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Abstract. It is shown that I3 imbeds isometrically into ZZZ'H provided that n is a prime
power plus one, in the complex case. This and similar imbeddings are constructed using ele-
mentary techniques from number theory, combinatorics and coding theory. The imbeddings are
related to existence of certain cubature formulas in numerical analysis.

1. General facts on imbeddings of [} into lév. As usual, l;,v denotes KV,
K € {R,C}, equipped with the p-norm

N
1/
lzllp = Ol P) ", 2= (2;)), e KN,
j=1

Dvoretzky’s theorem, in the case of [,-spaces, states that for any € > 0 there is
¢ > 1 such that for any n, N € Nwith N > ¢onif p < 2and N > ¢.nP/? if p > 2,
there is a subspace Y,, C lIJ)V of dimension (Y;,) = n such that

d(Yy,13):=inf{||T| [T~ | T : Y,y — I3 linear isomorphism} < 1 +¢.

Le. for p > 2, 1§ imbeds (1 + £)-isomorphically into ZZJ)V where N = c.n?/2,
cf. [FLM]. We study the case of € = 0, i.e. the question of isometric imbeddings (%
into lév for a given n and p with N = N(n,p). We indicate isometric imbeddings
by 1§ — lIJ,V . They only exist if p = 2k € 2N is an even integer, cf. [L] (probably
a kind of folklore result). In this case of p = 2k such isometric imbeddings exist
and

N(n,k):=min{N |5 < I} imbeds isometrically}
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is finite. We would like to estimate N (n, k) and find concrete imbeddings. The re-
cent book by Reznick [R] and papers of Lyubich-Vaserstein [LV] and Seidel [S] are
concerned with this problem, and together with the paper of Goethals-Seidel [GS]
on spherical designs motivated this paper.

The formula

8
&+ P = §

312 — 21\ " 3
g[m%_i_(\[m 331> +<\fﬁf2+$1

4
5 5 >:|,$:(.%'1,1‘2)€R2

yields an isometric imbedding I3 < [} : the I;-unit sphere in R? contains a circular
section. The formula

) =g 3 lwite) +@-2)') z= (@) R

i=1 1<i<j<4

giving an isometric imbedding I3 < [}2, was classically used in the context

of Waring’s problem, cf. [M]. We start with a characterization of imbeddings
I3 — 1. By S"' € K" we denote the (n — 1)-sphere in R™ or C" and by do
the (rotation invariant, normalized) Haar measure on S"~1. Let pEo™ denote the
space of homogeneous polynomials of degree 2k in n variables; in ‘the complex
case this means all polynomials ¢(z1, ..., zn, 21, ..., Z,) Which are homogeneous
of degree k in each set of variables (z1,...2,) and (Z1, ... Z,). Further, (-,-) is the
standard scalar product in K.

ProposITION 1. Let n,k, N € N. The following are equivalent:
(1) There is an isometric imbedding 15 — 12}

(2) There exist N points z1,...,ox € S™ ' and a probability sequence
N
(1s)Yy CRT (D s = 1) such that for all polynomials p € Fhe™
s=1

N
(L.1) > wpta) = [ o) doto).

Sn—1
(3) There exist N points x1,...,onx € S"" 1 and a probability sequence (us)N_,
such that
al 2k 2k
(12) Z Msﬂt‘(x&wt” = / / }(x,y)‘ dU(JZ)dO’(y) =: Cnk-
S7t=1 Sn—1 gn—1

Since for 0 < | < k and ¢ € ‘,]3}21{”; the polynomial p defined by p(z) =
q(x){z,2)*1 is in ‘,ngrﬂl with ¢|gn-1 = p|gn—1, we have for K = R that (1.1)
holds for all even polynomials of degree < 2k, provided (1)—(3) are true. If the
points (—z1,...,—xy) are added and the u’s divided by 2, formula (1.1) holds
for all polynomials of degree < 2k + 1. Thus these points and weights constitute

a cubature formula of degree 2k + 1 in n variables on S"~! C R". Concrete
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imbeddings 1§ < 1% are thus equivalent to symmetric cubature formulas on
S™=1. For equal weights this is called a spherical design, cf. [GS].

The equivalence of (1) and (2) is in [R] and [LV], the equivalence of (2) and (3)
follows from results of [GS]. We use the equivalence of (1) and (3) later to con-
struct imbeddings 1% < I3 ; if we have points (z5) and weights (us) with (1.2),

1/2k<

the imbedding is given by @ — ((1s/cnk) x, xs>)i\;1. To start, here is a direct

elementary proof of Proposition 1.

