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1. Introduction. Studying the invariants of isolated hypersurface germs f : (Cn+2, 0)
→ (C, 0), it is very useful to consider composed germs f = p ◦ φ, where φ : (Cn+2, 0)→
(C2, 0) has a manageable discriminant space (for example: φ is an isolated complete
intersection singularity, for short ICIS), and p : (C2, 0) → (C, 0) is a curve singularity.
This gives not only a very large class of examples with powerful testing role (for example,
the germs of “generalized Sebastiani-Thom type”, where φ(x, y) = (g(x), h(y)) [9, 10],
or the topological series fk = pk ◦ φ → f∞ = p∞ ◦ φ, when φ is an ICIS and pk → p∞
is a topological series [10, 17] of plane singularities), but also clarifies the most general
case. To see this, complete the initial, arbitrary germ f to an ICIS (f, g) = φ and take
p(c, d) = c. If g is a generic linear form then we recover the classical method of the polar
curves, which is an effective inductive procedure.

In the composed case, the leading principle is the following: for a given invariant i,
find a category C(i) of supplementary structures (“of system of coefficients”) defined
either on (C2, 0) or on the local complement of an analytic germ ∆ ⊂ (C2, 0) (which, in
general, is the discriminant space of φ) with the following properties:

a) φ defines a structure S(φ) in C(i), and
b) the invariant i(f) can be computed in terms of the germ p and the structure S(φ).

In this way, one expects that the computation of the invariant i is reduced to lower
dimensional topology (link topology of p−1(0) ∪∆) with some representations, or to the
study of the resolution graph of some plane singularities together with some special sheaf
structures.
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For example, if i(f) = ζ(f) = the zeta function of the germ f , then C(ζ) is the
category of constructible complexes, and for any complex S there is a natural definition of
i(f, S) = ζ(f, S) which satisfies the above requirements, namely, for S(φ) = Rφ∗C(Cn+2,0)

one has ζ(f) = ζ(p, S(φ)) [10].
If i(f) = Spp(f) = the spectral pairs of the germ f (for the definition, see [18]), then

C(Spp) is the category of polarized mixed Hodge modules (for more details, see [15]).
The main object of this note is the category C(σ) associated with the signature σ(f)

of the Milnor fiber of f .

Problem 1. Find the category C(i) for other invariants.
For example, find a category C(i) such that any ICIS φ (as above) gives an element

S(φ) ∈ C(i). Moreover , define a “generalized Dynkin diagram” D(p, S) for any (isolated)
curve singularity p and S ∈ C(i) in such a way that D(p, S(φ)) is the Dynkin diagram of
f = p ◦ φ (provided that f has isolated singularity).

2. Variation structures. Definitions and examples. The needed category C(i) in
the case of the (equivariant) signature is the category of the variation structures [11, 13,
14]. Notice that, in general, C(i) is not uniquely determined by the properties a-b given
in §1. Actually, the category of variation structures contains much additional topological
information. Its definition follows.

If U is a finite dimensional vector space then U∗ is its dual HomC(U,C). There is
a natural isomorphism θ : U → U∗∗ given by θ(u)(ϕ) = ϕ(u). We denote the complex
conjugation by ·. If ϕ ∈ HomC(U,U ′), then ϕ ∈ HomC(U,U ′) is defined by ϕ(x) := ϕ(x),
and the dual ϕ∗ : U ′∗ → U∗ of ϕ by ϕ∗(ψ) = ψ ◦ ϕ.

A C-linear endomorphism b : U → U∗ with b∗ ◦ θ = εb(ε = ±1) is called an
ε-hermitian form on U . The automorphisms h : U → U with h

∗ ◦ b ◦ h = b form the
orthogonal group Aut(U ; b).

Definition. An ε-hermitian isometric structure of the group G is a system I =
(U ; b, ρ) such that b is an ε-hermitian non-degenerate form, and ρ : G → Aut(U ; b) is a
group endomorphism.

Any representation ρ : G → Aut(U) defines a left action of G on Hom(U∗, U) by
g ∗ ϕ = ρ(g) ◦ ϕ. Then, by definition, a twisted-homeomorphism is a map V : G →
Hom(U∗, U) with V (gh) = ρ(g) ◦ V (h) + V (g).

