(xs)Ns=1 ⊂ Sn−1 there would be a non-zero p ∈ Phom

k,n with p(xs) = 0 for all
s ∈ {1, . . . , N}. Then p2 ∈ Phom

2k,n and for any probability sequence (µs)

N∑
s=1

µsp(xs)2 = 0 6=
∫

Sn−1

p(y)2dσ(y).

Hence (2) and thus (1) of Proposition 1 is violated.

We show below that for k = 2, i.e. imbeddings into l4, the lower bound gives
the right order of growth (n2), solving a problem on the last page of Reznick’s
book [R]. Thus the lower bound seems to be more interesting one to investigate.
We need some specific polynomials for this purpose: given α,β > −1, the Jacobi
polynomials P (α,β)

k are the k-th order orthogonal polynomials on (−1, 1) with
respect to the weight function (1−x)α(1 +x)β , normalized by P (α,β)

k (1) = 1. For
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n ≥ 2 and k ∈ N, define the k-th order polynomial Cn,k by

Cn,k(x) =


P

( n−1
2 ,n−1

2 )

k (x), K = R,
P

(n−1,0)
k/2 (2x2 − 1), K = C, k even

xP
(n−1,1)
(k−1)/2(2x2 − 1), K = C, k odd.

The relevance of these polynomials here comes from the fact that they are rela-
ted to positive define functions on Sn−1 via the addition formula for spherical
harmonics.

Proposition 3. Let 2 ≤ n, k ∈ N and assume that L(n, k) = N(n, k) =: N.
Then there exist (xs)Ns=1 ⊂ Sn−1 such that (1.1), (1.2) hold with µs = 1/N , and
for any 1 ≤ s 6= t ≤ N , the number

∣∣〈xs, xt〉∣∣ is a zero of the polynomial Cn,k.
For k = 2, the coincidence

N = L(n, 2) = N(n, 2) =
{
n(n+ 1)/2 (R)
n2 (C)

is equivalent to the existence of N “equiangular” lines/points (xs)Ns=1 with∣∣〈xs, xt〉∣∣ =
{

1/
√
n+ 2 (R)

1/
√
n+ 1 (C),

which is the maximal possible number.

We do not give the proof here; it can be given by modifying the techniques
of Delsarte-Goethals-Seidel [DGS] in the real case, who estimate the number of
points of spherical designs (where the µs are all equal but also odd order poly-
nomials are integrated exactly). In the complex case we also refer to Bannai [B]
and Hoggar [Ho]. It is known that such configurations do not exist if k > 5,
n > 2. However, some examples of such systems are known which satisfy (3) of
Proposition 1 with µs = 1/N . In particular, using equiangular points one gets
imbeddings with best possible N = N(n, 2) :

R : l22 ↪→ l34, l
3
2 ↪→ l64, l

7
2 ↪→ l284 , l

23
2 ↪→ l2764 .

C : l22 ↪→ l44, l
3
2 ↪→ l94, l

8
2 ↪→ l644 .

Further imbeddings from “system with few angles” are

R : l22 ↪→ l46, l
8
2 ↪→ l1206 , l232 ↪→ l23006 , l22 ↪→ l610, l

24
2 ↪→ l9828010 .

C : l22 ↪→ l66, l
4
2 ↪→ l406 , l

6
2 ↪→ l1266 .

The real case imbeddings were given already in [R], [LV], the example l242 ↪→ l9828010

related to the Leech lattice being quite spectacular. To find imbeddings with
N(n, 2) ≈ L(n, 2), we look for an almost maximal number of almost equiangular
vectors in Kn. The main result of this paper is
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Proposition 4.
(a) Let q be a prime power and n = q + 1. Then there exists an imbedding

ln2 ↪→ ln
2+1

4 over the complex numbers.
(b) Let n = q be an odd prime power. Then there exists an imbedding ln2 ↪→ ln

2+n
4

over the complex numbers which can be given explicitly in terms of exponential
vectors.

(c) Let n = 4m, m ∈ N. Then the Kerdock code yields an isometric imbedding
ln2 ↪→ l

n(n+2)/2
4 over the real numbers.

For the proof of (a) we use a classical result of Singer on B2-sequences, cf. [HR]:

Lemma. For q and n as in (a) there exist integers 0 ≤ d1 < . . . < dn < M ,
M : = q2 + q + 1 = n2 − n+ 1 such that all numbers from 1 to M − 1 show up as
residues mod M of the differences di − dj (i 6= j) exactly once,

{(di − dj)(M)
∣∣ i 6= j} = {1, . . . ,M − 1}.

P r o o f o f P r o p o s i t i o n 4.
(a) Take d1 < . . . < dn as in the lemma and define

xs: =
1√
n

(
exp
(2πi
M

djs
))n
j=1
∈ Sn−1(C), s = 1, . . . ,M,

xs: = es−M (unit vectors), s = M + 1, . . . , N : = n2 + 1.

