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Abstract. This article surveys results on the global surjectivity of linear partial differential
operators with constant coefficients on the space of real analytic functions. Some new results are
also included.

0. Introduction. In this talk, we first briefly review in §1 the old subject of general
surjectivity of a linear partial differential operator P (D) with constant coefficients in
various spaces of (generalized) functions on a given open set. Then in §2 we introduce
results concerning the case of the space of real analytic functions in precise formulation.
Finally, in §3 we discuss recent developments related to micro-local analysis. This is, so to
speak, an application of singularity theory. We thus believe that this talk fits the general
subject of this Semester.

The author participated about 15 years ago in a meeting organized by L. Cattabriga
at Trento in Italy and encountered many people by whose influences he undertook this
research. The author would therefore like to record here his special memory of the late
Prof. L. Cattabriga.

1. General surjectivity. When a fundamental solution E(x) was constructed for
a general operator P (D) with constant coefficients by Hörmander, the natural problem
to be attacked next was that of solvability of the equation P (D)u = f for the given
right-hand side f . But this contained another difficulty when f was a general function
which may grow up near the boundary of the domain, because the simple formula

(1) u = E ∗ f
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will not work for such f . A duality argument was introduced by Ehrenpreis and Malgrange
to overcome this. It consisted in proving the following equivalence:

P (D) : F (Ω)→ F (Ω) is surjective

⇔ tP (D) : F ′(Ω)→ F ′(Ω) is injective and has closed range.

Using this, the surjectivity was established for the space C∞(Ω) of infinitely differentiable
functions on a convex open set, and further, a characterization called P -convexity was
given for the surjectivity in general domains. This method could be applied without
modification to the space of distributions of finite order on the whole domain D′F (Ω),
or to the space γs(Ω) of Gevrey functions with projective limit type topology. For the
space D′(Ω) of distributions or the space Γ s(Ω) of inductive limit type Gevrey spaces
or the space A(Ω) of real analytic functions, the duality argument did not work because
of the failure of the closed range theorem in these spaces. But Hörmander introduced
a new idea of using approximation by a topology of an Abelian group finer than the
original one as a topological linear space, and established surjectivity for the space D′(Ω)
on a convex domain, together with a criterion of surjectivity for general domains. This
idea was later made into an abstract theory of topological inductive limit functors by
Palamodov. Ehrenpreis used a different tool of analytically uniform structure, which is
in short to find an equivalent expression by a family of (possibly uncountably many)
seminorms for the given topology of the dual space which is originally of projective limit
type, and he thereby established the surjectivity for the space D′(Rn).

The researchers intended to treat the space of real analytic functions. But methods
mentioned above which worked for the space of distributions did not apply. The first
positive result in this respect was given only in 1971 by De Giorgi and Cattabriga who
proved the surjectivity for any operator on R2. But what was more frightening was that
soon after that Cattabriga and Piccinini found a counterexample to the surjectivity. It
was the familiar heat equation on the whole space. Their argument suggested that some
kind of further convexity condition is necessary. As a matter of fact, a real analytic convex
open set Ω does not have a fundamental system of convex complex neighborhoods, and all
difficulty comes from this fact. Examining their argument, Hörmander soon introduced
a Mittag-Leffler type argument to establish the necessary and sufficient condition for the
surjectivity in A(Ω) for convex Ω. It was a kind of Phragmén-Lindelöf type principle
posed on functions holomorphic on the null variety N(P ) of P (ζ). His result was very
abstract though he gave various concrete examples to which his criterion applies. His
most important discovery was that for convex Ω the surjectivity depends only on the
principal part.

Just in the same time another approach was produced, namely to establish surjectivity
for a limited class of operators. Andersson did it for the locally hyperbolic operators on
Rn, whereas Kawai treated it on a general bounded open set which is not necessarily
convex. Both methods depended on a kind of micro-localization, but whereas Andersson
made use of approximation procedure to solve each decomposed part, Kawai only used
the convolution with the well examined fundamental solution, hence presented a totally
new approach from the micro-local viewpoint. Since the news of counterexample reached
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Japan in delay, some of us were believing at that time that Kawai’s new method would
in principle solve the problem of surjectivity for any operator. But it became clear that
he had picked up favorable operators by chance.