Proof. (2) = (1). Let x € K" be fixed. Applying (2) to p(y) = ‘(:x,y>}2k, we
find, using rotation invariance of o,

N
3 (@ z) [ = / (@, y) | do(y) = [|«|3* / 1 do (y) = || 2*
s=1 Sn—l

Thus @ — ((1s/cnr)/*(z, :L'S>) | yields 13 — 15}

(1) = (3). Any isometric 1mbedd1ng 13 — 13}, has the form z — ((z, zs>)ivzl
with z; € K". Define

N
2k
To= 25/l 2sll2, ps:= l|zsll3 /Z HZtH : Zﬂs =1
s=1
Let m denote the Haar measure on the orthogonal (unitary in the complex case)
group O(n) which by U € O(n) — Ue € S™! for fixed e € S"~! induces o on

S7=1. Using the assumption and the O(n)-invariance of || - ||2, we find for z € K"
and U € O(n)

O l™) (3 sl ) ) = 3 [t 20} [

N
N L SR

s=1
N N
-3 [ vz Pram©) = a0 [ Paot)
=1oim) N
N
= (D lasl*) - ur - (w2
s=1
This yields for x = z;
N
Cnk = Cni (4, 24" = Zus\@t’ws)\zk
s=1

indepedently of t € {1,..., N}. Multiply by p; and sum over t to get (3).
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(3) = (2). For z € K", l € N, let 28 = 2® ... @z € K" denote the
I-fold tensor product. Then (z®!, y®!) = (x,y)! for z,y € K". As in [GS] or [KT],
consider

N
§= Z sz @ P — / 2®% @ 2%%do(z) € K"

Snfl
The rotation invariance of ¢ yields after an elementary calculation

N
2k
E /Ls,ut’ Ts, Lt ’ — Cnk-
s,t=1

By assumption, the right hand side is zero. Thus £ = 0 in K"*". This means,
written in coordinates, that all monomials of degree 2k in ggr% are integrated
exactly by the cubature formula (zs, f15), i.e. (1.1) holds for all monomials and
thus for all p € ‘133,??1

COROLLARY 1. If 15 — 1Y, also 1§ — 15 for 1 <1<k.

Proof. As noted before, if (1.1) holds for p € ‘Iiggfg, it also holds for p €
Pow, 1<I<k m

COROLLARY 2. [R, LV]. For K =R, 1 — 5.

Proof. Take z4:= exp(mwi(s +1/2)/(k+1)) € C = R? for s = 0,...,k and
ps = (k+1)71. Then (3) holds, since for any t = 0,...,k

1 & o1 <7Tj 2k
152;)‘@“%” _M;)COS 1)
27

%) 1
) 5 /(cosa:)%da: = / ‘(x,elﬂ%da(x) = Cap.
S1

0

Here (%) is true since all trigonometric polynomials of degree 2k are integrated
exactly by a coresponding formula; this is easily checked for the exponentials
e~ ]| < 2k. w

COROLLARY 3. If I3(C) — I2.(C), then I2"(R) — L5 *"(R).
Proof. I3"(R) =13(C) — I.(C) = 2k(lz(R))
= L5 (R) = I TV (R).
Corollary 3 is useful in the context of the cubature formula, since points
(xs) € C", (us) with (3) can often be constructed using complex exponentials

(see below) which then, by using Corollary 3 and the explicit construction of
Corollary 2, can be translated into explicit cubature formulae for S?"~1(R).



ISOMETRIC IMBEDDINGS OF EUCLIDEAN SPACES 83

2. Estimates on the dimension number N(n, k). Since dim Phem ~ n2k,

Proposition 1 would seem to indicate that N ~ n2*¥ points are needed for cu-
bature formula (1.1) and thus for any imbedding % < 5. On the other hand,
Dvoretzky’s theorem, by putting naively € = 0 for p = 2k, would suggest that
only N ~ nP/? = n* are needed. These orders are, in fact, upper and lower bounds
for N(n,k) :

PROPOSITION 2. For any 2 <n,k € N, L(n,k) < N(n,k) < U(n, k), where

<HZ_1>’ K—R
(e TG e
(n—I—sl;—l)’ K—R

n+k—1\2
(Y ke

Clearly, L(n, k) ~ n*, U(n, k) ~ n?* up to constants depending on k. In the
real case, this can be found in [LV] and [R]; the upper bound is classical, see [M].