Definition. An ε-hermitian variation structure of the group G is a system V =
(U ; b, ρ, V ) such that b is an ε-hermitian (maybe degenerate) form, ρ is a representation
of G in Aut(U ; b), V is a twisted-homeomorphism, with respect to the left action of G
via ρ, and they satisfy the following compatibility conditions for any g ∈ G:

(i) θ−1 ◦ V (g)
∗

= −εV (g) ◦ ρ(g)
∗
, and

(ii) V (g) ◦ b = ρ(g)− I.

Definition. Two ε-hermitian variation structures (U ; b, ρ, V ) and (U ′; b′, ρ′, V ′) are
isomorphic (denoted by ≈) if there exists a (C-linear) isomorphism ϕ : U → U ′ such that
b = ϕ̄∗b′ϕ, ρ(g) = ϕ−1ρ(g)′ϕ, and V (g) = ϕ−1V ′(g)(ϕ̄∗)−1 for any g ∈ G.
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HVε(G) denotes the semigroup of isomorphism classes. (The semigroup structure is
provided by the natural direct sum.)

Any base {ei}i of U defines a dual base {e∗i }i of U∗ by e∗j (ei) = 1 if j = i and
= 0 otherwise. In all our matrix notations we will use the matrix representation in a
convenient base and in its dual base.

Examples. 1. If b is non-degenerate then V (g) = (ρ(g) − I)b−1, i.e. the semigroup
of non-degenerate variation structures is equivalent to the semigroup of ε-hermitian iso-
metric structures. We call these systems non-degenerate variation systems.

In general, the variation structures substitute the isometric structures in those cases
when, from geometric considerations, the corresponding hermitian form is degenerate.

2. If V (g) is an isomorphism, then ρ(g) = −εV (g)(θ−1 ◦ V (g)∗)−1, and b = −V (g)−1−
ε(θ−1 ◦ V (g)∗)−1. In particular, if G = Z, then the subsemigroup HV sε (Z) = {V ⊂
HVε(Z) : V (1) an isomorphism} is equivalent to the semigroup of the sesquilinear forms
over C. We call these systems simple.

3. If Vi = (Ui; bi, ρi, Vi) (i = 1, 2) are variation structures, then V1 ⊕ V2 = (U1 ⊕
U2; b1 ⊕ b2, ρ1 ⊕ ρ2, V1 ⊕ V2) is their direct sum in this category. The direct sum of n
copies of V is denoted by nV. If V = (U ; b, ρ, V ) then −V denotes (U ;−b, ρ,−V ) with the
same ε. The conjugate of V = (U ; b, ρ, V ) is V = (U ; b, ρ, V ).

4. An important element in HV sε (Z), provided by an isolated hypersurface singularity
f , is V(f) generated by (U ; b, ρ(1), V (1)) = (middle homology of the Milnor fiber of f ;
intersection form, monodromy, variation map). Notice that the variation map V (1) of f
can be identified with the inverse of the Seifert form (up to sign) [4], in particular, V (1)
is an isomorphism (cf. §4).

5. Consider an isolated complete intersection singularity f : (Cn+2, 0) → (C2, 0)
(n > 0). Let φ : (X , 0)→ (S, 0) be a “good representative” of f with discriminant locus
∆ ⊂ S. Consider a base-point ∗ ∈ S−∆. The relative homology of the fiber F = φ−1(∗)
is concentrated in U = Hn(F,C). Identify its dual U∗ with Hn(F, ∂F ; C), and extend the
real intersection form to a hermitian form b : U → U∗. The monodromy representation
ρ : G = π1(S −∆, ∗)→Aut(U ; b), and the variation map V : G→Hom(U∗, U) constitute
a system V(φ) = (U ; b, ρ, V ) which is our basic example of (−1)n-hermitian variation
structure.

In the following examples G = Z and V (1) = V, ρ(1) = h and we will use the notation
ε = (−1)n. We denote by Jk the k × k Jordan block

1 1

1
. . .
. . . 1

1

 .

