
SINGULARITIES AND DIFFERENTIAL EQUATIONS
BANACH CENTER PUBLICATIONS, VOLUME 33

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1996

SOME FUNCTORIAL PROPERTIES OF
MICROLOCALIZATION FOR D-MODULES

TERESA MONTEIRO FERNANDES
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Introduction. In several papers which appeared since the seventies, M. Kashiwara,
T. Kawai and T. Oshima generalized the classical theory of differential equations with
regular singularities in the framework of microlocal analysis and the theory of D-modules.

These developments were parallel to the progress of the so-called microlocal theory of
sheaves whose main tools are the specialization and microlocalization functors.

In this paper we deal with Kashiwara’s notion of specialization and microlocalization
for (not necessarily holonomic) D-modules along a fixed submanifold Y .

In Theorem 1.1.1 we obtain the relation between specialization and nearby cycles for
D-modules using the normal deformation along Y , which is the analogue of Verdier’s
relation in sheaf theory. As a consequence, we give a precise meaning to the famous
comparison theorems due to Kashiwara (in the eighties) for regular systems along Y (cf.
[3], [13]).

We study the behaviour of microlocalization for D-modules under formal tensor prod-
uct (defined by Sato, Kawai, Kashiwara in [15]).

As a consequence we prove that the microlocalization of a D-module M along Y only
depends on the microdifferential system M̃ obtained from M after tensoring by the sheaf
of microdiferential operators. When the D-module M is regular along Y we obtain a
relation for the microcharacteristic varieties associated to Λ = T ∗YX (the conormal fiber
bundle to Y ).

Finally, we state some interesting properties of the bifunctor µhom which was first
introduced by Kashiwara-Kawai (cf. [6]) in the framework of regular holonomic systems,
and generalized in [20] to a larger category, and we analyse some examples.

1. Microlocalization for D-modules and E-modules along a submanifold

1.1. D-modules. Let X be an n-dimensional complex analytic manifold and Y ⊂ X
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a smooth d-codimensional submanifold. Let DX be the sheaf of linear holomorphic dif-
ferential operators of finite order on X, and

V kY (DX) = {P ∈ DX : PIj ⊂ Ij+k, ∀j, j + k ≥ 0},
the so-called V -filtration on DX with respect to Y , where I denotes the defining ideal of
Y . Except in case of ambiguity we suppress Y . Let

grV (DX) :=
⊕
k∈Z

V k(DX)
V k+1(DX)

and τ : TYX → Y the projection of the normal bundle on Y . Then τ∗D[TYX] ≈ grV (DX),
where D[TYX] denotes the algebraic linear differential operators on TYX with respect to
the fibers of τ .

Let θ be the Euler operator on TYX (i.e. the vector field on TYX describing the
infinitesimal action of C∗ on TYX). θ acts by the identity on I/I2 and we shall keep the
notation θ for any of its local representatives in V 0(DX), which will be fixed henceforth.
For example, if

Y = {(x, t) ∈ Cn+d : t ∈ Cd, t = 0}, t = (t1, . . . , td),

we may choose

θ =
d∑
i=1

ti
∂

∂ti
.

Moreover, we shall often write “D-module” instead of “DX -module”.
LetM be a coherentD-module. Then, locally,M admits a good V -filtration {Mj}j∈Z,

i.e.

(a) M =
⋃
j∈ZMj ;

(b) Mj ⊃Mj+1, ∀j;
(c) V k(DX)Mj ⊂Mj+k ∀j, k,∈ Z;
(d) V k(DX)Mj =Mj+k ∀j � 0 and k ≥ 0 or j � 0 and k ≤ 0;
(e) Mj is V 0(DX)-coherent.

We shall say thatM is specializable along Y if for every good V -filtration Uk(M) on
M there exists a nontrivial polynomial b(s) ∈ C[s] such that

b(θ − k)Uk(M) ⊂ Uk+1(M);

such a b(s) is also called a Bernstein-Sato polynomial for U∗(M).
Let us endow C with the lexicographic order.
For every local nonvanishing section u ofM there is a minimal polynomial bu(s), the

b-function for u, such that bu(θ)u ∈ V 1(DX)u and one sets order u = {α ∈ C : b(α) = 0}.
The canonical V -filtration on M is defined as follows: for α ∈ C, V α(M) is the sheaf

of germs of sections u such that orderu ⊂ {β ∈ C : β ≥ α}.
We denote by V >α(M) the sheaf of germs of sections such that orderu ⊂ {β ∈ C :

β > α}. We define the specialization of M along Y by

νY (M) := DTYX ⊗
D[TY X]

τ−1

(⊕
j∈Z

V j(M)
V j+1(M)

)
(cf. [13] for more details).
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Therefore, the characteristic variety of νY (M) is contained in the canonical hyper-
surface of T ∗(TYX), which is the characteristic variety of θ.