The general problem of surjectivity was then studied in the space Γ s(Ω). Cattabriga
and De Giorgi found that the same counterexample of Cattabriga-Piccinini serves as a
counterexample for the surjectivity in Γ s(Ω). This seemed to show that the difficulty to
the surjectivity was purely of topological nature. As a sufficient condition Cattabriga gave
hybrid type operators, where the hyperbolic-like part and the elliptic-like part of the null
variety are separated by a gap. Later, his results were generalized to a Phragmén-Lindelöf
type principle similar to Hörmander’s by Zampieri for the sufficient condition, and by
Braun-Vogt-Meise to give a necessary and sufficient condition. Indeed, the latter is an
application of their more general theory of inductive limit functors extending that of
Palamodov. It was hoped that the result of Hörmander itself followed as an application
of their general theory. But there seems to exist a small gap. It will be more interesting
if there is a structural difference between these two spaces. Braun recently gave an
interesting example of a 4-th order operator which is surjective in Γ s(Rn) for 1 ≤ s < 2
or s ≥ 6 but not for 2 ≤ s < 6. It is interesting to compare this with Zampieri’s former
result that surjectivity in s = 1 implies surjectivity in 1 ≤ s < σ for some σ > 1.

There still remain some unsolved problems. It is interesting to clarify the relation be-
tween Hörmander’s theory and Kawai’s micro-local approach. Zampieri showed that for
some special case Hörmander’s condition can be paraphrased by means of propagation
of analytic singularities as used by Kawai but in a form more refined to micro-local irre-
ducible components. Also he introduced a very interesting example showing that Kawai’s
formulation is not so precise when the local propagation cone has a large dimension.
Stimulated by this, the speaker introduced a kind of stratification and improved Kawai’s
theory to cover Zampieri’s example. The biggest problem remaining is to find a micro-local
means to show the necessity part at the same level of precision. Note that Hörmander’s
theory never applies to non-convex domains. Hence it is not known if the surjectivity
only depends on the lower order part for the general non-convex domain. It is also very
interesting to interpret from the micro-local viewpoint operators which are not locally
hyperbolic but which are covered by Hörmander’s criterion. Zampieri gave some result
on this, too, but the study for main examples is still open.

2. Results on surjectivity in real analytic functions. We list up here results
on the surjectivity of P (D) : A(Ω) → A(Ω) which were not precisely formulated in the
Introduction. Hörmander’s result in its most primitive form is as follows:

Theorem (Hörmander). Let Ω ⊂ Rn be a convex open set. P (D) : A(Ω) → A(Ω)
is surjective if and only if for any compact subset K ⊂ Ω we can find another compact
subset K ′ ⊂ Ω and δ > 0 such that for every holomorphic function F (ζ) on N(P ) the
following (a), (b) imply (c):

(a) |F (ζ)| ≤ C exp{δ|ζ|+HK(Imζ)} for ζ ∈ N(P ).
(b) |F (ξ)| ≤ C for ξ ∈ N(P ) ∩ Rn.
(c) |F (ζ)| ≤ Cε exp{ε|ζ|+HK′(Im ζ)} for ζ ∈ N(P ).
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This can be paraphrased via plurisubharmonic functions instead of holomorphic func-
tions, which allows one to replace N(P ) by N(Pm), the null variety of the principal
part. That is, the surjectivity depends only on the principal symbol provided convex Ω
are considered. The final form of the theorem localized to the plurisubharmonic func-
tions on the variety N(P ) was given by Andreotti-Nacinovich [AN] and Zampieri [Z2].
Andreotti-Nacinovich [AN] and Miwa [Mi] independently gave the generalization to the
case of general systems of equations with constant coefficients.

To state Kawai’s result, we need to prepare some technical terms.

Definition. P (D) is called locally hyperbolic at ξ0 in the direction ν if there exists
ε > 0 such that

(2) |ξ − ξ0| ≤ ε, 0 < t < ε imply Pm(ξ + tν) 6= 0.

