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1. Introduction. In this note we study the generation and propagation of singulari-

ties (shock waves) of the solution of the Cauchy problem for Hamilton-Jacobi equations

(P)

{

∂y
∂t

+H
(

t, x1, . . . , xn,
∂y
∂x1

, . . . , ∂y
∂xn

)

= 0,
y(0, x1, . . . , xn) = φ(x1, . . . , xn),

where H and φ are C∞-functions.

Hamilton-Jacobi equations play an important role in various fields e.g., calculus of

variations (see e.g., [21]), optimal control theory (see e.g., [9]) and differential games (see

e.g., [8] and references cited therein).

For small time t the solution of (P) is classically determined using the characteristic

method. The geometric solution y of (P) has been defined in ([13], [14]) in the framework

of one-parameter Legendrian unfoldings and it is constructed by the method of charac-

teristics. Although y is initially smooth there is in general a critical time beyond which

characteristics cross. The geometric solution past the critical time is multi-valued, that

is, singularities appear. The classification of singularities of y has been studied in [13]

(see also [15]) In Section 2 we give a survey on the geometric framework ([13], [15], [16]).

The theory of viscosity solutions (see [5]) has provided the right weak setting for the

study of (P). Existence and uniqueness of the solution of (P) in the viscosity sense have

been established in [6]. The single-valued viscosity solution is continuous and coincides

with the smooth geometric solution until the first critical time. After the characteristics

cross, the viscosity solution develops shock waves, i.e., curves across which the gradient

1991 Mathematics Subject Classification: 35L67, 58C27.

The paper is in final form and no version of it will be published elsewhere.

[127]



128 S. IZUMIYA AND G. T. KOSSIORIS

of the viscosity solution is discontinuous. The shock surfaces are referred to as singular

surfaces in the literature of optimal control and differential games (see e.g., [3], [12]).

The method of constructing the weak solution by selecting the proper single-valued

branch was introduced by Tsuji ([22], [23]) for Hamilton-Jacobi equations. Nakane in [20]

has constructed the weak semi-concave solution past the first critical time in case that H

is convex with respect to ∇y = ( ∂y
∂x1

, . . . , ∂y
∂xn

). The case of scalar conservation laws in R
n

past the first critical time has been studied by Nakane in [19]. In [4] Bogaevskĭı has shown

that the potential solution of the Burgers system with vanishing viscosity is given by the

minimum function of a certain family of smooth functions and given a classification for

n = 1, 2, 3. It corresponds to the viscosity solution of the Hamilton-Jacobi equation when

the Hamiltonian is given by H(p1, . . . , pn) = 1
2p

2
1 + . . .+ 1

2p
2
n.

The viscosity solution of (P) for general Hamiltonian in a neighborhood of the first

critical time has been constructed in [18] (see also [17], [20]) by selecting a continuous

single-valued branch of the graph of the geometric solution in which the shock curves

of the weak solution correspond to the intersection of the branches of the graph of the

multi-valued geometric solution. In order to study the evolution of the shock curves we

follow the evolution of the intersections of the branches defining the shock. After that we

solve local Riemann problems for each stage.

Here, we give proofs for some of the results. Further discussions will appear elsewhere.

All maps considered here are of class C∞ unless stated otherwise.

2.Geometric solutions. In this section we give a survey on the geometric framework

and present the necessary notations which was described in ([13], [15], [16]).

Let J1(Rn,R) be the 1-jet bundle of functions of n-variables which may be considered

as R
2n+1 with a natural coordinate system (x1, . . . , xn, y, p1, . . . , pn), where (x1, . . . , xn)

is a coordinate system of R
n. We also have a natural projection π : J1(Rn,R) → R

n ×R

given by π(x, y, p) = (x, y).

An immersion germ i : (L0, u0) → J1(Rn,R) is said to be a Legendrian immer-

sion germ (i.e., Legendrian submanifold germ) if dimL = n and i∗θ = 0, where θ =

dy −
∑n
i=1 pi · dxi. The image of π ◦ i is called the wave front set of i and it is de-

noted by W (i). We also consider the 1-jet bundle J1(R × R
n,R) and the canonical 1-

form Θ on that space. Let (t, x1, . . . , xn) be a canonical coordinate system on R × R
n

and (t, x1, . . . , xn, y, s, p1, . . . , pn) the corresponding coordinate system on J1(R×R
n,R).

Then, the canonical 1-form is given by Θ = dy −
∑n

i=1 pi · dxi − s · dt = θ − s · dt.

We define the natural projection Π : J1(R×R
n,R) → (R×R

n)×R by Π(t, x, y, s, p) =

(t, x, y). We call the above 1-jet bundle an unfolded 1-jet bundle.

A Hamilton-Jacobi equation is defined to be a hypersurface

(G − H − J) E(H) = {(t, x, y, s, p) ∈ J1(R × R
n,R) | s+H(t, x, p) = 0}

in J1(R×R
n,R). A geometric (multi-valued) solution of E(H) is a Legendrian submanifold

L in J1(R×R
n,R) lying in E(H). In this case the wave front set W (i) is “the graph” of

the geometric solution which is generally a hypersurface with singularities.
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In order to study (P) we need the following framework: For any c ∈ (R, 0), we define

E(H)c = {(c, x, y,−H(c, x, p), p) | (x, y, p) ∈ J1(Rn,R)}.

Then, E(H)c is a (2n + 1)-dimensional submanifold of J1(R × R
n,R) and Θc =

Θ|E(H)c = dz −
∑n

i=1 pidxi gives a contact structure on E(H)c. We define a mapping

ιc : J1(Rn,R) → E(H)c by ιc(x, y, p) = (c, x, y,−H(c, x, p), p). The mapping ic is a

contact diffeomorphism and the following diagram is commutative:

J1(Rn,R)
ιc−→ E(H)c

π ↓ ↓πc

R
n × R = R

n × R

We say that a geometric Cauchy problem (with initial condition L′) associated with the

time parameter (GCPT) is given for an equation E(H) if there is given an n-dimensional

submanifold i : L′ ⊂ E(H) with i∗Θ = 0 and i(L′) ⊂ E(H)c for some c ∈ (R, 0). Since

XH 6∈ TE(H)c, we have XH 6∈ TL′, where XH is the characteristic vector field given by

XH =
∂

∂t
+

n
∑

i=1

∂H

∂pi

∂

∂xi
+

( n
∑

i=1

pi
∂H

∂pi
−H

)

∂

∂y
−
∂H

∂t

∂

∂s
−

n
∑

i=1

∂H

∂xi

∂

∂pi
.

By using the classical characteristic method, we can show that there exists a unique

geometric solutions around L′.

We remark that Cauchy problem (P) is a GCPT. The initial submanifold is given by

Lφ,0 =

{(

0, x, φ(x),−H

(

0, x,
∂φ

∂x

)

,
∂φ

∂x

) ∣

∣

∣

∣

x ∈ R
n

}

⊂ E(H)0.

