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1. Introduction. An implicit differential equation (IDE) is any equation of the form

F (x, y, dy/dx) = 0

where F is some smooth function of 3 variables. The term implicit is used to contrast an

equation of this general form with one we can write as

dy/dx = g(x, y)

where the derivative is given explicitly as a function of the variables x and y. The latter

can be solved (numerically) using the Euler line method for example, and there is generally

a single solution curve through each point of the plane. A more convenient form of the

above explicit equation is

(1) a(x, y)dy + b(x, y)dx = 0.

Geometrically this equation determines a line field, that is a line is assigned to each point

in the plane, with the specified slope, and a solution is a smooth curve with the property

that at each of its points it is tangent to the given line. Of course the generally isolated

points in the plane where the functions a and b both vanish are special, and are referred

to as singular points of the ordinary differential equation (ODE). An implicit differential

equation, on the other hand, will generally determine several lines through a given point

(x, y) in the plane, and hence several solution curves there. It can roughly be thought

of as the superposition of a number of ODE’s and singularities can arise in three ways.

There are those points where two or more of the lines coincide, those where one of the

constituent ODE’s has a singularity, and points where both occur.
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Implicit differential equations occur in a number of branches of mathematics, and in

particular in the differential geometry of surfaces in 3-space.

Example 1.1 (From differential geometry). (a) Let X be smooth surface in Euclidean

3-space. At a hyperbolic point on X there are two directions, called asymptotic directions,

in which the sectional curvature is zero. (These are also the tangents to the two branches

of the double point of the curve of intersection of the surface and its tangent plane.)

At a parabolic point these directions coincide, and there are no asymptotic directions at

elliptic points. The result is a bivalued directional field on the non-elliptic part of the

surface whose integral curves are the so-called asymptotic curves.

Suppose that X is given locally in Monge form (x, y, h(x, y)). The asymptotic direc-

tions at (x, y, h(x, y)) are then the solution curves of the IDE

hyydy2 + 2hxydxdy + hxxdx2 = 0.

(b) Another classical example is provided by the principal directions field on X .

At a non-umbilic point there are two orthogonal directions corresponding to extrema

of the sectional curvature, at an umbilic however all directions are principal. So away

from umbilics the resulting field of directions integrates to mutually orthogonal lines

of curvatures. To understand their structure at an umbilic we need to write down the

corresponding IDE.

If we take the surface in Monge form at the umbilic then h(x, y) = κ
2 (x2+y2)+C(x, y)

where κ is the sectional curvature at the umbilic and the function C is 2-flat. The IDE

determining the principal directions is then of the form

−(∂2C/∂x∂y)dy2 + (∂2C/∂y2 − ∂2C/∂x2)dydx + (∂2C/∂x∂y)dx2 = 0

The determination of the topological structure of the lines of curvatures at umbilics

has a long history; see for example [5], [10]. (See Figure 1)

Fig. 1. Lines of curvatures at an umbilic point

Example 1.2 (General eigenvalue problem [5], [6]). Consider a general 2 by 2 matrix

A =
(

a b
c d

)

. The characteristic polynomial of A is t2 − (a + d)t +(ad− bc). Thus there are

two distinct real eigenvalues if δ = (a− d)2 + 4bc > 0, a real repeated eigenvalue if δ = 0

and complex eigenvalues if δ < 0.

Suppose that we have a smooth map germ φ : R
2, 0 → M2, where M2 is the space

of 2 by 2 matrices. If ∆ ⊂ M2 is given by δ = 0 then φ determines a bivalued field

on the region δ ◦ φ > 0 with boundary φ−1(∆); at a point (x, y) ∈ R
2 we consider the
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translate of the two eigenspaces determined by φ(x, y) and the map φ determines an IDE.

Eliminating λ from A
(

x

y

)

= λ
(

x

y

)

we obtain by2 +(a−d)xy− cx2 = 0 and viewing a, b, c, d

as the four components of φ yields

bdy2 + (a − d)dxdy − cdx2 = 0.

Naturally one can consider the case where we have a smooth map φ with target SM2 the

space of symmetric 2 by 2 matrices. Thus b and c coincide and we obtain a IDE

bdy2 + (a − d)dxdy − bdx2 = 0.

That the sum of the dy2 and dx2 coefficients is zero is equivalent to the fact that the

eigenspaces are orthogonal. Note that in this case we have two distinct directions except

at those points where b = (a − d) = 0. These equations generally determine a collection

of isolated points in the plane.