One defines the DY -module of nearby cycles of M along Y as

ψY (M) :=
V 0(M)
V 1(M)

=
⊕

0<α≤1

V α

V >α
= gr0(M).

It is obvious that the complex

Sol(νY (M)) = RHomDTY X (νY (M),OTYX)

is monodromic, i.e., its cohomology groups are locally constant on the orbits of the action
of C∗.

Let us briefly recall the real and complex normal deformations of a real (resp. complex)
manifold X along a submanifold Y , which we will denote respectively by X̃R and X̃ (for
more details see [8] and [21]).

1. Let X be a real differentiable manifold. Then X̃R is a real differentiable manifold
together with canonical morphisms

X̃R p−→ X and X̃R q−→ R

such that if we consider local coordinates (x, y) in X, with Y being defined by x =
(x1, . . . , xd) = 0, one obtains a system of local coordinates on X̃R, (x′, y′, c), c ∈ R, such
that p(x′, y′, c) = (x′c, y′) and c(x′, y′, c) = c.

Let Ω be the open subset of X̃R, Ω = c−1(R+), and consider the commutative diagram
of morphisms

TYX
s−→ X̃R j←− Ω

τ
y yp ↙ p̃

Y −→
i

X

Then for any F · ∈ ObjDb(X) one defines Sato’s specialization

νY (F ·) := s−1Rj∗p̃−1F ·.

2. Let X be a complex analytic manifold. Then one considers the complex construc-
tion analogous to the preceding one, i.e., with R replaced by C.

One defines Verdier’s specialization in Db(X), as follows:

(a) First of all let us recall Deligne’s nearby cycle functor associated to a holomorphic
function f : X → C, ψf (·). Let (C̃, p) be a universal covering of C \ {0}, and X̃ ′ the
fiber product X̃ ′ = X ×C C̃ with p̃ : X̃ ′ → X and f̃ : X̃ ′ → C the canonical projections.
Consider the diagram

X̃ ′
f̃−→ C̃yp̃ yp

Y −→
i

X −→
f

C

Then for F · ∈ ObjDb(X) one sets

ψf (F ·) = i−1Rp̃∗p̃−1(F ·).
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(b) Let us consider the following diagram:

c−1(0) = TYX −→ X̃ −→
c

C
τ
y ↘π

yp
Y −→

i
X

Then Verdier’s specialization functor νC
Y (·) is defined as follows, for any F · ∈ ObjDb(X):

νC
Y (F ·) = ψc(p∗F ·).

For a complex of left D
X̃

-modules F · set

F ·[c−1] := θ
X̃

[c−1] ⊗
θX̃

F ·,

the localization of F · along Ỹ := c−1(0).
One says that M is regular along Y if M is specializable and if there exists an

OX -coherent submodule M0 of M such that M = DXM0, and a nontrivial polynomial
b(s) ∈ C[s] such that

b(θ)M0 ⊂ [V 1(DX) ∩ DX(m)]M0,

where {DX(k)}k≥0 denotes the filtration on DX by the order, and m is the degree of b(s).
The following Theorem 1.1.1 is the analogue of Verdier’s specialization. For any co-

herent DX -module M let

M0 = H0(D
X̃→X

L
⊗

p−1DX
M).

Theorem 1.1.1 ([20]). Let M be a coherent DX-module. Then:

1) Hk(Lp∗M[c−1]) = 0, ∀k 6= 0;
2) M0[c−1] is coherent and regular along Ỹ ;
3) suppose that M is specializable along Y and consider M0[c−1] endowed with the

canonical V -filtration. Then the D
Ỹ

-modules gr0(M0[c−1]) and νY (M) are naturally
isomorphic.

Let us rapidly recall the formal Fourier transform (for more details, see [10], [2]).
Let E π−→ Y be a complex holomorphic vector bundle and denote by D[E] ⊂ DE the

sheaf of algebraic differential operators with respect to the fibers of π. Let us denote by
Mon (DE) or Mon (D[E]) the abelian category whose objects are the DE-coherent modules
(or D[E]-modules) locally generated by sections u such that there exists a nontrivial
bu(s) ∈ C[s] satisfying bu(θ)u = 0.