The problem of studying the singularities of the graph of the geometric solution is

formulated as follows:

Geometric Problem. Classify the generic bifurcations of wave fronts of

πt| : L ∩ E(H)t → R
n × R

with respect to the parameter t (i.e., the generic bifurcations of wave fronts of geometric

solutions along the time parameter).

Following [16], in order to study the singularities of the geometric solution we identify

geometric solutions with one-parameter Legendrian unfoldings. Let R be an (n + 1)-

dimensional smooth manifold, µ : (R, u0) → (R, t0) be a submersion germ and ℓ :

(R, u0) → J1(Rn,R) be a smooth map germ. We say that the pair (µ, ℓ) is a Legen-

drian family if ℓt = ℓ|µ−1(t) is a Legendrian immersion germ for any t ∈ (R, t0). Then

we have the following simple but very important lemma.

Lemma 2.1 Let (µ, ℓ) be a Legendrian family. Then there exist a unique element

h ∈ C∞
u0

(R) such that ℓ∗θ = h · dµ, where C∞
u0

(R) is the ring of smooth function germs at

u0.

Define a map germ L : (R, u0) → J1(R × R
n,R) by

L(u) = (µ(u), x ◦ ℓ(u), y ◦ ℓ(u), h(u), p ◦ ℓ(u)).
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We can easily show that L is a Legendrian immersion germ. If we fix 1-forms Θ and θ, the

Legendrian immersion germ L is uniquely determined by the Legendrian family (µ, ℓ).

We call L a Legendrian unfolding associated with the Legendrian family (µ, ℓ).

In order to study the evolution of the shock waves of the viscosity solutions of (P),

we have to classify the generic types of the appearing singularities i.e., how a singu-

larity is generated, how one type can change into another and how different types of

singularities interact. We study how various branches of the multi-valued graph Wt =

({t}×R
n×R)∩W (i) intersecting at a point bifurcate in time for an arbitrary Hamiltonian

H(t, x, p) in [15]. We classify the bifurcations of the branches of the graph by classifying

the bifurcations of singularities of multi-Legendrian unfoldings which are expressed in

terms of multi-germs.

Let Li : (R, u0) → (J1(R × R
n,R), zi) (i = 1, . . . , r) be Legendrian unfoldings with

Π(zi) = 0 where z1, . . . , zr are distinct. We call (L1, . . . ,Lr) a multi-Legendrian unfolding.

Let (L1, . . . ,Lr) and (L′
1, . . . ,L

′
r) be multi-Legendrian unfoldings. We say that these are

P(r)-Legendrian equivalent if there exist contact diffeomorphism germs

Ki : (J1(R × R
n,R), zi) → (J1(R × R

n,R), z′i) (i = 1, . . . , r)

of the form Ki(t, x, y, s, p) = (φ1(t), φ2(t, x, y), φ3(t, x, y), φ
i
4(t, x, y, s, p), φ

i
5(t, x, y, s, p))

and a diffeomorphism germ Ψ : (R, u0) → (R, u′0) such that Ki ◦ Li = L′
i ◦ Ψ for any i =

1, . . . , r. It is clear that if two multi-Legendrian unfoldings are P(r)-Legendrian equivalent,

then there exists a diffeomorphism germ Φ : (R× (Rn×R), 0) → (R× (Rn×R), 0) of the

form Φ(t, x, y) = (φ1(t), φ2(t, x, y), φ3(t, x, y)) such that Φ(∪ri=1W (Li)) = ∪ri=1W (Li).

Thus the above equivalence describes how bifurcations of wavefronts (i.e. graphs of solu-

tions) interact. We can define the notion of stability with respect to the P(r)-Legendrian

equivalence in the same way as for the ordinary Legendrian stability (see [1], [24]). Moti-

vated by Arnol’d-Zakalyukin’s theory ([1], [24]), we can construct multi-generating fam-

ilies of multi-Legendrian unfoldings and give a classification of P(r)-Legendrian stable

Legendrian unfoldings by using the classification of multi-families of function germs in

Zakalyukin [24]. We get a list of classifications for n = 1, 2, 3 in [15]. However, we only

present the list of classifications for n = 1. For the case n = 2, 3, see [15].

Theorem 2.2 [15]. Suppose that n = 1. Then a generic multi-Legendrian unfolding

is P(r)-Legendrian equivalent to one of the multi-Legendrian unfoldings in the following

list :

• r = 1 :

0A1 : (t, u, 0, 0, 0);
0A2 : (t, 3u2, 2u3, 0, u);
1A3 : (t, 4u3 + 2ut, 3u4 + u2t,−u2, u).

• r = 2 :

0(0A1
0A1) : ((t, u,−u, 0,−1), (t, u, u, 0, 1));

1(0A1
0A1) : ((t, u, t± u2, 1,±2u), (t, u, 0, 0, 0));

1A2
0A1 : ((t, 3u2 − t, 2u3, u, u), (t, u,−u, 0,−1)).

• r = 3 : 0A1
0A1

0A1 : ((t, u, t− u, 1,−1), (t, u, 0, 0, 0), (t, u, u, 0, 1)).

When we consider the geometric solution, we can get rid of the germ 1(0A1
0A1) from

the above list because the geometric solution is a one-to-one immersions into the unfolded

1-jet space.
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On the other hand, we have to identify geometric solutions with one-parameter Leg-

endrian unfoldings in locally, so that we prove the following realization theorems.

Theorem 2.3 [13]. (1) The local solution of the GCPT for the Hamilton-Jacobi equa-

tion (G-H-J ) is a Legendrian unfolding L : (R × R
n, 0) → J1(R × R

n,R).

(2) Let L : (R × R
n, 0) → J1(R × R

n,R) be a Legendrian unfolding associated with

(π1, ℓ). Then there exists a C∞-function germ H(t, x1, . . . , xn, p1, . . . , pn) such that L is

a local solution of the generalized Cauchy problem associated with the time parameter for

the Hamilton-Jacobi equation (G-H-J ), where the initial condition is given by ℓ(0, u).

The above theorem guarantees that the class of Legendrian unfoldings supplies the

correct class to describe the geometric solutions of (GCPT) for Hamilton-Jacobi equa-

tions. Thus, generic results for the singularities of Legendrian unfoldings can be translated

to generic results in the class of all Hamiltonians and all initial conditions. However, we

also have to concern ourselves with what are the types of singularities that the geometric

solution to a given Hamilton-Jacobi equation might exhibit. For this purpose, we need a

kind of non-degeneracy condition on the Hamiltonian function. We say that a Hamilto-

nian function H(t, x, p) is non-degenerate at (t0, x0, p0) if ∂2H
∂pi∂pj

(t0, x0, p0) 6= 0 for some

1 ≤ i, j ≤ n. This condition is weaker than the condition that H(t, x, p) is convex (or

concave) with respect to (p1, . . . , pn)-variables at (t0, x0, p0) for n ≥ 2. The following

theorem is a realization theorem for generic singularities for a given Hamilton-Jacobi

equation.