6. Consider λ ∈ C∗ − S1. The ε-HV V2k(λ) is defined by

V2k
λ =

(
C2k;

(
0 I
εI 0

)
,

(
λJk 0

0 1
λ̄
J∗,−1
k

)
,

(
0 ε(λJk − I)

1
λ̄
J∗,−1
k − I 0

))
.

Note that V2k
λ ≈ V2k

1/λ̄
≈ −V2k

λ .
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7. We are looking for a non-degenerate k× k matrix b such that b̄∗ = εb and J∗k bJk =
b. It is immediate that bij = 0 if i + j ≤ k and bk+1−i,i = (−1)i+1bk,1. By [8] the
isomorphism class of (b, Jk) is determined by bk,1. Since b is non-degenerate, bk,1 6= 0.
Since for any t ∈ (0,∞) one has (U ; b, Jk, V ) ≈ (U ; t2b, Jk, t−2V ), we can assume that
bk,1 = ω ∈ S1. By the hermitian property of b one has ω = ε(−1)k−1ω. This equation
has two solutions. In conclusion, there are exactly two non-degenerate forms b = bk± (up
to isomorphism) with b

∗
= εb and J∗k bJk = b. Their representatives are chosen so that

(bk±)k,1 = ±i−n2−k+1 (this strange choice has a Hodge-theoretical motivation, cf. §4).
Note that bk,1 = B(ek, e1) = B(ek, (Jk − I)k−1ek) = B(ek, (log Jk)k−1ek). (Here {el}l
denotes the standard base of Ck.)

Let λ ∈ S1. If h = λJk, then by the above argument, there are exactly two non-
degenerate ε-HVS’s (up to isomorphism):

Vkλ(±1) = (Ck; bk±, λJk, (λJk − I)(bk±)−1)

where ω = (bk±)k,1 = ±i−n2−k+1.
If λ 6= 1, then any HVS with h = λJk is non-degenerate. If h = Jk, then there are

some degenerate structures, too.
8. Suppose that k ≥ 2 and h = Jk but b is degenerate. Since ker b ⊂ ker(h− I), and

dim ker(Jk − I) = 1, one has ker b = ker(h − I). Similarly as above, any degenerated
form b with ker b = ker(Jk − I) and b

∗
= εb and h

∗
bh = b has the properties bi,j = 0 if

i+j ≤ k+1, and bk+2−i,i = (−1)ibk,2. Therefore bk,2 6= 0 and in the isomorphism class of
the structure there is a representative with bk,2 = ω ∈ S1. By symmetry, ω = (−1)n+kω

and b is completely determined by bk,2 modulo an isomorphism. So, we have exactly two
solutions b̃k± (up to isomorphism) with (b̃k±)k,2 = ±(−1)n+1i−(n+1)2−k+1. Moreover, V is
completely determined by h and b (up to isomorphism). Therefore there are exactly two
degenerate structures with h = Jk and k ≥ 2:

Ṽk1 (±1) = (Ck; b̃k±, Jk, Ṽ
k
±),

where (b̃k±)k,2 = Bk±(ek, (log Jk)k−2ek) = ±(−1)n+1i−(n+1)2−k+1 = ±i−n2−k+2. In fact,

b = b̃k± =
(

0 0
0 bk−1

±

)
.

Note that the structure can also be recognized from ((Ṽ k±)−1)k,1 = ±i−n2−k+2.
By computation we get that Ṽ k± is an isomorphism. In particular, the variation struc-

tures Vkλ(±1), where λ ∈ S1−{1} resp. k≥1, and Ṽk1 (±1) where k ≥ 2, are simple. They
are determined by the corresponding isometric structures (Ck; b, h).

9. Suppose that U = C and h = 1C. Then there are exactly five HVS’s (up to
isomorphism):

V1
1 (±1) = (C;±i−n

2
, 1C, 0), Ṽ1

1 (±1) = (C; 0, 1C,±in
2−1),

and

T = (C; 0, 1C, 0).