P (D) is said to be locally hyperbolic if it is locally hyperbolic at every point ξ0 ∈ Sn−1

in some direction ν depending on ξ0.

When P (D) is locally hyperbolic, there exists a conically convex neighborhood ∆ξ0

of ν in Sn−1 such that (2) holds with ν replaced by each η ∈ ∆ξ0 if ε is chosen anew. The
dual cone Kξ0 = ∆◦ξ0 of ∆ξ0 is called a local propagation cone of P (D) at ξ0. In this case
the localization (Pm)ξ0 of Pm at ξ0, namely the first non-trivial coefficient of the Taylor
expansion of Pm(ξ) at ξ0:

Pm(ξ0 + tξ) = (Pm)ξ0(ξ)ta + o(ta)

becomes a hyperbolic operator with the propagation cone Kξ0 . In general, there are
several choices for such Kξ0 . In any case, the opposite cone −Kξ0 also serves as such.
But it should be noted that not all the propagation cones of the localization (Pm)ξ0
are necessarily local propagation cones of the original operator at ξ0. By definition we
can always arrange them at least locally in such a way that ∆ξ0 depends lower semi-
continuously (hence Kξ0 upper semi-continuously) on ξ0. Assuming that we can arrange
it even globally on Sn−1 for a given locally hyperbolic operator, Kawai constructed a
pair of fundamental solutions E±(x) which satisfies the following good estimate for its
micro-local singularity for the given choice of upper semi-continuous local propagation
cones:

(3) WFAE
±(x) ⊂

⋃
ξ∈Sn−1

±Kξ × {ξ}.

Employing these “good fundamental solutions” he proved the following

Theorem (Kawai). Let P (D) be a locally hyperbolic operator satisfying the above
condition, and let Ω ⊂ Rn be a bounded domain. Assume that there exists a covering of
∂Ω × Sn−1 by closed subsets X± such that

(4) (x, ξ) ∈ X± implies ({x} ±Kξ) ∩Ω = ∅.

Then P (D) : A(Ω)→ A(Ω) is surjective.

For a given locally hyperbolic operator, it is not obvious if there exists a global
arrangement of local propagation cones in upper semi-continuous way (although we do
not have any counter-example). But actually Kawai’s argument implies that we only need
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micro-local good fundamental solutions, i.e. Ej(x), j = 1, . . . , N , on each element of an
open covering {∆j , j = 1, . . . , N} of Sn−1 such that

P (D)Ej − δ is micro-analytic in Rn ×∆j

and that

(3)′ WFAEj ⊂
( ⋃
ξ∈∆j

±Kξ × {ξ}
)
∪ (Rn × (Sn−1 \∆j)).

Then assuming the existence of a covering of ∂Ω × Sn−1 by closed subsets X±j , j =
1, . . . , N , such that X±j ⊂ Rn ×∆j and that

(4)′ (x, ξ) ∈ X±j implies ({x} ±Kξ) ∩Ω = ∅,

we can prove the same conclusion. This way of presentation is rather awkward. Kawai
actually tried to give his final result in neater form, namely assuming only the condition

(5) at every point x ∈ ∂Ω and ξ ∈ Sn−1, ({x}+Kξ) ∩Ω = ∅ for some choice of the
local propagation cone Kξ.

But he found that then the possibility of locally upper semi-continuous choice of the local
propagation cones satisfying (4)′ is not obvious. To prove this from the above pointwise
condition (5), he had to add an assumption that the boundary ∂Ω is of class C1. It was
remarked however by Zampieri that a domain with C1 boundary can satisfy the above
pointwise condition if and only if all the local propagation cones are half lines. Hence the
final formulation of Kawai excludes many interesting examples. An attempt was made to
prove this procedure of pointwise to locally uniform condition. But finally Zampieri found
an example of a locally hyperbolic operator which satisfies pointwise condition (5) but we
can never find an arrangement of local propagation cones in locally upper semi-continuous
way satisfying the assumption (4)′ of the above theorem. Our latest study began with
this. It will be explained in detail in the next section.