Let E∗ π̃−→ Y be the dual vector bundle and Ω[E/Y ] the sheaf of algebraic relative
differential forms of maximal degree, with respect to π : E → Y .

One defines the formal Fourier transform F as an isomorphism of sheaves on Y :

Ω[E/Y ] ⊗
OY
D[E] ⊗

OY
Ω⊗−1

[E/Y ]

F−→ D[E∗]

given by

dτ ⊗ P (y,Dy)⊗ dτ⊗−1 7→ P (y,Dy),

dτ ⊗ τj ⊗ dτ⊗−1 7→ ∂

∂ξj
,
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dτ ⊗ ∂

∂τj
⊗ dτ⊗−1 7→ −ξj ,

where τj denotes the variables on the fibers of E, y the variables on Y , ξj the variables on
the fibers of E∗, for a given trivialization of E. Let now M be a D[E]-coherent module.
Then F induces an exact functor of Mon (D[E]) in Mon (D[E∗]) given by

F (M) := Ω[E/Y ] ⊗
OY
M,

where F is regarded as a D[E∗]-module.
Now, if M is a monodromic DE-module one defines

F (M) := DE∗ ⊗
D[E∗]

F (M′),

where M′ is a monodromic D[E]-submodule generating M since it does not depend on
the choice of M′ satisfying these conditions.

Let now M be a DX -module specializable along Y . One may define the microlocal-
ization of M along Y by µ

Y
(M) := F (νY (M)).

Let us recall the symplectic (nonhomogeneous) isomorphism of vector bundles

T ∗(E) ΦE−→ T ∗(E∗)

introduced in [8]. In local symplectic coordinates (y, τ ; ξ, η) on T ∗E and (y, τ̃ ; ξ, η̃) on
T ∗E∗ one has

φE(y, τ ; ξ, η) = (y, η; ξ,−τ).

It is straightforward that

Car(µ
Y

(M)) = Car(νY (M))

using the identification by φE . If P ∈ D[E] and P̂ is its image by F in D[E∗] one has
σ(P̂ )φE = σ(P ) (σ denotes the principal symbol).

Let F be the Fourier-Sato transform in sheaf theory. One has

F (Sol(νY (M))) = RHomDT∗
Y
X

(µ
Y

(M),OT∗
Y
X)[−d].

Theorem 1.1.2 ([3]). LetM be a regular D-module along Y . Then one defines natural
isomorphisms in Db(TYX) (resp. in Db(T ∗YX)):

(a) νY (RHomDX (M,OX)) ' RHomDTY X (νY (M),OTYX)

(resp.

(b) µY (RHomDX (M,OX)) ' RHomDT∗
Y
X

(µ
Y

(M),OT∗
Y
X).

I d e a o f t h e p r o o f. (a) One starts by proving the natural isomorphism

νY (RHomDX (M,OX)) ' RHomτ−1DX (τ−1M, νY (OX))

which is easy. Then, by theorem 7.2 of [6], one gets that the natural morphism

RHomπ−1DX (π−1M, νC
Y (OX))→ RHomπ−1DX (π−1M, νY (OX))

is an isomorphism.
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Let p̃ denote the restriction of p : X̃ → X to X̃ \ Ỹ . Since Ỹ = c−1(0) is a smooth
hypersurface defined by a global equation, we may use the results in [13] and obtain

νY (RHomDX (M,OX)) ∼← νC
Y (RHomDX (M,OX))

= ψc(p−1RHomDX (M,OX))
∼→ ψc(RHomD

X̃

(Lp∗M[c−1],O
X̃

))

' RHomDTY X (ψc(M0[c−1]),OTYX)

' RHomDTY X (νY (M),OTYX),

where we use the fact that, for any object F · of Db(X), ψc(F ·) only depends on the
behaviour of F · outside c = 0 and p̃ is smooth.

(b) is analogous to (a).

1.2. E-modules. Let X be a complex analytic manifold and EX the sheaf of microd-
ifferential operators of finite order on T ∗X. Let Λ be a smooth homogeneous lagrangian

submanifold of
◦
T ∗X, the cotangent vector bundle with the zero section deleted. Let

◦
π :

◦
T ∗X → X be the projection. Let EΛ be the subsheaf of rings of microdifferential

operators generated by EX(0), and

IΛ = {P ∈ EX(1) : σ1(P )|Λ = 0}.
Here EX(k) denotes the sheaf of microdifferential operators of order k and σ1 denotes the
symbol of order one. One sets

EΛ(m) = EΛ EX(m)

(filtration on EX with respect to Y ), and

EΛ,m = EΛ ∩ EX(m)

(filtration on EΛ by the order). When Λ =
◦
T ∗YX, one has

EΛ(m)|T∗
Y
Y = V −mY (DX)|Y , ∀m ≥ 0.