For 1 ≤ s 6= t ≤ M , the vectors are equiangular,
∣∣〈xs, xt〉∣∣ =

√
n− 1/n (Θ: =

s− t):

n2
∣∣〈xs, xt〉∣∣2 =

n∑
j,k=1

exp
(2πi
M

(dj − dk)Θ
)

=
(∑
j=k

+
∑
j 6=k

)
exp
(2πi
M

(dj − dk)Θ
)

= n+
M−1∑
l=1

exp
(2πi
M

lΘ
)

= n− 1.

For 1 ≤ s ≤ M , let µs = µ(1) = n
n+1

1
M . For M < s ≤ N , let µs = µ(2) = n

n+1
1
n2 .

Then
∑N
s=1 µs = 1 and for 1 ≤ t ≤M ,

N∑
s=1

µs
∣∣〈xt, xs〉∣∣4 = µ(1)

(
1 + (M − 1)

(n− 1)2

n4

)
+ µ(2)

(
n · 1

n2

)
=

2
n(n+ 1)

,

and for M < t ≤ N ,
N∑
s=1

µs
∣∣〈xt, xs〉∣∣4 = µ(1)

(
M

1
n2

)
+ µ(2) =

2
n(n+ 1)

,

so that
N∑

s,t=1

µsµt
∣∣〈xt, xs〉∣∣4 =

2
n(n+ 1)

= cn,2(C) =
∫

Sn−1(C)

|y1|4dσ(y).
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The last fact cn,2 = 2
n(n+1) can be checked by a direct calculation using polar

coordinates.
(b) Let n be an odd prime power. Identify s = (s1, s2) ∈ {1, . . . , n}2 with

s ∈ {1, . . . , n2} and define

xs: =
1√
n

(
exp
(2πi
n

(s1j + s2j
2)
))n

j=1

∈ Sn−1(C), s = 1, . . . , n2

xs: = es−n2 , n2 < s ≤ n2 + n =: N.

For s = (s1, s2), t = (t1, t2) ∈ {1, . . . , n}2, Θ1: = s1 − t1, Θ2: = s2 − t2 6= 0

n2
∣∣〈xs, xt〉∣∣2 =

n∑
j,k=1

exp
(2πi
n
{Θ1(j − k) + Θ2(j2 − k2)}

)
=

n∑
j,l=1

exp
(2πi
n
{Θ1l + Θ2l(2j − l)}

)
=

n∑
j,l=1

exp
(2πi
n
{Θ2(l − l0(j))2 −Θ2(j − j0)2}

)
=
∣∣∣ n∑
l=1

exp
(2πi
n

Θ2l
2
)∣∣∣2

where l0(j): = j − s1/(2s2) and j0: = s1/(2s2) are calculated in the field Fn with
n elements. By well-known facts on Gaussian sums for odd numbers n, cf. [H],
the latter square equals n. Thus

∣∣〈xs, xt〉∣∣ =


1 s = t

0 s2 = t2, s1 6= t1

1/
√
n else

s, t ≤ n2.

This time, we let µs = 1
N for all 1 ≤ s ≤ N . Similarly as above, one finds again

N∑
s,t=1

µsµt
∣∣〈xs, xt〉∣∣4 =

2
n(n+ 1)

= cn,2(C).

The resulting isometric imbedding ln2 ↪→ lN4 (C) is given explicitly by

ej 7→
( 1√

n
exp

(2πi
n

(s1j + s2j
2)
)
s1,s2=1,...,n

, ej

)
,

up to a homothetic factor.
(c) Here we use the vectors of the Kerdock code [MS], identifying opposite

vectors and replacing the zeros in the code words (0, 1, . . .) by −1’s, thus obta-
ining vectors xs = 1√

n
(±1, . . . ,±1) ∈ Rn, n = 4m. The code has n2 code words

of minimal distance d = n−
√
n

2 ; we thus get n2/2 vectors xs with
∣∣〈xs, xt〉∣∣ ≤∣∣n−2d

n

∣∣ = 1√
n

, s 6= t. Actually, for a fixed s, and t 6= s, the value 1√
n

is attained
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n2

2 − n times; the value 0 occurs (n − 1) times, cf. [MS]. Again we add the unit
vectors e1, . . . , en to these points in Sn−1(R) to find N = n(n + 2)/2 points xs
such that with µs = 1

N

N∑
s,t=1

µsµt
∣∣〈xs, xt〉∣∣4 =

3
n(n+ 2)

= cn,2(R) =
∫

Sn−1

|y1|4dσ(y)

by a similar calculation as before.

R e m a r k. From ln2 ↪→ ln
2+1

4 (C) one gets lm2 ↪→ l
3/4m2+3
4 (R) by Corollary 3,

where m = 2q + 2, q = prime power. This yields a cubature formula of degree 5
on Sm−1 with 3

2m
2 + 6 points. Integrating the radius by Gaussian quadrature

with 3 points, one also gets cubature formulas of degree 5 on the full unit ball
Bm ⊂ Rm with 9

2m
2+18 points. The Kerdock code in Rn, n = 4m, yields formulas

on Sn−1(Bn) of degree 5 with n(n+ 2) (3n(n+ 2)) points.
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