Not so much is known about the necessity on general non-convex domains. The fol-
lowing is the most general result for the moment:

Theorem (Zampieri [Z1]). The surjectivity of P (D) : A(Ω) → A(Ω) implies the
surjectivity of P (D) : C∞(Ω)→ C∞(Ω).

Together with Kawai’s sufficiency result stated above and Malgrange’s result on P -
convexity, this implies the following beautiful result:

Corollary. Let Ω ⊂ R2 be a domain. Then P (D) : A(Ω) → A(Ω) is surjective if
and only if every characteristic line of P (D) intersects Ω in a connected interval.

To paraphrase Hörmander’s condition in terms of the propagation of analytic singu-
larities is an interesting work. Zampieri gave the following result:

Theorem (Zampieri [Z3]). Let P (D) be an operator such that the irreducible factor
of Pm(ξ) in the sense of analytic germs at every point ξ ∈ Sn−1 is locally hyperbolic.
Assume that the multiplicity of every characteristic of P is at most 2. Then for a convex
open set Ω the following are equivalent.

a) P (D) : A(Ω)→ A(Ω) is surjective.
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b) At every point (x, ξ) of ∂Ω×Sn−1, for each irreducible factor of Pm(ξ) at ξ in the
above sense we can find a local propagation cone K such that ({x}+K) ∩Ω = ∅.

This theorem is proved by a direct paraphrase of Hörmander’s condition in a localized
form. Hence it does not work for non-convex domains. Since the proof depends heavily
on the restriction of multiplicity, we do not know if the assumption of multiplicity is a
technical one or not. It is a fascinating problem to find an idea to prove such a form of
necessity condition directly by micro-local approach.

3. Improved micro-local theory. To explain further developments, it is better
to review a little the proof of Kawai’s theorem. For the sake of simplicity, in the sequel
we restrict ourselves as in [Kaw1] to the case where global good fundamental solutions
E±(x) are available. His argument resorts to the simple formula (1): Let f ∈ A(Ω) be a
given right-hand side. By the flabbiness of the sheaf of hyperfunctions, we can take an
extension f̃ of f as a hyperfunction with support in Ω. Then by the flabbiness of the
sheaf of micro-functions, we can decompose f̃ according to the covering in such a way
that

f̃ = f+ + f−, WFAf
± ⊂ X±.

Then we set

u = E+ ∗ f+ + E− ∗ f−.
In this convolution neither of the factors has compact support even if Ω is bounded.
But the analytic singular support is bounded and for this reason the convolution can
be well-defined modulo real analytic functions. By this definition, it is clear from the
estimate (3) and the assumption (4) that we can find a hyperfunction representative
u which is real analytic inside Ω. Hence adjusting finally the real analytic modulo term
g = P (D)u−f ∈ A(Rn) by solving the equation P (D)v = g on a sufficiently large convex
compact set containing Ω, we obtain another hyperfunction u which satisfies P (D)u = f

exactly in Ω.
We made two contributions to the sufficiency part of the surjectivity in the space of

real analytic functions. The first one is an extension of Kawai’s theory to unbounded
domains. For this, we introduced in [Kan1] the sheaf of Fourier hyperfunctions with gen-
eralized growth condition at infinity defined on the directional compactification Dn of Rn
which extends the usual sheaf of hyperfunctions, and introduced the theory of analytic
wavefront sets adapted to them, especially at infinity. We established in [Kan5] the flab-
biness of the sheaf of Fourier micro-functions thus defined on Dn × Sn−1. Note that the
original Fourier hyperfunctions are introduced by Sato-Kawai with the infra-exponential
growth condition (see [Kaw1]). However, the good fundamental solutions constructed
naturally do not satisfy this condition. So a generalization of the growth condition was
indispensable. The convolution between a generalized Fourier hyperfunction of increasing
type and another of decreasing type is possible if the decay order of the latter dominates
the growth order of the former, and the estimation formula of the analytic wavefront
set works as well for such a convolution, even at infinity. Since we can extend a given
f to a Fourier hyperfunction with arbitrarily preassigned decay order, we can thus ex-
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tend Kawai’s theory almost literally to the case of unbounded domains. The speaker got
these ideas from a related question of Bratti and from Lieutenant’s talk (see [L1]) at the
meeting mentioned in the Introduction.