Note that in Ṽ1
1 (±1) the variation structure is not determined by its underlying isometric

structure.
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10. In order to unify the notations of the simple structures, we introduce Wk
λ(±1) =

Vkλ(±1) if λ ∈ S1 − {1}, and = Ṽk1 (±1) if λ = 1. Set s = 1 if λ = 1 and = 0 otherwise.
Then Wk

λ(±1) =Wk
λ

(±(−1)−n
2−k+1+s).

11. Consider the following matrices:

b =

 0 0 1
0 0 0
1 0 1

 , h =

 1 0 0
0 1 1
0 0 1

 , V =

 0 −1 0
1 0 0
0 0 0

 .

They define an indecomposable (+1)-HVS, but the automorphism h has two Jordan
blocks. Note that even the associated (degenerate) isometric structure (b, h) is indecom-
posable.

If Vi (i = 1, 2) are simple εi-hermitian variation structures, then the tensor product
V1 ⊗ V2 defines a new simple ε-structure (for any ε). The corresponding automorphisms
are related by ⊗h = −εε1ε2h1 ⊗ h2. If we want to emphasize the sign of ε in the tensor
product, we write V1 ⊗ε V2. For the ring structure of HV sε (Z), see [12].

Problem 2. Find the tensor product of two variation structures.

3. Classification. In this section G = Z and the system V = (U ; b, h, V ) denotes
h = ρ(1) and V = V (1).

First we recall (the complex version of) Milnor’s result [8] (see also [16]):

Any isometric structure (U ; b, h) is a sum of indecomposable ones. The indecomposable
structures are the corresponding isometric structures of Vkλ(±1), where λ ∈ S1, and of
V2k
λ , where λ ∈ C∗ − S1.

On the other hand, the following holds:

Theorem ([11]). (a) An ε-hermitian variation structure is uniquely expressible as a
direct sum V ′ ⊕ V ′′ so that h′ − I is an isomorphism (in particular , V ′ is simple and
non-degenerate), and h′′ − I is nilpotent.

(b) A simple ε-hermitian variation structure is uniquely expressible as a sum of inde-
composable ones up to order of summands and isomorphism. The indecomposable struc-
tures are

Wk
λ(±1) where k ≥ 1, λ ∈ S1, and

V2k
λ where k ≥ 1, 0 < |λ| < 1.

R e m a r k. Part (b) of this theorem gives a classification of comlex sesquilinear forms
(with respect to complex conjugation) over finite dimensional C-vector spaces.

If two real non-degenerate bilinear forms are isomorphic as sesquilinear forms over C,
then they are isomorphic as real bilinear forms. In particular, the study of real simple
variation structures is equivalent to the study of the complex ones.

Problem 3. Classify the variation structures for G = Z (cf. Example 11).
Classify a class of variation structures which includes the structures given by hyper-

surface singularities with one-dimensional singular locus.
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Problem 4a. Any hypersurface isolated singularity gives a simple variation structure
(of G = Z) (cf. Example 3). Find natural restrictions provided by the singularity theory ,
and classify variation structures with the corresponding restrictions.

4b. Let φ be an ICIS with two-dimensional base space (as in the introduction). Let
(U,E) → (B,∆) be an embedded resolution of its discriminant locus. Let ∆0 be one of
the irreducible components of ∆, ∆̃0 its strict transform, and finally P = ∆̃0∩E. Let UP
be a small neighbourhood of the point P in U . The variation structure V(φ) restricted to
the subgroup Z2 = π1(UP \E) gives a variation structure of the group G = Z2. Now , find
a natural restriction which is provided by this geometric situation and classify variation
structures of the group G with this restriction.

4. Variation structures and isolated hypersurface singularities. Consider an
isolated hypersurface singularity f : (Cn+1, 0)→ (C, 0). We recall the definitions of the
main invariants.