Proof for K = R. Hilbert’s formula for z € R™

2k
/ ) do(y) = cnrll]2*
Sn—l

U(n,k):=

shows that . 1Is 1 the (close convex hull of the polynomials
h hat | - ||?* is in the (closed) hull of the polynomial
{({-,y)2k ‘ y € S"71} in the positive cone of ‘ng“;l By Carathéodory’s theorem,

N (n, k) is thus bounded from above by dim P35 = ("R,

As for the lower bound, if N were < ("Jrk 1) = dim ‘,Bz%“, for any given set
(x)M.; C S"~! there would be a non-zero p € 2";1 with p(zs) = 0 for all
s€{l,...,N}. Then p? € ‘ng“ﬂl and for any probability sequence (j5)

N
S bt =02 [ plyido
s=1 gn—1

Hence (2) and thus (1) of Proposition 1 is violated. m

We show below that for k = 2, i.e. imbeddings into I4, the lower bound gives
the right order of growth (n?), solving a problem on the last page of Reznick’s
book [R]. Thus the lower bound seems to be more interesting one to investigate.
We need some specific polynomials for this purpose: given «,3 > —1, the Jacobi

P]Eaﬁ)

polynomials are the k-th order orthogonal polynomials on (—1,1) with

respect to the weight function (1 —z)%(1 + z)?, normalized by P(a ’8)( 1) = 1. For
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n > 2 and k € N, define the k-th order polynomial C,, j;, by

n—1 n—1

P]ET?T)(:C)7 K =R,
Cokl(z) =S Py P (222 1), K=C, keven

2P 202~ 1), K=C, kodd

The relevance of these polynomials here comes from the fact that they are rela-
ted to positive define functions on S™~! via the addition formula for spherical
harmonics.

PROPOSITION 3. Let 2 < n,k € N and assume that L(n,k) = N(n,k) =: N.
Then there exist (x5)™_; C S"~1 such that (1.1), (1.2) hold with ps = 1/N, and
forany 1 < s #t < N, the number ‘(xsja:t)‘ s a zero of the polynomial C, .
For k =2, the coincidence

N = L(n.2) = N(n,2) = {Zgn +1)/2 E]Eé;

is equivalent to the existence of N “equiangular” lines/points (zs)N_; with

)| = { 1VEE2 B
’ 1/vn+1 (C),
which is the maximal possible number.

We do not give the proof here; it can be given by modifying the techniques
of Delsarte-Goethals-Seidel [DGS] in the real case, who estimate the number of
points of spherical designs (where the ps are all equal but also odd order poly-
nomials are integrated exactly). In the complex case we also refer to Bannai [B]
and Hoggar [Ho]. It is known that such configurations do not exist if k& > 5,
n > 2. However, some examples of such systems are known which satisfy (3) of
Proposition 1 with pus = 1/N. In particular, using equiangular points one gets
imbeddings with best possible N = N(n,2) :

R: 1213 131515138,

C: 31y, 1515, 15— 15"

Further imbeddings from “system with few angles” are
R: 1213 1§ 1320, 133 12390 12 < [

10>
C: 1218, 13— 120 15 — 112,

276

133 —

24 98280
l3" =l

The real case imbeddings were given already in [R], [LV], the example 134 — (98280
related to the Leech lattice being quite spectacular. To find imbeddings with
N(n,2) ~ L(n,2), we look for an almost maximal number of almost equiangular
vectors in K™. The main result of this paper is
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PROPOSITION 4.

(a) Let q be a prime power and n = q + 1. Then there exists an imbedding
15 — ZZQH over the complex numbers.

(b) Let n = q be an odd prime power. Then there exists an imbedding l5 — ZZQ+"
over the complex numbers which can be given explicitly in terms of exponential
vectors.

(¢c) Let n = 4™, m € N. Then the Kerdock code yields an isometric imbedding

15 — lz("+2)/2 over the real numbers.