The second contribution is a refinement of Kawai’s theory in such a form that it can
treat Zampieri’s example. We present here his interesting example: Consider

P (D) = D2
1D

2
2 −D2

2D
2
3 −D4

3 −D2
3D

2
4.

This is simply characteristic except for the points

(±1, 0, 0, 0), (0,±1, 0, 0).

The local propagation cones at the former pair are half-lines. Hence they cause no geo-
metrical problem although they are doubly characteristic. On the contrary, those at the
latter pair are two dimensional cones

±Kξ = {±x1 ≥ |x3|, x2 = x4 = 0}.

An elementary calculation shows the remarkable fact that

±K ′ξ = {±x3 ≥ |x1|, x2 = x4 = 0}

are not local propagation cones, although they are propagation cones of the localization
ζ2
1 − ζ2

3 . By this reason, we can show that for a domain

Ω = {|x1 + x3| < 1, |x1 − x3| < 1, |x2| < 1, |x4| < 1},

the arrangement of local propagation cones fails at the face x1 + x3 = 1. The difficulty
comes from the fact that the lower semi-continuity of local propagation cones fails when
the order of localization changes. But the lower semi-continuity holds on any stratum on
which the order of localization is constant. With this observation, for a given operator
P (D) we introduce the following stratification:

Sn−1 = Ξ0 tΞ1 t . . . tΞs,

where

Ξj = {ξ ∈ Sn−1; the localization (Pm)ξ is of order mj}
with

0 = m0 < m1 < . . . < ms.

When ξ is restricted to one stratum, we have the lower semi-continuity of the local
propagation cones ξ 7→ Kξ in the following sense: For any a ∈ Kξ0 and any ε > 0 there
exists δ > 0 such that if |ξ − ξ0| < δ, then Kξ contains some point of the ε-neighborhood
of a. Thanks to this fact, we can show that

(6) X±k = {(a, ξ) ∈ ∂Ω ×Ξk; {a} ±Kξ ∩Ω = ∅}

becomes relatively closed in ∂Ω × Ξk. Thus we can decompose f̃ by WFA according
to this stratification and the covering. We can solve the equation P (D)u = f̃ modulo
micro-analytic terms step by step from the strata of higher dimension employing the
same simple formula of convolution with good fundamental solutions. The outline of this
argument is as follows: Assume that we have obtained a micro-local solution uk ∈ B(Rn)
of P (D)uk = f̃ on Rn × (Sn−1 \Ξk+1) in the following sense:
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1) WFAuk ⊂ (Rn \Ω)× Sn−1.
2) WFA(P (D)uk − f̃) ⊂ ∂Ω ×Ξk+1.

We construct uk+1 from this uk employing the good fundamental solutions as follows.
(The argument also shows how to construct the first one u0.) Put

gk+1 = P (D)uk − f̃ .

By 2) we have WFAgk+1 ⊂ ∂Ω × Ξk+1. According to (6) for k + 1, we decompose gk+1

into the sum of g±k+1 such that

WFAg
±
k+1 ⊂ X

±
k+1 ∪ (∂Ω ×Ξk+2).

Then put

vk+1 = g+
k+1 ∗ E

+ + g−k+1 ∗ E
−.

(The meaning of convolution is as explained before. Namely, it is well defined modulo
A(Rn).) By the geometric condition the analytic wavefront set with the directional
components in Ξk+1 does not propagate into Ω. Hence we have

WFAvk+1 ⊂ {(Rn \Ω)×Ξk+1} ∪ (Ω ×Ξk+2).

Now choose wk+1 ∈ B(Rn) such that

WFA(vk+1 − wk+1) ⊂ Ω ×Ξk+2,

WFAwk+1 ⊂ (Rn \Ω)×Ξk+1.