Theorem 2.4 ([15], [16]). Let H(t, x, p) be a non-degenerate Hamiltonian function

germ at (t0, x0, p0) and L : (R, u0) → (J1(R × R
n,R), (t0, x0, y0, s0, p0)) be a P(1)-

Legendrian stable Legendrian unfolding associated with (µ, ℓ). Then there exists a Leg-

endrian unfolding L′ which is a geometric solution of the Hamilton-Jacobi equation

s+H(t, x, p) = 0 such that L and L′ are P(1)-Legendrian equivalent.

We remark that 1A3 singularity (even for general n) describes how the singularity

appears from a smooth solution. These are P(1)-Legendrian stable Legendrian unfoldings,

so that these can be realized as geometric solutions at the non-degenerate point for a given

Hamilton-Jacobi equation. We can also specify the point at where the 1A3-singularity

appears.

Theorem 2.5 [16]. If an 1A3-singularity appears at (t0, x0, p0), then H(t, x, p) is non-

degenerate at (t0, x0, p0).

3. Viscosity solutions. The viscosity solutions for nonlinear equations of first order

have been introduced by Crandall and Lions [6]. Such solutions need not be differentiable

everywhere, as the only regularity required in the definition is that of continuity. The

function yv ∈ C(O) is a viscosity solution of

(H − J)
∂y

∂t
+H

(

t, x,
∂y

∂x1
, . . . ,

∂y

∂xn

)

= 0
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in the open domain O ⊂ R
+ × R

n provided

∂ψ

∂t
(t, x) +H

(

t, x,
∂ψ

∂x1
(t, x), . . . ,

∂ψ

∂xn
(t, x)

)

≤ 0, (resp. ≥ 0)

for any ψ∈C1(O) for which yv−ψ attains a local maximum (resp. local minimum) at the

point (t, x) ∈ O. The function yv ∈ C([0,∞) × R
n) is a viscosity solution of the Cauchy

problem (P ) if and only if it is a viscosity solution of (H-J) in the domain (0,∞) × R
n

and satisfies the initial condition

lim
t→0+

yv(t, x) = φ(x).

The above inequality will be referred to as the viscosity criterion at the point (t, x). We

next state the viscosity criterion in a form which is more useful for the construction of

the solution. To this end, assume that O ⊂ (0,∞) × R
n is open and that there is a

smooth hypersurface Γ of R
+ × R

n, which divides O into two open sets O+ and O−,

O = Γ ∪ O+ ∪ O−. Then we have the following theorem.

Theorem 3.1. Let yv ∈ C(O) and yv = y+
v in O+ ∪ Γ, yv = y−v in O− ∪ Γ where

y±v ∈ C1(O± ∪ Γ). Then yv is a viscosity solution of (H-J) in O if and only if the

following conditions hold :

(a) y+
v and y−v are classical solutions of (H-J ) in O+ and O− respectively,

(b) If the vector η̃ = (H(t, x, ∂y
+

∂x
)−H(t, x, ∂y

+

∂x
),−(∂y

+

∂x1
− ∂y−

∂x1
, . . . , ∂y

+

∂xn
− ∂y−

∂xn
)) points

into O+, then

H

(

t, x, (1 − λ)
∂y+

v

∂x
+ λ

∂y−v

∂x

)

−(1 − λ)H

(

t, x,
∂y+

v

∂x

)

− λH

(

t, x,
∂y−v

∂x

)

≤ 0 (resp. ≥ 0),

where λ ∈ [0, 1]. In particular , the graph of H lies respectively below or above the line

segment joining the points
(

H(t, x, ∂y
+
v

∂x
), ∂y

+
v

∂x

)

and
(

H(t, x, ∂y
−
v

∂x
), ∂y

−
v

∂x

)

.

The proof of Theorem 3.1 is given in ([17], [18]) as a direct application of Theorem 1.3

in [7]. The condition (b) will be referred to in the sequel as the viscosity criterion. The

hypersurface Γ in the neighbourhood of which yv has the properties specified in the above

theorem is the shock surface. If the Hamiltonian is uniformly convex (or concave), we can

automatically construct viscosity solutions from our normal forms, so that we can easily

draw the pictures of shock surfaces for lower dimensional cases. In [4] Bogaevskĭı has

shown that the potential solution of the Burgers system with vanishing viscosity is given

by the minimum function of a certain family of smooth functions. It corresponds to the

viscosity solution of the Hamilton-Jacobi equation when the Hamiltonian is given by

H(p1, . . . pn) = 1
2p

2
1 + . . .+ 1

2p
2
n. He has drawn the pictures of shocks for this case. Our

pictures are same as his pictures, so we do not present these in here (see [4]).

On the other hand, Bogaevskĭı used the Florin-Hopf-Cole method ([10], [11]) to detect

the solution and it works only for the Burgers system. Here, we prove the analogous

statement as the Bogaevskĭı’s assertion in the case when the Hamiltonian H(p1, . . . , pn)

is convex and depends only on the momentum. In this case we apply Bardi-Evans’ result[2]
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to our situations in stead of Florin-Hopf-Cole method. The geometric solution for (P) is

given by

(S) Lφ,t = {(t, x(t, u), y(t, u),−H(p(t, u)), p(t, u)) | u ∈ R
n},

where


























x(t, u) = u+ t
∂H

∂p

(

∂φ

∂x
(u)

)

,

p(t, u) =
∂φ

∂x
(u),

y(t, u) = t

{

−H

(

∂φ

∂x
(u)

)

+

〈

∂φ

∂x
(u),

∂H

∂p

(

∂φ

∂x
(u)

)〉}

+ φ(u).

We consider a family of functions F (t, x, p, q) = φ(q) + 〈p, (x− q)〉 − H(p)t, where

(t, x, p, q) ∈ R × R
n × (Rn × R

n) and 〈, 〉 is the canonical inner product on R
n. We have

Σ(F ) =

{(

t, q +
∂H

∂p

(

∂φ

∂q
(q)

)

t,
∂φ

∂q
(q), q

) ∣

∣

∣

∣

(t, q) ∈ R × R
n

}

,

where Σ(F ) is the set defined by ∂F
∂pi

= 0 and ∂F
∂qi

= 0. We now define a map ΦF : Σ(F ) →

J1(R × R
n,R) by ΦF (t, x, p, q) = (t, x, F (t, x, p, q), ∂F

∂t
, ∂F
∂x

). It follows that

ΦF

(

t, q +
∂H

∂p

(

∂φ

∂q
(q)

)

t,
∂φ

∂q
(q), q

)

=

(

t, q +
∂H

∂p

(

∂φ

∂q
(q)

)

t,−H

(

∂φ

∂q
(q)

)

t+

〈

∂φ

∂q
(q),

∂H

∂p

(

∂φ

∂q
(q)

)〉

+ φ(q),

−H

(

∂φ

∂q
(q)

)

,
∂φ

∂q
(q)

)

.