Let us choose a section (locally) θ ∈ IΛ satisfying

dσ1(θ) = −ωmod IΛΩ1
T∗X , σ0(θ) =

1
2

∑
j

∂2σ1(θ)
∂xj∂ξj

mod IΛ,

where (x, ξ) stands for a system of canonical coordinates on T ∗X, ω the canonical one-
form on T ∗X, IΛ the defining ideal of Λ. θ is well defined mod EΛ(−1).

Let M be a coherent left EX -module.

Definition 1.2.1. One says that M is microlocalizable along Λ if, locally, one has:

(a) there is a coherent EΛ submodule M0 of M such that M = EXM0,
(b) there is a nontrivial b(s) ∈ C[s] such that b(θ)M0 ⊂ EX(−1)M0.

R e m a r k 1.2.2. We may suppose that the zeros of b(s) do not differ by an integer.

For a microlocalizable EX -module M one sets

grΛ(M) :=
⊕
k

EΛ(k)M0

EΛ(k − 1)M0
,
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where M0 is chosen in the conditions (a), (b) and remark 1.2.2. If M0 is replaced by
anotherM′0 in the same conditions, we obtain a natural isomorphism of graded modules.

Definition 1.2.1′. We shall say that M is regular along Λ if there exists a coherent
EX(0)-submoduleM0 such thatM0 generates M and a nontrivial polynomial b(s) such
that

b(θ)M0 ⊂ EX(−1)EΛ,m+1M0,

where m is the degree of b(s). This notion is different from those in [5], [7] (which imply
in particular that Car(M) ⊂ Λ) but is the same as that introduced in [16].

Locally on Λ we may choose an invertible OΛ-module L such that

L ⊗
OΛ
L ' ΩhΛ ⊗

◦
π−1OX

◦
π−1Ω⊗−1

X ,

where ΩhΛ denotes the sheaf of homogeneous differential forms on Λ of maximal degree.
A remarkable fact is that grΛ(EX) is isomorphic to the sheaf A of homogeneous

differential operators on L (cf. [5], [7]). Consequently, we may identify DhΛ, the sheaf of
homogeneous differential operators on Λ, and the sheaf

L⊗−1 ⊗
Oh
Λ

grΛ(EX) ⊗
Oh
Λ

L,

where OhΛ denotes the sheaf of homogeneous holomorphic functions on Λ.
Let M be a microlocalizable EX -module along Y .

Definition 1.2.3. The microlocalization of M along Λ, µ
Λ

(M), is the DΛ-coherent
module

µ
Λ

(M) = DΛ ⊗
Dh
Λ

(L⊗−1 ⊗
Oh
Λ

grΛ(M)),

where grΛ(M) is defined by choosing a coherent EΛ-submoduleM0 as in Definition 1.2.1.

If we take anotherM′0 in the same condition, we obtain two isomorphic DΛ-modules,
as well as if we choose a different OΛ-invertible module L′ with the same property as L.

R e m a r k 1.2.4. Let Y ⊂ X be a smooth submanifold, Λ =
◦
T ∗YX and M be a

specializable D-module. It is straightforward that EX ⊗π−1DX π
−1M is microlocalizable

along Λ and, choosing L = ΩhΛ|Y one has

µ
Y

(M)|Λ = DΛ ⊗
D[Λ]

(Ω⊗−1
[Λ|Y ] ⊗

◦
π−1OY

◦
π−1 grY (M))

= DΛ ⊗
Dh
Λ

(Ωh ⊗−1
Λ|Y ⊗

Oh
Λ

grΛ(EX) ⊗
π−1OY

◦
π−1 grY (M))

= µ
Λ

(EX ⊗
π−1DX

M).

Let X and X ′ be two complex analytic manifolds. Let us recall the formal tensor
product of a DX -module M and a D′X -module M′ as defined in [15]:

M�M′ = DX×X′ ⊗
p−1
1 DX ⊗C p

−1
2 DX′

(p−1
1 M⊗C p

−1
2 M′),

where p1 : X ×X ′ → X and p2 : X ×X ′ → X ′ are the projections.
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Proposition 1.2.5. Let X, X ′ be two complex analytic manifolds.