Example 1.3 (Stretch and compression). Let M and N be two Riemannian manifolds

of dimension 2 and let Φ : M → N be a smooth map. Suppose that Φ is the germ of a

diffeomorphism at x ∈ M . Then dΦx : TxM → TΦ(x)N is an isomorphism. For v ∈ TxM

a unit vector we can consider the length of the image of v under the derivative of Φ,

||dΦx(v)||Φ(x) and seek those v for which this is maximized/minimized. If we choose an

orthonormal basis for TxM and TΦ(x)N and write dΦx =
(

a b

c d

)

with respect to these

bases, we are maximizing/minimizing (a cos θ + b sin θ)2 + (c cos θ + d sin θ)2 with respect

to θ. Differentiating this expression yields

−(a2 + c2) cos θ sin θ + 2(ab + cd)(cos2 θ − sin2 θ) + (b2 + d2) cos θ sin θ = 0.

Therefore

{(b2 + d2) − (a2 + c2)} sin 2θ + 2(ab + cd) cos 2θ = 0.

So we obtain two orthogonal directions in which we have an extremum, given by the IDE

(ab + cd)dx2 + (b2 + d2 − (a2 + c2))dxdy − (ab + cd)dy2 = 0.

Geometrically these are the axes of the ellipse in TΦ(x)N which is the image of the unit

circle in TxM . The coefficients vanish when ab + cd=b2 + d2 − (a2 + c2)=0. This occurs

when c = ±b and a = ∓d, so dΦx is of the form reflexion in a line plus dilation or rotation

plus dilation, as one might expect; in other words when the image of the unit circle is

also a circle. (Note that we only need a conformal structure on M and N .)

We remark that when M is a surface in 3-space, N = S2, and Φ is the Gauss map

then the vectors above are the principal directions of M .

Example 1.4 (Swimmer in the flow of a fluid). This example is taken from [12] (see

[9]). In the plane of the swimmer the flow of water has velocity (x, βy), β > 2, at (x, y).

The swimmer, in standing water, can swim in any direction with unit speed. The question

is where can the swimmer wind up when starting from a given point of the plane. The

inequality x2 + β2y2 > 1 gives the so-called steep domain at each point of which the

direction of possible velocities of the swimmer forms an angle less than 180◦. The sides

of this angle are called the limiting directions at this point. So in the steep domain there

is a bivalued field of limiting directions. The integral curves of this field are called the
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limiting lines and are precisely those of the equation

(xdy − βydx)2(x2 + β2y2 − 1) = (xdx + βydy)2.

From a given point S in the steep domain the boundary of the region which can be

reached from S is given by some subset of the integral curves through S.

The aim of much of the work on IDE’s is to obtain normal forms for the simplest of

their ‘singularities’. As with ODE’s (singularities of vector fields) there are three types of

question one can ask. Firstly one can seek smooth normal forms. These normally involve

moduli (even functional moduli). Then one can seek normal forms up to homeomorphism.

Finally as one moves to non-generic situations one can seek an understanding of the way

in which more complicated singularities break up on perturbation. In each case we

are only concerned with the local theory, i.e. that concerning germs. In this paper

we start by considering two geometrical constructions for lifting an IDE to an ODE

on a suitable associated surface (§2, 3). We then consider the formal reductions of a

certain class of IDE’s, the binary differential equations (BDE’s, see §4), and review the

classification of Davydov of singularities of such systems (§5). Finally we discuss the

formal and topological classification of BDE’s when the so-called discriminant has a

Morse singularity.

2. Disentangling. Singularity theory has proved to be an important tool in the

study of IDE’s, although their study has a long history. The key to many approaches

to this subject is some method of disentangling the IDE’s into a single ODE on a more

complicated space. Given an IDE F (x, y, dy, dx) = 0 one obvious way to get started is to

consider the projective tangent bundle to the plane, which is simply R
2 × RP 1, and the

subset

{(x, y, [p : q]) : F (x, y, p, q) = 0}.

It is often more convenient to choose an affine chart in RP 1 and consider the subset

of (x, y, p) space given by F (x, y, p, 1) = 0. By Sard’s theorem this will generally be a

smooth surface say M . There is a natural projection

π : M → R
2, (x, y, p) 7→ (x, y),

and one lifts the IDE on the target to an ODE on the source. At each point (x, y, p) of

M we choose a direction tangent to M which projects down to a line through (x, y) with

slope p. This can be done quite explicitly: the vector field

ξ = Fp∂/∂x + pFp∂/∂y − (Fx + pFy)∂/∂p

is clearly tangent to M , and projects, at each point (x, y, p) to a vector through (x, y)

with slope p. This lift ξ determines an ODE on M which we can then analyse.

Points of M where the projection π is not a local diffeomorphism are of especial

interest. These are points where we cannot solve F = 0 for p, that is cannot reduce locally

to an ODE. They are also the points where two or more of the directions coincide. This

set of critical points of π is called the criminant and consists of points where the tangent

plane to the surface M is vertical. The projection of the criminant is the discriminant

of the equation. A result of Whitney [14] states that for an open dense set of functions



IMPLICIT DIFFERENTIAL EQUATIONS 27

F the projection π is either a local diffeomorphism, a fold or a cusp map. For the fold

singularity, one can choose local coordinates in M and R
2 for which π has the form

(u, v2). The cusp has normal form (u, v3 + uv).