For ε sufficiently small and 0 < δ � ε define S1
δ = {w : ‖w| = δ} ⊂ C and

E := f−1(S1
δ ) ∩ {z : |z| ≤ ε} ⊂ Cn+1. Then the induced map f : (E, ∂E) → S1

δ is
a locally trivial fibration with fiber (F, ∂F ), such that f |∂E is trivial. The (Milnor) fiber
F is homotopically equivalent to a bouquet

∨
Sn, therefore its reduced (real) homology

(cohomology) is concentrated in UR = H̃n(F,R) (U∗R = H̃n(F,R)). The characteristic
map of the above fibration at (co)homological level defines the algebraic monodromies
hR : UR → UR and TR = h∗,−1

R : U∗R → U∗R. The natural, real intersection form is
denoted by bR : UR → U∗R. Fixing a trivialization of f |∂E one defines a variation map
Var : U∗R → UR.

These invariants satisfy the relations: Var ◦bR =hR−I, h∗R◦bR◦hR =bR, b∗R◦θ=εbR,
and Var∗ = −εVar ◦h∗R, where ε = (−1)n.

In particular, the complex maps b = bR ⊗ 1C, h = hR ⊗ 1C, and V = Var⊗1C define
a (−1)n-HVS on U = UR ⊗C. It is denoted by V(f). (Notice that here b is a hermitian
form rather than a bilinear form.)

Recall that V is an isomorphism (cf. Example 4), therefore our variation structure is
simple. The real Seifert formL can be defined as follows. If 〈,〉 denotes the pairing between
Hn(F, ∂F,R) and Hn(F,R), then for a, b ∈ Hn(F,R) one has L(a, b) := 〈Var−1(a), b〉.
By our notation, 〈, 〉 identifies Hn(F, ∂F,R) with U∗, therefore Var can be identified with
the inverse of the Seifert form (cf. [4] or [1, p. 41]).

Consider the Jordan decompositions T = TsTu and the generalized eigenspaces U∗λ =
ker(Ts − λI). Set log Tu = N =

⊕
Nλ. Let s = 0 if λ 6= 1, and = 1 if λ = 1.

The space U∗λ carries a mixed Hodge structure with weight filtration centered at n+s.
For r ≥ 0, the space

Pr,λ = ker(Nr+1
λ : GrWn+s+r U

∗
λ → GrWn+s−r−2 U

∗
λ)

carries an induced Hodge structure of weight n+ s+ r:

Pr,λ =
⊕

a+b=n+s+r

P a,bλ .

By the monodromy therem a+ b = n+ s+ r ≤ 2n.
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The discrete invariants of the Hodge and the weight filtration are collected in the
Hodge numbers: hp,qλ = dim GrpF GrWp+q U

∗
λ , or equivalently, in the dimensions of the

primitive spaces pa,bλ = dimP a,bλ (r = a + b − n − s ≥ 0). Since Nλ is a morphism of
Hodge structures of type (−1,−1), one has

pa,bλ = ha,bλ − h
a+1,b+1
λ (r = a+ b− n− s ≥ 0), and

ha,bλ =
∑
l≥0

pa+l,b+l
λ (a+ b ≥ n+ s).

The connection between the topological invariant V(f) and the Hodge theoretical
invariants pa,bλ (f) is given in the following

Theorem ([11]).

V(f) =
⊕
λ

⊕
2n≥a+b≥n+s

pa,bλ (f)Wr+1
λ ((−1)b)

where s = 0 if λ 6= 1, s = 1 if λ = 1 and r = a+ b− n− s ≥ 0. In particular , the Hodge
numbers determine the real Seifert form.

This result is similar to the Hodge signature theorem in the case of smooth projective
varieties. In that classical case, the signature is given by the collapsed Z2 (“even-odd”)
Hodge decomposition, where the collapse is induced by the polarization. In our case, the
real Seifert form of an isolated singularity is equivalent to the collapsed mixed Hodge
structure associated with the singularity.

Example. Let f : Cn+1→C be a quasi-homogeneous polynomial of type (w0, . . . , wn)
with isolated singularity at the origin. Let {zα : α ∈ I ⊂ Nn+1} be a set of monomials
in C[z] whose residue classes form a basis for the Milnor algebra C[[z]]/(∂f). For α ∈ I
let l(α) =

∑n
i=0(αi + 1)wi. Then

V(f) =
⊕
α∈I
W1

exp(2πil(α))((−1)[l(α)]),

where [·] denotes the integral part.