(a) Let Y ⊂ X and Y ′ ⊂ X ′ be two smooth submanifolds, M a DX-module specializ-
able (resp. regular) along Y , andM′ specializable (resp. regular) along Y ′. ThenM�M′
is specializable (resp. regular) along Y × Y ′ and there is a natural isomorphism

µ
Y

(M) � µ
Y ′

(M′) ' µ
Y×Y ′(M�M′).

(b) The same statement holds with Y replaced by a homogeneous lagrangian subman-

ifold Λ of
◦
T ∗X, Y ′ by a homogeneous lagrangian submanifold Λ′ in

◦
T ∗X ′, and M (resp.

M′) a left EX-module (resp. a left EX′-module) microlocalizable (resp. regular) along Λ
(resp. along Λ′).

P r o o f. We will only prove (a) since (b) is similar. Let us fix representatives θ, θ′ of
the Euler fields respectively on TYX and TY ′X

′.
Let us consider a system {ui}i∈I (resp. {vj}j∈J) of local generators of M (resp. of

M′). Then M�M′ is generated by the images ui � vj . Let

bui(θ) =
∏
k

(θ − αik)pik

be a b-function for ui and

bu′
j
(θ′) =

∏
k′

(θ′ − βjk′)qjk′

a b-function for u′j . Then an easy calculation entails that

(∗) bij(θ + θ′) =
∏
k,k′

(θ + θ′ − αik − βjk′)pik+qjk′

is a b-function for ui � u′j hence the first assertion of (a) is proved. Now, relation (∗)
entails that V α(M�M′) is equal to∑

`+`′=α

V 0
4(DX×X′) ⊗

p−1
1 V 0

Y
(DX)⊗Cp

−1
2 V 0

Y ′
(DX′ )

(p−1
1 V `(M)⊗

C
p−1

2 V `
′
(M′)),

where we consider the canonical V -filtrations respectively with respect to Y ×Y ′, Y and
Y ′, and IY×Y ′ denotes the defining ideal of Y × Y ′ in X ×X ′.

An easy verification shows that V 0
4(DX×X′) is flat with respect to p−1

1 V 0
Y (DX) ⊗C

p−1
2 V 0

Y ′(DX′).
Hence

νY×Y ′(M�M′) ' νY (M) � νY (M′)
and to finish we only have to remark that the formal Fourier transform is compatible
with formal tensor products of monodromic D-modules.

Corollary 1.2.6. Let M be specializable along Y . Then:

(a) µ
Y

(M) only depends on EX ⊗π−1DX π
−1M |T∗

Y
X ,

(b) suppµ
Y

(M) ⊂ Car(M) ∩ T ∗YX.

P r o o f. (b) is an immediate consequence of remark 1.2.4 as well as (a) when we

restrict to
◦
T ∗YX. Now let p ∈ T ∗Y Y . We will use the dummy variable trick (cf. [5]).
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Let N be
DC

DCt
= DCδ(t),

where t is a coordinate on C. Then one has

µ
Y×{0}(M�N ) ' µ

Y
(M) � µ{0}(N ) ' µ

Y
(M) �OT∗{0}C.

Let Λ = T ∗YX and Λ′ =
◦
T ∗{0}C and j : Λ→ Λ×Λ′ the inclusion q 7→ (q, (0, 1)). One easily

checks the isomorphisms

(∗∗) j−1HomDΛ×Λ′ (DΛ �OΛ′ , µY (M) �OΛ′) ' j−1(CΛ′ � µ
Y

(M)) ' µ
Y

(M)

Let M′ be another specializable D-module along Y , Ω an open subset of T ∗YX con-
taining p, and suppose

EX ⊗
π−1DX

π−1M|Ω ' EX ⊗
π−1DX

π−1M′|Ω.

Let π denote the projection T ∗(X × C)→ X × C. Then

EX×C ⊗
π−1(DX×C)

(M�N )|Ω×Λ′ ' EX×C ⊗
π−1(DX×C)

(M′ �N )|Ω×Λ′

hence

µ
Y×{0}(M�N )|Ω×Λ′ ' µY×{0}(M

′ �N )|Ω×Λ′ ,

µ
Y

(M) �OΛ′ |Ω×Λ′ ' µY (M′) �OΛ′ |Ω×Λ′

which completes the proof by (∗∗).