So at most points the singularities will be fold points, and the set of critical values

locally a smooth curve separating points of the plane where there are two solution curves

from points where there are none. Indeed the condition for a fold is simply F = Fp = 0,

Fpp 6= 0. On this criminant there will also be special points where the lifted field has a

zero. In terms of the lift constructed above these are points satisfying

F = Fp = Fx + pFy = 0.

Note that all zeros of the lift ξ must lie on the criminant.

In all of the examples given above there were at most two directions at each point

of the plane. IDE’s of this form are called binary differential equations, BDE’s, and are

of especial interest. In particular locally at least we shall be dealing with a BDE when

the projection from the surface F = 0 has a fold singularity. Using the Preparation

Theorem [2] we can always write such a BDE in the form

(2) a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0

where a, b, c are smooth functions. Indeed in the case of a fold singularity we may suppose

that a(x, y) is identically 1, but it is useful to consider the more general form in what

follows. The discriminant in case (2) is simply given by the equation b2 − ac = 0. When

the functions a,b,c all vanish at the origin the discriminant becomes singular. This occurs

in generic 1-parameter family of BDEs, but can be a stable feature in special situations,

like that of the principal directions field at an umbilic point on a smooth surface, or the

eigenvalue problem discussed above in the case when φ(0) is the identity. See [5], [10]

and Section 7 below.

3. Legendre transformation. Another method of disentangling IDE’s worthy of

mention is the Legendre transformation. This is an automorphism of (x, y, p)-space given

by setting

X = p, Y = xp − y, P = x

and clearly defines a smooth involution on R
3. Each IDE F (x, y, p) = 0 yields, via this

transform, a new IDE defined by G(X, Y, P ) = F (P, XP − Y, X) = 0. (See [1], p. 19.)

The advantage of this approach is that while the point (x, y, p) may lie on the criminant

of G = 0 the corresponding point of F = 0 may not, that is this new equation may be

solvable for P at the relevant point.

At a fold singularity of the projection π away from singularities of the lifted field,

an integral curve (X(t), Y (t)) of G yields a solution curve of the original equation F =

0 parametrised as (x(t), y(t)) = (Y ′(t), X(t)Y ′(t) − Y (t)). The latter two components

give the gradient and intercept for the tangent line to the curve (X(t), Y (t)), i.e. this

is the dual, [3]. It is not difficult to check that inflexions on the solutio n curves of

G = 0 correspond exactly to points on the criminant F = Fp = 0, and we have ordinary

inflexions precisely when Fpp 6= 0, i.e. we have an ordinary fold point. Since the dual

of an ordinary inflexion is a cusp this shows that integral curves along the discriminant
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generally have cusps. (This is also the result proved by Dara [7], and on page 27 of [1].)

When the projection π has a cusp one can show, using these ideas, that the 1-parameter

family of integral curves near such a point when spread out into three space by using the

parameter as a third coordinate, form a swallowtail and the individual integral curves

are obtained by slicing this swallowtail by a family of generic planes. However, as shown

in [3], it is not possible to exhibit a model, up to smooth changes of coordinates, of the

solution curves at the cusp point. Davydov subsequently showed that this is so even if

we allow topological changes of coordinates, [9]. (There are functional moduli.)

The Legendre transformation was also used by Darboux [8] in his investigation of the

configuration of lines of curvatures at umbilic points. He considered only the initial terms

in the coefficients of the BDE governing these lines (Example 1). The Legendre trans-

formation takes this linear BDE to an ordinary differential equation. One can explicitly

solve this equation and take the duals of the resulting integral curves. Darboux found in

this way the configurations in Figure 1. Of course one needs to know that these equations

are ‘1-determined’ for this to be relevant. (See Section 6 below.)

4. Normal forms for BDEs with smooth discriminant. In this section we shall

attempt to reduce BDE’s to normal form, and start by reviewing the situation for an

ODE. The theory of formal reduction of vector fields to a normal form was developed

by Poincaré. His aim was to transform a non-resonant vector field to its linear part at

a singular point by a formal diffeomorphism. Poincaré’s method consists of annihilating

successively all terms of degree k (k ≥ 2) in the equation. Although this process is not

always convergent it is nevertheless “a powerful device in the study of differential equa-

tions: a few initial terms of the series often give significant information on the behaviour

of solutions, which is sufficient for the construction of the phase portrait” [1], Chapter 5.