For the proof of (a) we use a classical result of Singer on Bs-sequences, cf. [HR]:

LEMMA. For q and n as in (a) there exist integers 0 < d; < ... < d, < M,
M:=q¢*+q+1=n?—n+1 such that all numbers from 1 to M — 1 show up as
residues mod M of the differences d; — d; (i # j) exactly once,

{(di —dp)(M) | i #j} ={1,....,M —1}.
Proof of Proposition 4.
(a) Take d; < ... < d, as in the lemma and define
1 2mi n .
Tgi— ﬁ(@XP(ﬁd]5)>J:1 S S 1(@), S = 17. ..,M,

Te:= es_pr (unit vectors), s=M +1,..., N:=n? + 1.

(zs,24)| = Vn—1/n (0:=

For 1 < s # t < M, the vectors are equiangular,

s—1):
2 & 2mi
n?|(zs, m)|” = Z exp(M(dj —dk)@>
k=1
i =  /2mi
= (X +2) (7 ) =n+ 37 exp(Fri0) =n -1
j=k  j#k =1
For 1 <s < M, let py = pV) = 2ot For M < s < N, let pg = p® = 2ot
Then Zi\leuszland forl1 <t < M,
N
o (14 (-1 (n — )> @ (n- 1) = 2
;MS‘@t,xSM : * ) T nn+1)’
and for M <t < N,
N
d_ oy Lty, oo 2
Sl =0 () 4 = 2
so that
N ) 9
— _ _ 4
Z Msﬂt‘(ﬂft,xsﬂ = m = cn,2(C) = ly1]"do(y).

s,t=1
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The last fact ¢, 2 = can be checked by a direct calculation using polar

coordinates.
(b) Let n be an odd prime power. Identify s = (s1,s2) € {1,...,n}? with
s €{l,...,n?} and define

1 211 ) .9 " n—1 2
= — il Cs=1,...,
x \/ﬁ(exp< -~ (515 + s2J )>>j:1 e S"7H(C), s n

Ts:= €g_p2, n?<s<n?’4+n=N.
FOI'SZ(Sl,SQ), t= (tl,tz) S {1,...,TL}2, @11281—t1, @22:82—t2 #0

2
n(n+1)

n2}<fﬂs,$t>|2 = %Z {01(j — k) + ©2(4* — k2)})

P
ANE
@

4
Lo}
[\

- zn: exp (% Ol +621(2) — 1)}
=1
i exp (% O2(L —1p(5))* — O2(j —jo)z})
=1
=[S (reur)]

where lo(j): = 7 — s1/(2s2) and jo: = s1/(2s2) are calculated in the field F,, with
n elements. By well-known facts on Gaussian sums for odd numbers n, cf. [H],
the latter square equals n. Thus

1 s=t
‘<$Sa$t>‘: 0 59 =tg, 51 # t1 8,t§n2.
1/y/n else

This time, we let us = % for all 1 < s < N. Similarly as above, one finds again

al 4 2
pspe|(xs, 21)|” = ———— = cn2(C).
321 n(n+1)

The resulting isometric imbedding 1§ < [)Y(C) is given explicitly by

(o (S va), ., o)
€; — | —— eXx S S ,€5 0,
J \/ﬁ P n lj 2] s1,82=1,...,n J

up to a homothetic factor.

(c) Here we use the vectors of the Kerdock code [MS], identifying opposite
vectors and replacing the zeros in the code words (0,1,...) by —1’s, thus obta-
ining vectors rs = ﬁ(:ﬁ:l, ...,®1) € R", n = 4™, The code has n? code words

n—y/n
2

s # t. Actually, for a fixed s, and t # s, the value ﬁ is attained

of minimal distance d =
‘n—Zd .
Vn’

; we thus get n?/2 vectors z, with ’(xs,xt)‘ <
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%2 — n times; the value 0 occurs (n — 1) times, cf. [MS]. Again we add the unit
vectors ey, ...,e, to these points in S"7}(R) to find N = n(n + 2)/2 points x4

such that with pgs = %

N
4 3 4
Z Msﬂt‘(xwmt)‘ = m = Cn,2(R) = / [y1|*do(y)
s,t=1 gn—1
by a similar calculation as before.
Remark. From I — l22+1(C) one gets 5" — li/4m2+3(R) by Corollary 3,

where m = 2q + 2, ¢ = prime power. This yields a cubature formula of degree 5
on S™~1 with %mQ + 6 points. Integrating the radius by Gaussian quadrature
with 3 points, one also gets cubature formulas of degree 5 on the full unit ball
B, C R™ with %m2+18 points. The Kerdock code in R™, n = 4™, yields formulas
on S"1(B,,) of degree 5 with n(n +2) (3n(n + 2)) points.
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