Let ER
X be the sheaf of microlocal operators on T ∗X and if N is a left EX -module set

NR := ER
X ⊗
EX
N.

The microlocal analogue of Theorem 1.1.2 is the following:

Theorem 1.2.7 [6]. Let M be a regular EX-module along the homogeneous lagrangian
submanifold Λ and L a simple holonomic EX-module supported by Λ. Then there is a
natural isomorphism:

RHomEX (M,LR)|Λ ' RHomDΛ(µ
Λ

(M),OΛ).

1.3. Applications to microcharacteristic varieties. Let M be a coherent EX -module

and Λ a smooth lagrangian homogeneous submanifold of
◦
T ∗X. Let CΛ(M) be the mi-

crocharacteristic variety of M along Λ (i.e. the normal cone of suppM along Λ [9]),
ĈΛ(M) be the formal microcharacteristic variety and C1

Λ(M) the 1-microcharacteristic
variety (see [10] and [17]).

The following inclusions are well known:

ĈΛ(M) ⊂ C1
Λ(M), CΛ(M) ⊂ C1

Λ(M).

When Λ =
◦
T ∗YX and M is of the form EX ⊗π−1DX π−1N , where N is a regular

D-module along Y , one has

ĈΛ(M) = SS(RHomDΛ(µ
Y

(N )|Λ,OΛ) = SS(µY (RHomDX (N ,OX))|Λ)

⊂ CΛ(SS(RHomDX (N ,OX)) = CΛ(M).
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Here SS stands for “microsupport” (cf. [8]). Hence ĈΛ(M) ⊂ CΛ(M) ifM is regular
along Y .

1.4. Application to µhom. Let us consider the category C whose objects are pairs of
coherent DX -modules such thatM�N ∗ is specializable along 4, the diagonal of X×X.
Here

N ∗ = RHomDX (N ,DX)[n]⊗ Ω⊗−1
X ,

with n = dimX. One defines the bifunctor µhom from C to Modc(DT∗X) by µhom(M,N )
= µ4(M�N ∗), where we identify T ∗X and T ∗4(X ×X) by the first projection.

Theorem 1.4.1 [20]. Let (M,N ) be an object of C such that (M � N ∗) is regular
along 4. Then one has a natural isomorphism

RHomEX (EX ⊗π−1DX π
−1M, ER

X ⊗π−1DX π
−1N ) ' RHomDT∗X (µhom(M,N ),OT∗X).

From the results in Section 1, we conclude that for (M,N ) ∈ Obj C,

(i) supp µhom (M,N ) ⊂ CarM× CarN ,
(ii) µhom(M,N ) only depends on EX ⊗π−1DX π

−1M and EX ⊗π−1DX π
−1N .

Example 1.4.2. Let M be a DX -module specializable along

Y = {(t, x) ∈ C1+d : t = 0} ⊂ X = C1+d,

Λ = T ∗YX, and

N = BY |X =
DX

DXt+DXDx1 + . . .+DXDxd

= DXδ(t).

Then (M,N ∗) is an object of C and we will check that

µhom(M,N ∗) ' DT∗X←Λ ⊗DΛ µY (M).

Let u be a local section of M and bu(s) be a b-function for u. Then

bu((t− t′)D′t + (x1 − x′1)Dx1 + . . .+ (xd − x′d)Dxd
is a b-function for δ(t)�u where we consider (t, x1, · · · , xd, t′, x′1, · · · , x′d) as a local coordi-
nate system on X×X. Hence BY |X�M is specializable along4 ⊂ X×X. Furthermore,

BY |X �M' DX×X
DX×Xt+DX×XDx1 + . . .+DX×XDxd

⊗
p−1
2 DX

p−1
2 M

and V α4(BY |X �M) is the image on BY |X �M of∑
k+i=α

V i4

(
DX×X

DX×Xt+DX×XDx1 + . . .+DX×XDxd

)
⊗

p−1
2 V 0

Y
(DX)

p−1
2 V kY (M),

where we consider the canonical V -filtrations with respect to 4 and Y .
At this point we only have to remark that the Fourier transform of

DT4(X×X)

DT4(X×X)t+DT4(X×X)Dx̃1 + . . .+DT4(X×X)Dx̃d
is precisely DT∗X ← Λ where we consider the equations

t̃ = t− t′ = 0, x̃1 = x1 − x′1 = 0, . . . , x̃d = xd − x′d = 0

as the equations of 4 in X×X and identify T ∗X and T ∗4(X×X) by the first projection.
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