The convergence problem is a good deal more subtle (again see [1], chapter 5). A

theorem of Siegel asserts that if the eigenvalues of the linear part of the vector field are

of type (C, µ) (a rather technical condition satisfied by almost all linear ODE’s) then the

process of sucessive annihilation of higher terms converges. As a consequence, the germ

of a singular point of a generic vector field in the plane can be reduced to one of the

normal forms

Saddle ξ1 = x∂/∂x + αy∂/∂y,

Node ξ2 = x∂/∂x + αy∂/∂y,

Focus ξ3 = (x − αy)∂/∂x + (αx + y)∂/∂y,

where α is negative for a saddle, and positive for a node.

When allowing topological changes of coordinates one can eliminate the parameter α

and obtain simple normal forms:

x∂/∂x − 2y∂/∂y,

x∂/∂x + 2y∂/∂y,

(x − y)∂/∂x + (x + y)∂/∂y.

We now consider binary differential equations (2) where a, b, c are smooth functions not

all vanishing (0, 0), and start by considering the effect of a linear change of coordinates
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on such a BDE. Indeed we consider the effect on the constant terms of the coefficients

a, b and c. So set

x = αX + βY

y = γX + δY
so that

dx = αdX + βdY

dy = γdX + δdY

and denoting constant terms of (2) by A, 2B, C respectively, the constant terms of the

new BDE are as follows:

A′ = Aβ2 + 2Bβδ + Cδ2,

B′ = Aγδ + B(αδ + βγ) + Cαβ,

C′ = Aγ2 + 2Bαγ + Cα2.

These new coefficients A′, B′, C′ then can be written
(

β δ
α γ

) (

A B
B C

) (

β α
δ γ

)

=

(

A′ B′

B′ C′

)

.

Now symmetric matrices up to this notion of equivalence have six equivalence classes,

namely
(

1 0
0 1

)

,

(

1 0
0 −1

)

,

(

−1 0
0 −1

)

,

(

1 0
0 0

)

,

(

−1 0
0 0

)

and

(

0 0
0 0

)

.

So we have the following possibilities for the constant parts of the BDE:

dy2 + dx2, dy2 − dx2, dy2, 0

since we can multiply by non-zero constants. We shall largely be considering changes of

coordinates of the form

x = X + p(X, Y ), y = Y + q(X, Y ),

where p, q (resp. r) are homogeneous of degree k ≥ 2 . So

dx = (1 + pX)dX + pY dY, dy = qXdX + (1 + qY )dY.

We are also allowed to multiply our equation by any function which does not vanish at

the origin, and will use those of the form 1 + r(X, Y ) where r is homogeneous of degree

k ≥ 1.We shall simplify the coefficients a, b, c of our BDE inductively, and to do this it is

crucial what form the initial terms take.

The first two cases we shall consider are rather trivial but illustrate the ideas involved.

4.1. The initial form dy2 + dx2. Suppose we have reduced the k-jet of the BDE to

the form

(1 + ak)dy2 + 2bkdxdy + (1 + ck)dx2

where ak, bk, ck are homogeneous of degree k. If p, q are homogeneous of degree k + 1,

and r is homogeneous of degree k, then the k-jet of the transformed BDE is obtained by

multiplying out

(1 + r){(1 + ak)(qXdX + (1 + qY )dY )2

+ 2bk(qXdX + (1 + qY )dY )((1 + pX)dX + pY dY )

+ (1 + ck)((1 + pX)dX + pY dY )2}.
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Note that we only need to replace x and y by X and Y in the expressions ak, bk, ck

since they are of degree ≥ 1, and the new terms would be of degree ≥ k + 1. We obtain

the homogeneous parts of degree k of the coefficient of the new BDE:

Ak = ak + 2pY + r,

Bk = bk + pX + qY ,

Ck = cky + 2qX + r.

If Hk denotes the space of homogeneous polynomials of degree k in the variables x, y we

claim that the linear map

Hk+1 ⊕ Hk+1 ⊕ Hk → Hk ⊕ Hk ⊕ Hk,

(p, q, r) 7→ (2pY + r, pX + qY , 2qX + r),

is surjective. It then follows that we can choose p, q, r so that Ak = Bk = Ck = 0. To

prove surjectivity suppose that (p, q, r) lies in the kernel of this map. Then pX + qY =

pY − qX = 0, and conversely these two conditions imply that we can find an r for which

the linear map is zero.

Write p=
∑k+1

i=0 pix
k+1−iyi and qi=

∑k+1
i=0 qix

k+1−iyi. The two conditions imply that

k+1
∑

i=0

(k + 1 − i)pix
k−iyi +

k+1
∑

i=0

iqix
k+1−iyi−1 = 0,

k+1
∑

i=0

ipix
k+1−iyi−1 +

k+1
∑

i=0

(k + 1 − i)qix
k−iyi = 0.

Equating coefficients we find that

(k + 1 − i)pi + (i + 1)qi+1 = 0, 0 ≤ i ≤ k,

(i + 1)pi+1 − (k + 1 − i)qi = 0, 0 ≤ i ≤ k,

so that

qi+1 =
i − k − 1

i + 1
pi =

i + 2

k − i
pi+2.