Problem 5. In the context of Problem 4b there is a natural limit mixed Hodge struc-
ture with the action of Z2 (via the semisimple part of the monodromy representation).
Extend the above Theorem to this case.

To end this section we discuss some properties of variation structures which are sat-
isfied by the Seifert form of the isolated singularities.

Let #V be the number of V-components in V(f).
There are several obstructions to the decomposition of V(f). The first is the stability

of V(f) with respect to the complex conjugation:

#Wr+1
λ (±1) =

∑
(−1)b=±1

pa,bλ =
∑

(−1)a=±(−1)n+r+s

pb,a
λ

= #Wr+1

λ
(±(−1)n+r+s)

(where a+ b− n− s = r).



252 A. NÉMETHI

Now, since a ≤ n and b ≤ n, V(f) determines the numbers pa,bλ where (a, b) =
(n, n), (n, n− 1), (n− 1, n) and (n− 1, n− 1) (with a+ b ≥ n+ s.) For these pairs,

pa,bλ = #Wa+b−n−s+1
λ ((−1)b).

In particular, for n = 1, the system of Hodge numbers is completely determined by V(f).
For n = 2, only {pa,b1 }a,b; p

2,2
λ ; p2,1

λ ; p1,2
λ ; p1,1

λ and the sum p0,2
λ + p2,0

λ = #V1
λ(+1) are

determined by V(f).
The above relation gives:

Proposition ([11]). The structures Wn+1−s
λ ((−1)n+1) do not appear in the decom-

position of V(f) for any isolated singularity f : (Cn+1, 0)→ (C, 0).

This obstruction is nontrivial even for n = 1: V2
λ(+1), λ 6= 1 and Ṽ1

1 (+1) cannot be
components of an algebraic Seifert form. Both cases (n = 1; s = 0 and s = 1) were
proved by Neumann [16] using the splice geometry of curve singularities.

Another property which is satisfied by simple variation structures provided by isolated
hypersurface singularities is the following [5]:

Proposition. If f : (Cn+1, 0) → (C, 0) is an isolated singularity such that its mon-
odromy h has a Jordan block of size n+ 1 (necessarily for an eigenvalue 6= 1), then h has
a Jordan block of size n for the eigenvalue = 1.

Problem 6. For a fixed n, find the complete set of simple variation structures (G = Z)
which are given by isolated hypersurface singularities.

5. The Witt group of variation structures ([14])

Definition. A hermitian variation structure is hyperbolic if there exists a kernel
K ⊂ U , i.e. a subset K such that

(a) dimK = 1
2 dimU,

(b) K ⊂ K⊥ = {x : B(x, y) = 0 for any y ∈ K},
(c) For any g ∈ G one has ρ(g)(K) ⊂ K and V (g)(K∗) ⊂ K where K∗ = {ϕ ∈ U∗ :

ϕ(K) = 0}.

Examples. 1. If b is non-degenerate then V is hyperbolic if and only if the isometric
structure (U ; b, ρ) is hyperbolic (i.e. there exists a ρ-invariant K with K = K⊥).

2. Consider −V=(U ;−b, ρ,−V ). Then V ⊕ (−V) is hyperbolic with kernel K=∆U=
{(x, x)| x ∈ U}.

In particular, the semigroup WVε(G) = (HVε(G)/{hyperbolic structures},⊕) is ac-
tually a group. It is called the Witt group of the variation structures of G.

For any χ ∈ Hom(Zk,C∗), we define the generalized eigenspace Uχ = {x ∈ U :
(ρ(g) − χ(g))Nx = 0 for some N and any g ∈ G}. Ĝ = Hom(Zk, S1) denotes the group
of characters.

Theorem. Let G = Zk. Then:

(a) There is a direct sum decomposition
(U ; b, ρ, V ) = (U ′; b′, ρ′, V ′)⊕

⊕
χ∈Ĝ

(Uχ; bχ, ρχ, Vχ),
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where U ′ = ⊕χ 6∈ĜUχ. Moreover , (U ′; b′, ρ′, V ′) is hyperbolic.