This shows that the image of the map ΦF is equal to Lφ,t, namely, F is a global generating

family of Lφ,t.

We refer to the following result of Bardi-Evans [2].

Theorem 3.2. Assume that the Hamiltonian H(p1, . . . , pn) is convex , then

y(t, x) ≡ inf
q

sup
p
{φ(q) + 〈p, x− q〉 −H(p)t}

is the unique viscosity solution of (P).

Then we have the following theorem as a corollary of the above theorem.

Theorem 3.3. Assume that H is uniformly convex and φ has a minimum. Let Lφ,t
be the geometric solution (S) of the Cauchy problem (P). Then

y(t, x) ≡ min
y

{y | (t, x, y) ∈ Π(Lφ,t)}

is the unique viscosity solution of (P′).

P r o o f. Consider the family of functions F (t, x, p, q) = φ(q)+〈p, x−q〉−H(p)t. Since

H(p) is uniformly convex, we have

sup
p
{φ(q) + 〈p, x− q〉 −H(p)t} = F |Σp(F ),
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where Σp(F ) = {(t, x, p, q) | ∂F
∂pi

= xi − qi −
∂H
∂pi

(p)t = 0, i = 1, . . . , n}. It follows that

inf
q

sup
p
{φ(q) + 〈p, x− q〉 −H(p)t} = inf

q

{

F

(

t, q +
∂H

∂p
(p)t, p, q

)}

.

Since φ has a minimum, it is equal to

min
q

{

F

(

t, q +
∂H

∂p
(p)t, p, q

)}

= min
q

{F (t, x, p, q) | (t, x, p, q) ∈ Σp(F )}.

On the other hand, we define functions fi(t, x, p, q) = ∂F
∂pi

= xi − qi −
∂H
∂pi

(p)t (i =

1, . . . , n). Since H(p) is uniformly convex, we have ∂fi

∂pj
(t0, x0, p0, q0) = − ∂2H

∂pi∂pj
(p0)t0 6= 0,

at any point (t0, x0, p0, q0), so that there exist local smooth functions gi(t, x, q) (i =

1, . . . , n) near (t0, x0, p0, q0) such that Σp(F ) = {pi = gi(t, x, q)}. Thus we have

∂F |Σp(F )

∂qi
=

∑

j

∂F

∂pj
(t, x, g(t, x, q), q)

∂gj

∂qi
(t, x, q) +

∂φ

∂qi
(q) − gi(t, x, q)

=
∂φ

∂qi
(q) − gi(t, x, q),

so that Σ(F ) = {(t, x, p, q) ∈ Σp(F ) |
∂F |Σp(F )

∂qi
= 0}. It follows that

y(t, x) ≡ min
y

{y | (t, x, y) ∈ Π(Lφ,t)} = min
(p,q)

{F (t, x, p, q) | (t, x, p, q) ∈ Σ(F )}

= min
q

{F (t, x, p, q) | (t, x, p, q) ∈ Σp(F )}.

It is the unique viscosity solution for the Cauchy problem (P).

However, for general (non-convex) Hamiltonian, situations are quite different.

4. Non-convex Hamiltonians in one space variable. In this section we stick to

the Cauchy problem of Hamilton-Jacobi equation in one space variable as follows:

(P)







∂y

∂t
+H

(

∂y

∂x

)

= 0,

y(0, x) = φ(x),

where H and φ are C∞-functions. Since H(p) is not assumed to be uniformly convex (or

concave), we cannot use Theorem 3.3, so that the situations should be quite complicated

even for the one space variable case.

In this case the geometric solution is given by

Lφ,t = {(t, x(t, u), y(t, u),−H(p(t, u)), p(t, u)) | u ∈ R},

where






x(t, u) = u+ tH ′(φ′(u)),
p(t, u) = φ′(u),
y(t, u) = t{−H(φ′(u)) + φ′(u)H ′(φ′(u))} + φ(u).

Before the first critical time that characteristics cross in the (t, x)-plane, Wt is the

graph of the viscosity solution yv. After the characteristics cross, Wt becomes singular.

Theorem 2.2 describes the generic singularities of Wt. The first singularity appears in the

form of 1A3. See Figure 1a, where we show the shape of the appearing singularity.
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Fig. 1a Fig. 1b Fig. 1c

By Theorem 2.5, these appear at the convex or the concave points of the Hamiltonian

function. Away from the singularity, the viscosity solution is given by Wt. In ([17], [18])

we have constructed the unique viscosity solution past the first critical time by selecting a

single-valued branch of Wt. Assume that the singularity of type 1A3 appears at the point

(t0, x0, p0). After the critical time t0, the wave front Wt is three-valued on an interval

(x1(t), x2(t)); see Figure 1b. Let yi, i = 1, 2, 3 be the three branches of Wt, where y1
is defined on a neighborhood of x1(t) and y2 on a neighborhood of x2(t). Then y1, y2
intersect at one point χ(t) ∈ (x1(t), x2(t)), for t > t0. We define the viscosity solution

past t0 by selecting a continuous single-valued branch of Wt as follows:

Theorem 4.1. There exists an ε > 0 such that the function yv(t, x), (t, x) ∈ (t0, t0 +

ε) × (x1(t), x2(t)), defined by

(4.1) yv(t, x) =

{

y1(t, x), x ≤ χ(t),
y3(t, x), x ≥ χ(t),

is the viscosity solution of (P) in a neighborhood of x0 past the time t0.

In view of Theorem 2.5 the viscosity criterion (see Section 3) is satisfied across χ(t)

while yv defined by (4.1) is a classical solution away from χ(t). Hence, by the uniqueness

of the viscosity solution, (4.1) gives the viscosity solution of (P) past t0.

By this construction, we have extended the viscosity solution beyond the first critical

time t0. According to Theorem 2.5 the shock is generated in a convex or concave domains

of H(p), so the viscosity criterion is automatically satisfied. The graph of the viscosity

solution past the first critical time is depicted by a full line in Figure 1c, where we

assume that H is convex in the neighborhood of the appearing singularity 1A3. The shock

corresponds to the intersection of the two branches and it is called a genuine shock. The

genuine shock is defined as the intersection of two incoming characteristics (or waves)

and its speed is given by the Rankine-Hugoniot condition

χ′(t) =
H(y+

v,x(t, χ(t))) −H(y−v,x(t, χ(t)))

y+
v,x(t, χ(t)) − y−v,x(t, χ(t))

,

where y±v,x = ∂y
±
v

∂x
and χ′(t) = dχ

dt
(t). Therefore in order to follow the evolution of the

shock we have to study the following questions:
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a) How different branches of the multi-valued graph of Wt intersecting at one point

bifurcate in time.

b) If the two branches initially defining the shock continue to cross, whether the

viscosity criterion is satisfied across the intersection.

The normal forms of the generic bifurcations of different branches of Wt are given in

Theorem 2.2. We depict these bifurcations in Figure 2.