It is not difficult to see that these equations have two independent solutions by taking

p0 = 1, p1 = 0 and p0 = 0, p1 = 1. So our linear map has nullity two and hence is

surjective. We can therefore deduce the following.

Proposition 4.1. Suppose that the BDE has constant part dy2 + dx2. Then for any

k ≥ 1 we can change coordinates so that the transformed BDE has k-jet dy2 + dx2.

Similarly we have

Proposition 4.2. Suppose that the BDE has constant part dy2 − dx2. Then for any

k ≥ 1 we can change coordinates so that the transformed BDE has k-jet dy2 − dx2.

We shall now address the question of convergence of this process of successive anni-

hilation of homogeneous terms of degree k ≥ 2. The resulting linear equations can be

rewritten pX +qY = −bk, pY −qX = − 1
2 (ak−ck), r = −ck−2qX . The first two equations

yield a linear map

Lk : Hk+1 ⊕ Hk+1 → Hk+1 ⊕ Hk+1, (p, q) 7→ (pX + qY , pY − qX).
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This is also surjective, in fact if we set p =
∑k+1

i=0 pix
k+1−iyi and q =

∑k+1
i=0 qix

k+1−iyi,

then the restriction of Lk to p0 = p1 = 0 is an isomorphism. In what follows we shall

assume that the change of coordinates satisfies p0 = p1 = 0 at each step.

Proposition 4.3. Suppose the BDE has constant part dy2 + dx2. Then there exists

an analytic change of coordinates transforming the BDE to the constant part dy2 + dx2.

P r o o f. The proof follows that of Siegel’s Theorem, we refer to [1], pp. 212–218, for

the substantial technicalities involved. We claim that the multiplicative type condition on

the eigenvalues ([1], p. 211) can be replaced by the condition

||L̄−1
k || ≤ Ckp

for some positive constant C, a positive integer p and any k ≥ 2. This condition ensures

that all the steps of the proof of Siegel’s Theorem remain valid. Calculations show that

||L̄−1
k || ≤ k4. The process is thus convergent.

Similarly, we have

Proposition 4.4. Suppose the BDE has constant part dy2 − dx2. Then there exists

an analytic change of coordinates transforming the BDE to the constant part dy2 − dx2.

Of course there is no geometrical content to 4.3; in this case there are no integral

curves. For 4.4 we simply note that the linear part of the BDE shows that there are two

transverse integral curves through the origin, and all we have done is find an analytic

diffeomorphism of the plane taking the integral curves of the BDE to the lines y =

±x+constant.

4.2. The initial form dy2. We next consider the linear part of the BDE whose constant

term dy2 is

(1 + a1x + a2y)dy2 + 2(b1x + b2y)dxdy + (c1x + c2y)dx2.

Multiplying by (1+a1x+a2y)−1 we may suppose a1 = a2 = 0. Now applying the change

of coordinates x = αx + βY , y = Y + γY 2 + 2δXY + δY 2 we find that the orbits in the

space of 1-jets have representatives

dy2 + xdx2, dy2 − ydx2, dy2.

(1) The case dy2 + xdx2. We proceed as for case I. Assume that the k-jets of the

coefficients of the BDE are 1 + ak, 2bk, x + ck respectively with ak, bk, ck homogeneous

of degree k. A change of coordinates in the form

x = X + p(X, Y ), y = Y + q(X, Y ),

with p ∈ Hk and q ∈ Hk+1 and multiplication by 1 + r(X, Y ), r ∈ Hk transforms the

k-jet of the coefficients of the BDE to

(1 + ak + r + 2qY )dY 2 + 2(bk + qX + XY )dXdY + (x + ck + p + XpX)dX2.

The process of annihilating terms of degree k produces a linear map

Lk : Hk ⊕ Hk+1 ⊕ Hk → Hk ⊕ Hk ⊕ Hk,

(p, q, r) 7→ (r + 2qY , p + 2XpX , qX + XpY ).
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The linear map Lk is surjective and furthermore L̄k = Lk|qk+1=0 is an isomorphism

(notations as in case I). We shall consider only changes of coordinates in the source that

satisfy qk+1 = 0 at every stage, and obtain

Proposition 4.5. Suppose that the BDE has constant part dy2 +xdx2. Then for any

k ≥ 1 we can change coordinates so that the transformed BDE has k-jet dy2 + xdx2.

The linear map L̄k satisfies ||L̄−1
k || ≤ 3k2. So by the proof of Proposition 4.3 we have:

Proposition 4.6. Suppose the BDE has constant part dy2 + xdx2. Then there exist

an analytic change of coordinates transforming the BDE to the constant part dy2 +xdx2.