(b) (U ; b, ρ, V ) is hyperbolic if and only if (Uχ; bχ, ρχ, Vχ) is hyperbolic for any χ ∈ Ĝ,
in particular

WVε(G) =
⊕
χ∈Ĝ

WVε(G)χ.

Here WVε(G)χ is the Witt group of variation structures V with ρ(g)−χ(g)I nilpotent for
any g ∈ G.

(c)

WVε(Zk)χ =
{

Z if χ ∈ Ĝ− {1},
Z2 if χ = 1.

The generators are (C;±i(1−ε)/2, χ,±(χ− 1)i(ε−1)/2) if χ 6= 1, and (C; 0, 1, 0) if χ = 1.

Problem 7. Extend the above classification to more general groups. (It would be ideal
to have a classification theorem for the local fundamental groups of complements of curve
singularities p−1(0) ⊂ (C2, 0).)

6. Wall’s cocycle associated with a variation structure ([14]). Let V =
(U ; b, ρ, V ) be an ε-hermitian variation structure of G. Then b defines an ε-hermitian
non-degenerate form Φ on U∗ ⊕ U by

Φ((ϕ, u), (ψ, v)) = εψ(u) + ϕ(v) + b(u)(v).

Any g ∈ G defines two maps sr(g), sl(g) : U∗ ⊕ U → U∗ ⊕ U defined by

sl(g)(ϕ, u) = (ϕ, ρ(g)u− ρ(g)V (g−1)ϕ),

sr(g)(ϕ, u) = (ρ(g)
∗,−1

ϕ,−V (g)ϕ+ u).

Then sl resp. sr are representations of the group G in the orthogonal group O(Φ) of Φ.
For any g ∈ G, define Kg = {(ϕ, u) ∈ U∗ ⊕ U : V (g)ϕ = u}. It is not hard to verify

that Kg is a Φ-kernel, i.e. Kg = K⊥g (the latter one is the Φ-orthogonal). Moreover, for
any g and h,

sl(h)Kg = Khg and sr(h)Kg = Kgh−1 .

Any three kernels Ki (i = 1, 2, 3) in U∗ ⊕ U define an (−ε)-hermitian form [19]. We
recall this construction. Set K1 ∩ (K2 +K3) = {x1 ∈ K1 : there exist x2 ∈ K2, x3 ∈ K3

with x1 + x2 + x3 = 0}. On this space define the sesquilinear form Ψ(x1, x
′
1) = Φ(x1, x

′
2)

(where x′1 + x′2 + x′3 = 0 and x′2 ∈ K2, x
′
3 ∈ K3). Then Ψ is (−ε)-hermitian with kernel

Ker = K1 ∩K2 + K1 ∩K3. We define σ(V;K1,K2,K3) as the signature of the induced
nondegenerate form on K1,2,3 = K1∩(K2+K3)/Ker multiplied by ε (if there is no danger
of confusion then it is denoted by σ(K1,K2,K3)). If Ki = Kj for some pair (i, j), then
K1,2,3 = 0, hence σ(K1,K2,K3) = 0.

Lemma. (a) σ(Kτ(1),Kτ(2),Kτ(3)) = sign(τ)σ(K1,K2,K3) for any permutation τ ∈
S3 (here sign(τ) ∈ {±1} is the sign of τ).

(b) σ(K1,K2,K3) − σ(K0,K2,K3) + σ(K0,K1,K3) − σ(K0,K1,K2) = 0 for any
kernels Ki (i = 1, 2, 3, 4).
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(c) If o ∈ O(Φ) is an orthogonal automorphism, then σ(o(K1), o(K2), o(K3)) =
σ(K1,K2,K3). In particular ,

σ(Khg1 ,Khg2 ,Khg3) = σ(Kg1h,Kg2h,Kg3h) = σ(Kg1 ,Kg2 ,Kg3).