Fig. 2

If the viscosity criterion is satisfied at the time tα = t0 + ε, we can choose the correct

branch of the graphs of the geometric solutions as viscosity solutions (see Figure 3).

We will now investigate how the viscosity criterion can be violated across the inter-

section of two branches. Assume that a generated shock is defined by two intersecting

branches y− and y+. We denote by y− (resp. y+) the branch representing the viscosity

solution for x < χ(t) (resp. x > χ(t)). If the two branches remain intersected they evolve

according to 0(0A1
0A1). We denote by χ(t) the intersection of the two branches. In the

case when H(p) has only one inflection point Kossioris [17] studied this problem and

constructed the viscosity solutions. We consider the general situation here. It is clear

that for generic Hamiltonian function H(p), H has only Morse type critical points and

no tritangent lines. So we assume that the Hamiltonian has the above properties. By

Theorem 2.2, we have the following theorem.

Theorem 4.2. For a generic initial function φ, if the viscosity criterion is violated at

tα, then the only following 8 cases may occur :

(1) The normal form is 0(0A1
0A1) and P+P− is tangent to the graph of H(p) at only

one of the points P+, P− and the line is not tangent to the graph at other points between

these points.

(2) The normal form is 0(0A1
0A1) and P+P− is not tangent to the graph of H(p) at

each point P+, P− and there exists only one more point between these points at which

the above line is tangent to the graph.

(3) The normal form is 0(0A1
0A1) and P+P− is tangent to the graph of H(p) at only

one of the points P+, P− and there exists only one more point between these points at
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Fig. 3

which the above line is tangent to the graph.

(4) The normal form is 0(0A1
0A1) and P+P− is tangent to the graph of H(p) at each

point of P+, P−.

(5) The normal form is 0(0A1
0A1) and P+P− is not tangent to the graph of H(p) at

each point P+, P− and there exist exactly two other points between these points at which

the above line is tangent to the graph.

(6) The normal form is 1A2
0A1 and P+P− is tangent to the graph of H(p) at only

one of the points P+, P− and the line is not tangent to the graph at other points between

these points.

(7) The normal form is 0A1
0A1

0A1 and P+P− is tangent to the graph of H(p) at only

one of the points P+, P− and is not tangent to the graph at other points between these

points.

(8) The normal form is 0A1
0A1

0A1 and P+P− is not tangent to the graph of H(p) at

each point P+, P− and there exists only one more point between these points at which

the above line is tangent to the graph.

Here, P+ = (y+
x (tα, χ(tα)), H(y+

x (tα, χ(tα)))), P−= (y−x (tα, χ(tα)), H(y−x (tα, χ(tα))))

and P+P− denotes the line through P+, P− in the (p,H(p))-plane.
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P r o o f. By Theorem 2.2, we may assume that the first singularities appear in the

form of 1A3. After that the singularities of the graph of the geometric solution bifurcate

in the forms of 0(0A1
0A1),

1(0A1
0A1),

1A2
0A1 or 0A1

0A1
0A1. Since the characteristics in

J1(R × R,R) never cross, we can get rid of the case 1(0A1
0A1).

We already mentioned that the viscosity criterion is satisfied past the first critical

time t0, so that it is satisfied until the time tα when P+P− is tangent to the graph of

H(p). By the assumptions on the Hamiltonian H(p), we may consider the case where

P+P− is at most a double tangent line for each normal form. We now distinguish each

normal form. We write p+ = y+
x (tα, χ(tα)) = φ′(u+) and p− = y−x (tα, χ(tα)) = φ′(u−).

(A) 0(0A1
0A1): In this case each branch of the graph of geometric solution is a non-

singular curve. We remark that y±(t, χ(t)) = t{−H(φ′(u±))+φ′(u±)H ′(φ(u±))}+φ(u±).

Since the normal form 0(0A1
0A1) has trivial bifurcations along the time parameter, the

condition y+(t, χ(t)) = y−(t, χ(t)) defines a codimension 0 submanifold in the corre-

sponding jet space, so that we may ignore this condition. We now consider the following

conditions which correspond to all possible cases:

(a) ±H ′(φ′(u+)) = H(φ′(u+))−H(φ′(u−))
φ′(u+)−φ′(u−) , which defines a submanifold in 2J

1(R,R) of

codimension 1. Of course, we have to consider the case where

±H ′(φ′(u−)) =
H(φ′(u+)) −H(φ′(u−))

φ′(u+) − φ′(u−)
;

however, this case is essentially contained in the above, so that we may ignore such

non-essentially different cases in the following arguments.

(b) There exists u0 with u0 6= u± such that

±H ′(φ′(u0)) =
H(φ′(u+)) −H(φ′(u−))

φ′(u+) − φ′(u−)
.

This condition defines a submanifold in 2J
1(R,R) of codimension 1.

(c) There exists u0 with u0 6= u± such that

±H ′(φ′(u+)) = ±H ′(φ′(u0)) =
H(φ′(u+)) −H(φ′(u−))

φ′(u+) − φ′(u−)
=
H(φ′(u+)) −H(φ′(u0))

φ′(u+) − φ′(u0)
.

This condition defines a submanifold in 3J
1(R,R) of codimension 3.

(d) ±H ′(φ′(u+)) = ±H ′(φ′(u−)) = H(φ′(u+))−H(φ′(u−))
φ′(u+)−φ′(u−) , which defines a submanifold

in 2J
1(R,R) of codimension 2.

(e) There exist u0, u1 which are different from u± such that

±H ′(φ′(u0)) = ±H ′(φ′(u1)) =
H(φ′(u+)) −H(φ′(u−))

φ′(u+) − φ′(u−)

=
H(φ′(u+)) −H(φ′(u0))

φ′(u+) − φ′(u0)
=
H(φ′(u+)) −H(φ′(u1))

φ′(u+) − φ′(u1)
.

This condition defines a submanifold of 4J
1(R,R) of codimension 4. Here, rJ

1(R,R) is a

multi-1-jet space of function germ R → R. Each submanifold in rJ
1(R,R) has at most

codimension r, so that we cannot avoid such conditions by the multi-jet transversality

theorem.
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(B) 1A2
0A1: In this case the normal form 1A2

0A1 bifurcates at the time tα, so that

we should consider the condition y+(tα, χ(tα)) = y−(tα, χ(tα)) for fixed tα. It defines a

submanifold in 2J
1(R,R) of codimension 1. By the same arguments as above, we can

avoid the conditions (c), (d) and (e). So we may consider the condition (a) or (b). We

now show that the condition (a) holds for the normal form 1A2
0A1. On the (t, x)-plane,

we denote (t, χ(t)) the genuine shocks for t ≤ tα. Suppose that the point u− corresponds

to the cusp point at the time tα. Then there exists a smooth function u(t) such that

χ(t) = u(t) + tH ′(φ′(u(t))) for t ≤ tα and u(tα) = u−, where we choose one of the

branches of the graph of the geometric solution corresponding to u−. It follows that we

have

χ′(t) = u′(t)(1 + tH ′′(φ′(u(t)))φ′′(t)) +H ′(φ′(u(t))).