The geometrical import of this result is that at a general point of the criminant

we can find a change of coordinates taking the integral curves to the family of cusps

(x, y) = (−t2, 2/3t3 + c). This result with relevant references was mentioned in section 2.

(2) The case dy2−ydx2. This case is harder to deal with. If we proceed as before and

use a preliminary change of coordinates we can reduce the 2-jet to dy2 − (y + λx2)dx2.

If we then regard this as a k-jet and attempt as before to eliminate all homogeneous

monomials at the k-jet level we have problems with the (0, 0, xk) term.

To make progress we need some new tools. We shall be using more general changes

of coordinates, and take an ‘infinitesimal’ approach. We therefore need to compute the

tangent space to the orbit of a BDE (a, b, c) under the ‘action’ of changes of coordinates

in the source and multiplication by non-zero functions in the target. (Note that by taking

jets we obtain the action of a Lie group on a vector space.)

For a path of diffeomorphisms of the form ht = (x+tα(x, y), y) say, the corresponding

tangent vector obtained by differentiating ht.(a, b, c) with respect to t and setting t = 0 is

X(α) = (αax + 2αyb, αbx + αxb + αyc, αcx + 2αxc).

Similarly, from a path (x, y + tβ(x, y)) we obtain

Y (α) = (αay + 2αya, αby + αxa + αyb, αcy + 2αxb).

Multiplication by (1 + tα), differentiating and setting t = 0 gives

Z(α) = (αa, αb, αc).

When working at the level of k-jets we simply need to take the k-jets of these tangent

vectors. In fact we need to consider the action of a unipotent subgroup of the jet group [4].

Clearly for that part of the group corresponding to multiplication this means that the 1-jet

of the factor is 1, so the corresponding tangent vectors in the Lie algebra simply consisit

of elements β in the maximal ideal M. For the changes of coordinates in the source the

subgroup of k-jets of diffeomorphisms with 1-jet the identity is certainly unipotent. This

gives rise to vectors X(α), Y (α) with α ∈ M2. We are also allowed, for example, changes

of coordinates of the form (x + ty, y) which yields

X(y) = (2b + yax, c + ybx, ycx).

The unipotent group of k-jets of this form will be denoted by U (k), and the tangent space

to the resulting orbit of (a, b, c) is denoted by LU (k).(a, b, c). Before we state the required

result we need a definition.
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Definition 4.7. Let (a, b, c) be a BDE. We say that this is formally k-determined if

for any r ≥ k any BDE (A, B, C) with the same k-jet as (a, b, c) is equivalent to a BDE

with the same r-jet as (a, b, c).

Theorem 4.8. The BDE (a, b, c) is formally k-determined if for all r ≥ k the tangent

space LU (r).(a, b, c) contains all vectors of the form (φ1, φ2, φ3) where the φj are of degree

≥ k + 1.

(The proof can be adapted in a straighforward way from those in [4].)

We are considering the case (a, b, c) = (1, 0,−y−λx2), and we now need to check that

the tangent space contains all terms of degree ≥ 3. Note that

X(α) = −(0, αy(y + λx2), 2αx(y + λx2)),

Y (α) = (2αy, αx,−α),

Z(α) = α(1, 0,−y − λx2).

It is enough to show that for each k ≥ 3 all elements of the form (φ1, φ2, φ3), with

the φi homogeneous of degree k, lie in LU (k).(a, b, c). First note that we can obtain all

elements of the form (φ1, 0, 0) from Z(φ1), those of the form (0, φ2, 0) from Y (β) where

∂β/∂x = φ2. Finally by choosing a suitable α we can obtain any term (0, 0, φ3) from X(α)

provided φ3 is divisible by y. So we need to show that (0, 0, xk) is in the “tangent space”

modulo terms of degree k + 1. The vector W (α) = Y (α) − 2Z(αy) will be particularly

useful here since it has a zero in the first component.

For k = 3 we use the following vectors in the 3-jet space:

w1 = X(x2) = −(0, 0, 4xy + 4λx3),

w2 = W (xy + 1/3λx3) = (0, y + λx2, xy + 5/3λx3),

w3 = X(y) = −(0, y + λx2, 0).

We have w2 + w3 = (0, 0, xy + 5/3λx3). Using this vector and w1 we see that (0, 0, x3) is

in the tangent space provided λ 6= 0.

For k > 3, we distinguish two cases depending on whether k is odd or even. The

crucial observation is that if we assign x weight 1, and y weight 2 then the operators X ,

Y and Z preserve weight.

For k = 2l the vectors

wi = X(yix2(l−i)−1), 0 ≤ i ≤ l − 1,

wl+i = W (yix2(l−i)), 0 ≤ i ≤ l,

belong to the vector space of dimension k + 1 generated by monomials of the form φ2e2,

φ3e3 with degree φ2 = k−1 and degree φ3 = k. These vectors then yield a k +1 by k +1

matrix. The determinant of this matrix is a non-zero polynomial of degree l in λ. (One

can explicitly compute the coefficient of λ.) So it has an inverse provided λ is not a root

of this polynomial, and that leads to the elimination of (0, 0, xk).