From the construction we have

P (D)wk+1 − gk+1 = (P (D)vk+1 − gk+1) + P (D)(wk+1 − vk+1)

≡ P (D)(wk+1 − vk+1) mod A(Rn),

hence

WFA(P (D)wk+1 − gk+1) ⊂ {(Rn \Ω)×Ξk+1} ∩ (Ω ×Ξk+2)

⊂ ∂Ω ×Ξk+2.

Hence uk+1 = uk−wk+1 satisfies the induction hypothesis 1)–2) with k replaced by k+1.
Thus after a finite number of steps we finally obtain the desired micro-local solution
u = us.

We present here some remarks concerning the necessity for the surjectivity. The fol-
lowing results imply that the surjectivity is localizable in some sense:

Proposition. Assume that for f ∈ A(Ω) we can find a neighborhood U of ∂Ω and
u ∈ A(Ω ∩ U) such that P (D)u = f in Ω ∩ U . Then P (D)u = f is actually solvable in
u ∈ A(Ω).

Proposition. Assume that P (D) : A(Ω)→ A(Ω) is surjective. Then for every point
x ∈ ∂Ω and for any neighborhood V of x, we can find another neighborhood W of x such
that for every f ∈ Ω ∩ V the equation P (D)u = f has a solution u in Ω ∩W .

These are proved employing Malgrange’s vanishing theorem for the first cohomology
group with coefficients inA. We show this for the latter: In view of this vanishing theorem
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and the Mayer-Vietoris theorem, we can decompose f ∈ A(Ω ∩ V ) as

f = g + h, g ∈ A(Ω), h ∈ A(V ).

By the assumption, P (D)v = g has a solution v ∈ A(Ω). On the other hand, if we choose
a convex neighborhood W ⊂⊂ V , we can find a solution w ∈ A(W ) of P (D)w = h. Then
u = v + w restricted to Ω ∩W will be the desired solution.

The converse of the latter Proposition is not true. In fact, in view of Zampieri’s result
introduced in §2 (see Corollary) and the famous remark about the non-localizability of
P -convexity (see Example with the unique Figure 1 in §3.7 of the book [H2]), we see that
the surjectivity P (D) : A(Ω) → A(Ω) is also non-localizable. But we expect that for a
real analytic boundary, the condition of surjectivity will be localizable in the above form
along the boundary.

In the above proofs, we repeatedly employed the classical result on the surjectivity of
P (D) on the space A(K) of real analytic functions on a convex compact set. Note that
this surjectivity is not trivial unlike the case of C∞(K), because of the impossibility of the
choice of a compact support modification. It is also interesting to study the condition
of surjectivity for non-convex K. Some results in this respect are given in [Kaw1] for
sufficiency and in [Kan3] for necessity.

Our final remark is the role of WFA at the boundary for a real analytic function.
In [L2], Lieutenant introduced this notion with the aim of the micro-local study of the
surjectivity in A(Ω) for general operators. Roughly speaking, for f ∈ A(Ω) we say that
(x, ξ) 6∈ WF bAf at x ∈ ∂Ω if f can be continued to a complex neighborhood of Ω which
has positive angle with the real axis in the direction ξ. (A similar notion was introduced
by Schapira [Sch1-2] with another motivation.) Regrettably, Lieutenant’s idea was not
well pursued. We therefore give here a prototype of such a result.

Theorem. Let Ω be a convex open set. Let f ∈A(Ω). Assume that every point (x, ξ)∈
WF bAf has a neighborhood U ×∆ ⊂ Rn×Sn−1 such that P (D) is locally hyperbolic in ∆

and that the geometric condition for its local propagation cones is satisfied on (∂Ω∩U)×∆.
Then P (D)u = f has a solution in A(Ω).

In fact, by means of the micro-local good fundamental solutions we solve P (D)u = f

micro-locally on a neighborhood of WF bAf . Then what remains on the right-hand side is
a real analytic function in Ω which can be continued to a convex complex neighborhood
of Ω. Thus it can be solved by the classical duality argument in the convex complex
domain.
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