Since the graph of the geometric solution has a singularity at tα, we have ∂x
∂u

(tα, u−) =

1 + tαH
′′(φ′(u−))φ′′(u−) = 0. So we have χ′(tα) = limt→tα χ

′(t) = H ′(φ′(u−)).

On the other hand, by the Rankine-Hugoniot condition we have

χ′(t) =
H(y+

v,x(t, χ(t))) −H(y−v,x(t, χ(t)))

y+
v,x(t, χ(t)) − y−v,x(t, χ(t))

,

for t ≤ tα. Since limt→tα y
±
v,x(t, χ(t)) = φ′(u±), we have χ′(tα) = H(φ′(u+))−H(φ′(u−))

φ′(u+)−φ′(u−) , so

that we have H ′(φ′(u−)) = H(φ′(u+))−H(φ′(u−))
φ′(u+)−φ′(u−) . This condition corresponds to the case

(a) and we may get rid of the case (b).

(C) 0A1
0A1

0A1: In this case the normal form also bifurcates at the point tα, so that

we can get rid of the case (c), (d) and (e) by similar reasons to those for the case (B).

Since each branch of the normal form is non-singular, the remaining two cases may occur

in general. This completes the proof.

We can solve local Riemann problems and construct viscosity solutions for each case

in the above theorem. However, we only consider the cases (1) and (6) in this paper. We

will give the detailed considerations for all cases elsewhere.

C a s e (1). We assume that the graph of the viscosity solution at the time t ≤ tα is

as depicted in Figure 4a.

Fig. 4a Fig. 4b
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Without the loss of generality, we may assume that P+P− is tangent to the graph

of H(p) at the point (y−x (tα, χ(tα)), H(y−x (tα, χ(tα)))) and H ′′(y−x (tα, χ(tα))) < 0 (see

Figure 4b). As we already mentioned, the genuine shocks satisfy the Rankin-Hugoniot

condition. So we should construct new characteristics which satisfies both the Rankin-

Hugoniot condition and the viscosity criterion. In this case we have

H ′(y−x (tα, χ(tα))) =
H(y+

x (tα, χ(tα))) −H(y−x (tα, χ(tα)))

y+
x (tα, χ(tα)) − y−x (tα, χ(tα))

= χ′(tα).

We now distinguish two cases as follows:

a) If

H ′(y−x (t, χ(t))) ≥
H(y+

x (t, χ(t))) −H(y−x (t, χ(t)))

y+
x (t, χ(t)) − y−x (t, χ(t))

for tα ≤ t < tα + ε for sufficiently small ε > 0, then we can easily show that the viscosity

criterion is satisfied for t < tα + ε. So we can choose single-valued continuous branches

of the geometric solution as the viscosity solution.

b) If

H ′(y−x (t, χ(t))) <
H(y+

x (t, χ(t))) −H(y−x (t, χ(t)))

y+
x (t, χ(t)) − y−x (t, χ(t))

for tα ≤ t < tα + ε for sufficiently small ε > 0, then we can easily show that the viscosity

criterion is violated for tα < t < tα+ε, so that a new way to build the solution is required

(cf. Figure 5).

Fig. 5

In this case we can use the techniques in [12] to construct the contact discontinuity

shock curve and then obtain new characteristics. Let us consider the relation H ′(q) =
H(p)−H(q)

p−q around (q0, p0) with q0 6= p0, H
′(q0) = H(p0)−H(q0)

p0−q0
and H ′′(q0) 6= 0. By the

implicit function theorem, there exists a smooth function ψ around p0 such that the above

relation is equivalent to q = ψ(p). We will first construct the contact discontinuity as the

solution of the following initial value problem:
{

χ′
c(t) = H ′(ψ(y+

x (t, χc(t)))),
χc(tα) = χ(tα).
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The characteristic starting at a point (τ, χc(τ)) should satisfy the following:






x′(t) = H ′(p(t)),
p′(t) = 0,
y′(t) = −H(p(t)) + p(t)H ′(p(t)),

with initial condition x(τ) = χc(τ), y(τ) = y+(τ, χc(τ)) and p(τ) = ψ(y+
x (τ, χc(τ))). So

the solution is exactly given as follows:






















x̃(t) = χc(τ) + (t− τ)H ′(ψ(y+
x (τ, χc(τ)))),

p̃(t) = ψ(y+
x (τ, χc(τ))),

ỹ(t) = y+(τ, χc(τ))

+ (t− τ){−H(ψ(y+
x (τ, χc(τ)))) + ψ(y+

x (τ, χc(τ)))H
′(ψ(y+

x (τ, χc(τ))))}.

By definition of the contact discontinuity, we have

χ′′
c (t) = H ′′(ψ(φ(u+(t))))

∂ψ

∂p
(φ′(u+(t)))φ′′(u+(t))u′+(t),

where χc(t) = u+(t) + tH ′(φ(u+(t))). Since ∂ψ
∂p

= H′(p)−H′(q)
H′′(q)(p−q) , we have

χ′′
c (t) =

H ′(φ′(u+(t))) −H ′(ψ(φ′(u+(t))))

φ′(u+(t)) − ψ(φ′(u+(t)))
φ′′(u+(t))u′+(t).

We also have

χ′(t) = u′+(t){1 + tH ′′(φ′(u+(t)))φ′′(u+(t))} +H ′(φ′(u+(t))).

It follows that

χ′′
c (t) = −

(H ′(φ′(u+(t))) −H ′(ψ(φ′(u+(t)))))2

φ′(u+(t)) − ψ(φ′(u+(t)))

φ′′(u+(t))

1 + tH ′′(φ′(u+(t)))φ′′(u+(t))
.

Since
∂x

∂u
(t, u+(t)) = 1 + tH ′′(φ′(u+(t)))φ′′(u+(t)),

we may assume that 1 + tH ′′(φ′(u+(t)))φ′′(u+(t)) > 0. So χc(t) is convex if and only if

φ′′(u+(t)) > 0. We suppose that φ′′(u+(t)) ≤ 0 and denote χc(t) = u+(t)+ tH ′(φ(u+(t)))

= u−(t) + tH ′(φ(u−(t))), where u−(t) (resp. u+(t)) is the point corresponding to the

characteristic from the right (resp. left) side of (t, χc(t)). We distinguish two cases as

follows:

b-1) If φ′′(u−(t)) > 0, then φ′ is monotone. Since u′−(t) < 0, φ′−(u−(t)) moves to the

left direction, so that the viscosity criterion is satisfied across χ.

b-2) If φ′′(u−(t)) < 0 and the viscosity criterion is violated across χ for t > tα, then

1 + tH ′′(φ′(u−(t)))φ′′(u−(t)) > 0 near tα. Differentiate the equality χc(t) = u−(t) +

tH ′(φ(u−(t))) with respect to t to obtain

χ′(t) −H ′(φ′(u−(t))) = {1 + tH ′′(φ′(u−(t)))φ′′(u−(t))}u′−(t).