Similarly for k = 2l + 1 the vectors

wi =X(yix2(l−i)), 0 ≤ i ≤ l,

wl+1+i =W (yix2(l−i)+1), 0 ≤ i ≤ l,
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yield a k+1 by k+1 matrix with determinant a non-identically zero polynomial of degree

l + 1 in λ. So (0, 0, xk) can be eliminated provided λ is not a root of the determinant.

Proposition 4.9. The BDE dy2 − (y + λx2)dx2 is formally 2-determined.

The question of convergence of the above process remains open. In fact this result

(in the smooth case) was established by Davydov in [9], and we next turn to his more

geometric methods.

5. Geometrical approaches. In [9] Davydov completed a smooth classification of

certain types of BDE (those covered by Proposition 4.9) at a fold point, proceeding as

follows.

When the projection map π is a fold there is a well defined involution on the surface of

the equation M , namely that interchanging two points on the surface that project to the

same image. The fixed point set of the involution naturally coincides with the criminant

of the equation.

As before we label the lifted field on M by ξ. The involution is then said to be ξ-good

at a zero of ξ, if the direction field determined by ξ and its image under the involution

are identical only on the fixed set of the involution, and the eigenvectors of the linear

part of ξ and the derivative of the involution are pairwise distinct.

It is clear that the classification of the integral curves of a BDE at a fold point is

equivalent to that of reducing direction fields together with ξ-good involutions on M to

normal forms. Suppose that we have a direction field which is C∞-equivalent to one of

the three forms given at the beginning of Section 4.

Theorem 5.1 [9]. The germs at zero of the direction field ξ and of a ξ-good involution

can, by a C∞-diffeomorphism of the plane, be simultaneously reduced to the germs at

zero of the direction field ξ1 (respectively ξ2, ξ3) (as in Section 4) and the involution θ1

(respectively θ1, θ2), where

θ1(x, y) =((α + 1)x − 2αy, 2x − (α + 1)y)/(α − 1),

θ2(x, y) =(x − 2y/α,−y).

One can eliminate the modulus α in the normal forms if allowing topological changes

of coordinates. Thus,

Fig. 2. Solution curves at a regular singular point
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Theorem 5.2 [9]. The germs at zero of the direction field ξ and of a ξ-good involution

can be simultaneously reduced by a homeomorphism of the plane to the germs at zero

of the direction field ξ1 (respectively ξ2, ξ3) and the involution θ1 (respectively θ1, θ2) for

α = −2 (respectively, α = 2, α = 1). (See Figure 2.)

These three forms are referred to as the well folded node, saddle and focus respectively.

This classification has applications to a number of the examples in the introduction, for

which we refer you to [9]. In particular the configuration of asymptotic lines on the surface

z = y2 + x2y + AX4 + O(5) near the origin is diffeomorphic to a well folded saddle, node

or focus for A < 1/4, 1/4 < A < 25/96, 25/96 < A respectively.

6. BDEs with discriminant of Morse type. In this final section we are concerned

with BDE’s of the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0

where a, b, c are smooth functions all vanishing at (0, 0). As usual this equation defines

a pair of directions at points of the plane (x, y) where b2 − ac > 0. The two directions

coincide on the set ∆ = {(x, y) : b2−ac = 0}, the discriminant of the equation, and there

are no directions at points where this expression is negative. Of course the discriminant is

no longer smooth in this case. We ask instead that the function b2−ac has a singularity of

Morse type at the origin; in other words after a change of co-ordinates it can be reduced

to a sum or difference of squares. We shall see below that this condition is natural as it

is equivalent to the surface

{(x, y, [p, q]) ∈ R
2 × RP 1 : ap2 + 2bpq + cq2 = 0}

associated to the equation being smooth.

Indeed this surface is then a cylinder with the whole centre circle, which we refer to

as the exceptional fibre, over the origin. We take an affine chart of R
2 ×RP 1, by setting

q = 1, and consider locally in R
3 the double cover surface

M = {(x, y, z) : ap2 + 2bp + c = 0}.

We shall denote the function ap2 + 2bp + c by F and write

a = a1x + b1y + O(2),

b = b1x + b2y + O(2),

c = c1x + c2y + O(2).

Proposition 6.1 [6]. (1) The surface M is smooth in a neighbourhood of 0 × RP 1 if

and only if the discriminant function b2 − ac has a Morse singularity.

(2) The natural projection π : M → R
2 given by (x, y, p) 7→ (x, y) is a local diffeomor-

phism away from π−1(∆).