Since

χ′(t) =
H(φ′(u+(t))) −H(φ′(u−(t)))

φ′(u+(t)) − φ′(u−(t))
> H ′(φ′(u−(t))),

we have u′−(t) > 0, so that u−(t) is increasing, which is a contradiction.
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Hence, if the viscosity criterion is violated for t > tα, the contact discontinuity curve

χ is convex and the viscosity solution can be constructed.

We draw a picture which illustrates the situation in Figure 6.

Fig. 6

Figure 7 shows the graph of the viscosity solution for t > tα and the shock curve

around tα.

Fig. 7

C a s e (6). The bifurcations of the graphs of the geometric solution at the time tα
are depicted in Figure 8.

Fig. 8
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We use the same notation as the case (1). Since u−(tα) corresponds to the cusp point,

we have 1+tαH
′′(φ(u−(tα)))φ′′(u−(tα)) = 0. Let (t, σ(t)) be the locus of the cusps, where

we denote σ(t) = σ−(t)+ tH ′(φ′(σ−(t))) as the family of characteristics coming from the

left side, so that we have 1 + tH ′′(φ′(σ−(t)))φ′′(σ−(t)) = 0 and σ′
−(t) < 0. It follows that

H ′′(φ′(σ−(t)))φ′′(σ−(t)) < 0 and σ′(t) = H ′(φ′(σ′
−(t))). Differentiating the equation

again, we get σ′′(t) = H ′′(φ′(σ−(t)))φ′′(σ−(t))σ′
−(t) > 0. Therefore (t, σ(t)) is strictly

convex. We denote χ(t) = u−(t)+tH ′(φ′(u−(t))) = u+(t)+tH ′(φ′(u+(t))) for t≤ tα, then

we have u−(tα) = σ−(tα), so that σ′(tα) = H ′(φ′(σ−(tα))) = H ′(φ(u−(tα))) = χ′(tα) by

the proof of Theorem 4.2. We also construct the contact discontinuity (t, χc(t)) exactly

as in the case (1). We need to examine the following two subcases.

a) Assume that σ(t) ≥ χc(t) for t ≥ tα. Since both χc and σ are convex near tα, we

have that σ′′(tα) > χ′′(tα).

On the other hand, we have

y(t, σ±(t)) = t{−H(φ′(σ±(t))) + φ′(σ±(t))H ′(φ′(σ±(t)))} + φ(σ±(t)),

dy

dt
(t, σ+(t)) = −H(φ′(σ+(t))) + φ′(σ+(t))H ′(φ′(σ+(t)))

+ φ′(σ+(t))σ′
+(t){1 + tH ′′(φ′(σ+(t)))φ′′(σ+(t))}

and
dy

dt
(t, σ−(t)) = −H(φ′(σ−(t))) + φ′(σ−(t))H ′(φ′(σ−(t))).

Let A(t) = y(t, σ+(t)) − y(t, σ−(t)) for t ≥ tα.

Differentiating the equality σ−(t) + tH ′(φ′(σ−(t))) = σ+(t) + tH ′(φ′(σ+(t))) with

respect to t, we get

σ′
+(t){1 + tH ′′(φ′(σ+(t)))φ′′(σ+(t))} = H ′(φ′(σ−(t))) −H ′(φ′(σ+(t))).

It follows that

A′(t) = H ′(φ(σ−(t))){φ′(σ+(t)) − φ′(σ−(t))} − (H(φ′(σ+(t))) −H(φ′(σ−(t)))).

Furthermore, we have

A′′(t) = (H ′(φ′(σ−(t))) −H ′(φ′(σ+(t))))φ′′(σ+(t))σ′
+(t)

+H ′′(φ′(σ−(t)))φ′′(σ−(t)){φ′(σ+(t)) − φ′(σ−(t))}σ′
−(t).

Since σ′
+(t) = H′(φ′(σ−(t)))−H′(φ′(σ+(t)))

1+tH′′(φ′(σ+(t)))φ′′(σ+(t)) and σ′′(t) = H ′′(φ′(σ−(t)))φ′′(σ−(t))σ′
−(t), we

have

A′′(t) =
(H ′(φ′(σ−(t))) −H ′(φ′(σ+(t))))2

1 + tH ′′(φ′(σ+(t)))φ′′(σ+(t))
φ′′(σ+(t)) + σ′′(t){φ′(σ+(t)) − φ′(σ−(t))}.

On the other hand, as we already calculated in the case (1),

χ′′
c (t) = −

(H ′(φ′(u+(t))) −H ′(ψ(φ′(u+(t)))))2

φ′(u+(t)) − ψ(φ′(u+(t)))

φ′′(u+(t))

1 + tH ′′(φ′(u+(t)))φ′′(u+(t))
.

At the point t = tα, we have u±(tα) = σ±(tα) and ψ(φ′(σ+(tα))) = φ′(σ−(tα)), so that

χ′′
c (tα) = −

(H ′(φ′(u+(tα))) −H ′(ψ(φ′(u+(tα)))))2

φ′(u+(tα)) − ψ(φ′(u+(tα)))

φ′′(u+(tα))

1 + tαH ′′(φ′(u+(tα)))φ′′(u+(tα))
.



144 S. IZUMIYA AND G. T. KOSSIORIS

Thus, we have

A′′(tα) = (σ′′(tα) − χ′′
c (tα))(φ′(σ+(tα)) − φ′(σ−(tα))).

Since σ′′(tα) > χ′′
c (tα) and φ′(σ+(tα)) < φ′(σ−(tα)), we have A′′(tα) < 0. This means

that A′(t) < 0 near tα, so y(t, σ+(t)) < y(t, σ−(t)).

We also consider

y+(t) = t{−H(φ′(u+(t))) + φ′(u+(t))H ′(φ′(u+(t)))} + φ(u+(t))

and

yα(t) = t{−H(φ′(uα)) + φ′(uα)H ′(φ′(uα))} + φ(uα),

where uα = σ−(tα), x(t, uα) = uα + tH ′(φ′(uα)) = x(t, u+(t)) = u+(t) + tH ′(φ′(u+(t))).

Differentiating the last equality, we get

H ′(φ′(uα)) = u′+(t) +H ′(φ′(u+(t))) + tH ′′(φ′(u+(t)))φ′′(u+(t))u′+(t).

Then

y′+(t) = −H(φ′(u+(t))) + φ′(u+(t))H ′(φ′(u+(t)))

+ tH ′′(φ′(u+(t)))φ′(u+(t))φ′′(u+(t))u′+(t) + φ′(u+(t))u′+(t)

= −H(φ′(u+(t))) + φ′(u+(t))H ′(φ′(uα)).

So we obtain

d

dt
(yα(t) − y+(t)) = H(φ′(u+(t))) −H(φ′(uα)) −H ′(φ′(uα))(φ′(u+(t)) − φ′(uα)).

Since φ′(u+(t)) < φ′(uα) and φ′(uα) is in the convex region of H(p), we have

H ′(φ′(uα)) <
H(φ′(u+(t))) −H(φ′(uα))

φ′(u+(t)) − φ′(uα)
,

so that we have d
dt

(yα(t) − y+(t)) < 0. This means that yα(t) < y+(t) for t > tα.

This shows that the two branches of the multi-valued graph have intersection for

t > t− α. This contradicts the assumption that the singularity is 1A2
0A1.

b) Here we assume that σ(t) < χc(t) for t > tα. In this subcase two shocks bifurcate

from the point (tα, xα) (see Figure 9).

The left one is a new shock given by the intersection of the original characteristic from

the left side and the new characteristic from the contact discontinuity (i.e., the rarefaction

waves).

By definition, we have

ỹα(t) = (t− tα){−H(ψ(y+
x (tα, χc(tα)))) + ψ(y+

x (tα, χc(tα)))H ′′(ψ(y+
x (tα, χc(tα))))}

+ y+(tα, χ(tα))

and

y−(t) = t{−H(φ′(u−(t))) + φ′(u−(t))H ′(φ(u−(t)))} + φ(u−(t)),

where uα + tH ′(φ′(uα)) = x(t, u−(t)) = u−(t) + tH ′(φ′(t)).

Differentiating the last equality, we get

u′−(t) +H ′(φ′(u−(t))) + tH ′′(φ′(u−(t)))φ′′(u−(t))u′−(t) = H ′(φ′(uα)).
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Fig. 9

Then

y′−(t) = −H(φ′(u−(t))) + φ′(u−(t))H ′(φ(u−(t)))

+ tH ′′(φ′(u−(t)))φ′(u−(t))φ′′(u−(t))u′−(t) + φ′(u−(t))u′−(t)

= −H(φ′(u−(t))) + φ′(u−(t))H ′(φ(uα)).

So we obtain

d

dt
(ỹα(t) − y−(t)) = H(φ′(u−(t))) −H(φ′(uα))

−H ′(φ′(uα))(φ′(u−(t)) − φ′(uα)).

Since u−(t) < uα and both of φ′(u−(t)), φ′(uα) are in the convex region of H(p), we have

φ′(u−(t)) > φ′(uα) and

H ′(φ′(uα)) >
H(φ′(u−(t))) −H(φ′(uα))

φ′(u−(t)) − φ′(uα)
,

so that we obtain d
dt

(ỹα(t)− y−(t)) < 0. Since ỹα(tα) = y−(tα), the last inequality means

that ỹα(t) < y−(t) for t > tα.

We also consider

ỹα(t, σ(t)) = (t− τ(t)){−H(ψ(y+
x (τ(t), χc(τ(t)))))

+ ψ(y+
x (τ(t), χc(τ(t))))H

′′(ψ(y+
x (τ(t), χc(τ(t)))))} + y+

x (τ(t), χc(τ(t)))

and

y−(t, σ(t)) = t{−H(φ′(σ−(t))) + φ′(σ−(t))H ′(φ(σ−(t)))} + φ(σ−(t)),

where

y+(τ(t), χc(τ(t))) = τ(t){−H(φ′(τ(t))) + φ′(τ(t))H ′(φ(τ(t)))} + φ(τ(t)),

y+
x (τ(t), χc(τ(t))) = φ′(u+(τ(t)))

and

σ(t) = σ−(t) + tH ′(φ′(σ−(t))) = χc(τ(t)) + (t− τ(t))H ′(ψ(φ′(u+(t)))).
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Since χc(τ) = H ′(ψ(φ′(u+(τ)))) and 1 + tH ′′(φ′(σ−(t)))φ′′(σ−(t)) = 0, differentiating

the above equality, we get

H ′(φ′(σ−(t))) = H ′(ψ(φ′(u+(τ(t)))))

+ (t− τ(t))H ′′(ψ(φ(u+(τ(t)))))
dψ

dp
φ′(u+(τ(t)))u′+(τ(t))τ ′(t).

Then

ỹ′(t, σ(t)) = τ ′(t){−H(φ′(u+(τ(t)))) + φ′(u+(τ(t)))H ′(φ′(u+(τ(t))))}

+ τ(t)φ′(u+τ(t))H
′′(φ′(u+(τ(t))))φ′′(u+(τ(t)))u′+(τ(t))τ ′(t)

+ φ′(u+(τ(t)))u′+(τ(t))τ ′(t)

+ (1 − τ ′(t)){−H(ψ(φ′(u+(τ(t))))) + ψ(φ′(u+(τ(t)))H ′(ψ(φ′(u+(τ(t))))))}

+ (t− τ(t))ψ(φ′(u+(τ(t))))H ′′(ψ(φ′(u+(τ(t)))))
dψ

dp
φ′′(u+(τ(t)))τ ′(t)

= τ ′(t){H(ψ(φ′(u+(τ(t))))) −H(φ′(u+(τ(t))))

+ φ′(u+(τ(t))) − ψ(φ′(u+(τ(t))))H ′(ψ(φ′(u+(τ(t)))))}

+ ψ(φ′(u+(τ(t))))H ′(φ′(σ−(t)) −H(ψ(φ′(u+(τ(t)))))).

By definition, we have

H ′(ψ(φ′(u+(τ(t))))) =
H(φ′(u+(τ(t)))) −H(ψ(φ′(u+(τ(t)))))

φ′(u+(τ(t))) − ψ(φ′(u+(τ(t))))
,

so that

ỹ′(t, σ(t)) = ψ(φ′(u+(τ(t))))H ′(φ′(σ(t))) −H(ψ(φ′(u+(τ(t))))).

Thus we have

d

dt
(ỹ(t, σ(t)) − y−(t, σ(t))) = H ′(φ′(σ−(t))) −H(ψ(φ′(u+(τ(t)))))

−H ′(φ′(σ(t)))(φ′(σ−(t)) − ψ(φ′(u+(τ(t))))).

Since both φ′(σ−(t)) and ψ(φ′(u+(τ(t)))) belong to the concave region of H(p), φ′(σ−(t))

< ψ(φ′(u+(τ(t)))) for t > tα. Therefore

H ′(φ′(σ−(t))) −H(ψ(φ′(u+(τ(t))))

φ′(σ−(t)) − ψ(φ′(u+(τ(t))))
< H ′(φ′(σ(t))),

hence we have d
dt

(ỹ(t, σ(t)) − y−(t, σ(t))) > 0. Since ỹ(tα, σ(tα)) = y−(tα, σ(tα)), the

above inequality means that ỹ(t, σ(t)) > y−(t, σ(t))) for t > tα. It follows that there

exists a unique (t, χr(t)) with x(t, uα) < χr(t) < σ(t) such that ỹ(t, χr(t)) = y−(t, χr(t)).

Fig. 10
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Then we can draw a picture of the graph of the viscosity solution for t > tα and the

bifurcation of the shock curves around tα (cf. Figure 10).

For other cases, the detailed discussions will appear elsewhere.
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