Proposition 6.2 [6]. (1) The vector field

ξ = Fp∂/∂x + pFp∂/∂y − (Fx + pFy)∂/∂p

is a suitable lift on M of the bivalued fields in R
2. (As we have seen before.)
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(2) The zeros of the vector field ξ occur generically on the exceptional fibre 0 × RP 1.

There are in general one or three zeros given by the roots of the cubic

φ(p) = a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p + c1.

The zeros are of type node or saddle.

The exceptional fibre is an integral curve passing through the zeros of ξ. This explains

why there are no focus singularities.

The formal reduction of the BDE is dealt with in [6]. We can reduce in general the

linear part of the BDE to the case where a = ±c = y. (We cannot reduce the linear part

b1x + b2y of the function b.) We then proceed as in the previous section to annihilate all

high order terms in a and c. The matrix Mk, at the k-step of this procedure depends only

on b1, b2 and k. The pair (b1, b2) is called resonant if there exists an integer k ≥ 2 such

that the matrix Mk is singular.

Proposition 6.3 [6]. If the pair (b1, b2) is non-resonant , the BDE (2) can be reduced

by a formal diffeomorphism to

ydy2 + 2(b1x + b2y + b(x, y))dxdy ± ydx2 = 0

with b a formal power series with no constant or linear terms.

Fig. 3. Integral curves of BDE’s of type II, on the Möbius band left and on the plane right
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Note that any BDE of the form (a, b,−a) has its integral curves mutually orthogonal

(the (-) case above. The convergence of the above process is still an open question. We

obtain topological normal forms using an alternative method.

6.1. Topological normal forms. The case where the BDE defines a pair of orthogonal

directions (i.e. a = −c) was treated in [5]. The argument used there is extended in [6]

to deal with the general case. We have started by lifting the bivalued vector field to a

single valued field on a cylinder M , with the centre circle of the cylinder corresponding

to the origin. However we need to work with the bivalued fields in the plane, so we need

to identify pairs of points on the cylinder which correspond to the same point on the

plane. For the case a = −c treated in [5] the identification can be made quite explicit, it

simply sends (x, y, p) to (x, y,−1/p). In general, we show [6] that the involution on M

that interchanges pairs of points corresponding to the same image in the plane, which is

well defined away from the exceptional fibre, and extends smoothly across this fibre. (We

used Riemann’s extension theorem to prove this assertion, so we need to restrict to the

case where a, b, c are analytic.) Consequently we reduce to the classification of certain

bivalued vector fields on the quotient space, a Möbius band M ′.

If the discriminant is an isolated point, that is the function b2−ac has a local maximum

or minimum, then as in [5], the new bivalued field is defined in a neighbourhood of the

whole central line of the Möbius band. In the case where the discriminant is a node the

identification map has, in addition to the central line, two lines of fixed points. So we

need to construct a model of the integral curves along these critical lines. This can be

done using the machinery of singularity theory.

Away from these lines the argument is as in [5] for both cases. Suppose for simplicity

that the lifted field ξ on M has only one zero. Then we can construct a homeomorphism

between a neighbourhood of the zero of the bivalued field on M ′ and one on our model,

and this homeomorphism is then extended to the intervening strips. If ξ has three zeros

we fix up the homeomorphism on a neighbourhood of the zeros to start with and then

extend again on the intervening strips.

We obtain the following result, where we assume that the discriminant is of Morse

type, the cubic φ in Proposition 6.2 has no double roots and the zeros of the field ξ are

normal (i.e. can be reduced to the normal forms in Section 4).

Theorem 6.4 [6]. There is a germ of homeomorphism h : R
2, 0 −→ R

2, 0 taking the

integral curves of the BDE (2) to the integral curves of one of the normal forms:

I. The discriminant is an isolated point (Theorem 0.1, [5]) (see Figure 1):

(a) Lemon ydy2 + 2xdxdy − ydx2 = 0

(b) Star ydy2 − 2xdxdy − ydx2 = 0

(c) Monstar ydy2 + 1
2xdxdy − ydx2 = 0.

II. The discriminant is a crossing of two smooth curves (see Figure 3):

(a) 1 saddle ydy2 + 2xdxdy + ydx2 = 0

(b) 1 node ydy2 − 1
2xdxdy + ydx2 = 0

(c) 3 saddles ydy2 − 4xdxdy + ydx2 = 0
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(d) 2 saddles + 1 node ydy2 + 2(y − x)dxdy + ydx2 = 0

(e) 1 saddle + 2 nodes ydy2 − 4
3xdxdy + ydx2 = 0.

The type is determined by the 1-jet of the functions a, b, c. Moreover this homeomorphism

is a diffeomorphism away from certain singular directions through the origin.

There are a number of applications, for example to principal curves near an umbilic,

asymptotic curves at a flat umbilic, asymptotic curves on a cross-cap, asymptotic curves

on a surface in 4-space. See for example [6], [13].
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