Therefore σ(V;K1,K2,K3) defines a homogeneous cocycle of the group G in Z (Z
is considered with the trivial G-action). The corresponding non-homogeneous cocycle is
σ(g, h) = σ(Ke,Kg,Kgh) (e is the neutral element of G). This cocycle is a coboundary
if there exists a function f : G → Z such that σ(g, h) = f(g) + f(h) − f(gh); i.e. if
σ(Ke,Kg,Kh) = δ(f) = f(g) + f(g−1h)− f(h). The semigroup morphism

c1 : HVε(G)→ H2(G,Z), c1(V) = σ(V; ·, ·, ·)

is not trivial in general. For example, if G is the mapping class group Γg and

V =
(

C2g;
(

0 I
−I 0

)
, ρ, (ρ− I)b−1

)
where ρ is given by Γg → Sp(2g,C) (“passing to homology”), then c1(V) is the generator
of H2(G,Z) = Z [6].

R e m a r k. Set B = {z ∈ C2 : |z| ≤ 2; |z − 1| ≥ 1/2; |z + 1| ≥ 1/2}. Let (E, ∂E)
p→B

be a C∞ fiber bundle of a pair of spaces with fiber (F, ∂F ) such that the induced bundle
∂F → ∂E

p→B is trivial. Assume that dimF = 4k − 2 (k ≥ 1). The fibration p defines a
variation structure V(p) of the free group (with two generators) G = π1(B) in a natural
way (similarly to Example 5). By Wall’s theorem [19] (see also [7]) the signature σ(E) is
σ(Ke,Kg,Kh), where g and h are two natural generators of G. Therefore c1, in general,
describes the signature of a fiber bundle with 2-dimensional base space. Actually, it can
be interpreted as a first Chern class [7].

Problem 8. Find the higher dimensional analogues of c1 in H2q(G,Z).

7. The eta-invariant of the variation structures ([14, 13])

Definition. Let V be an ε-hermitian variation structure. Then for any g ∈ G, ρ(g)
determines a spectral decomposition

(U ; b, ρ(g), V (g)) =
⊕
χ

(Uχ; bχ, ρ(g)χ, V (g)χ),

where Uχ is the generalized χ-eigenspace of ρ(g). The eta-invariant ηV(g) is defined by
the sum

∑
χ ηV(g)χ, where

ηV(g)χ =
{

(1− 2c) sign bχ if χ = e2πic, 0 < c < 1,
− sign[(1 + ρ(g)−1

χ )V (g)χ] if χ = 1.

Our η-invariant can be interpreted as the η-invariant of the signature operator of the
circle twisted with the signature bundle of a hermitian flat bundle, in the sense of [3].

a) Wall’s cocycle via eta invariant

Theorem. If G is a (finitely generated) abelian group then

σ(V;Ke,Kg,Kh) = −η(g)− η(g−1h) + η(h).

In particular δ(η) = −σ.
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Problem 9. Characterize variation structures V (or groups G) with the property
δ(η) = −σ.

b) The signature via Wall’s cocycle and eta-invariant. Let f = p ◦ φ as in the intro-
duction. Let V(φ) be the variation structure associated with φ as in Example 5.

Our goal is to compute σ(f). For simplicity, assume that p is reduced and irreducible.
Consider the splice diagram Γ(p,∆) of the multilink determined by p−1(0) ∪ ∆ ⊂

(C2, 0), where the multiplicity of p−1(0) is 1, and the other multiplicities are zero. Each
node of the diagram represents a Seifert component Σ(a1, . . . , ar;S1, . . . , Sr) with multi-
link (Σ;S1, . . . , Sr;m1, . . . ,mr). Notice that the multiplicities mi can be determined from
Γ(p,∆) by the corresponding splicing conditions. Let Mi resp. Li be the topological stan-
dard meridian resp. longitude of the link component Si. Consider the following numbers:
qi = a1a2 · · · ar/ai, m′i = −

∑
j 6=imjqj/ai, and ni = gcd(mi,m

′
i) > 0, i = 1, . . . , r.

Recall that the quotient Σ/S1 = B of Σ by its free S1-action is an r-punctured
2-sphere.

Theorem ([13]). The signature σ(f) is a sum σ(f) =
∑
nodes σ(Σ, ρ) over the nodes

of Γ(p,∆), where:

(a) For a Seifert component Σ, the term σ(Σ, ρ) is the signature of a hermitian flat
bundle over the Milnor fiber of Σ (or alternatively , over the r-punctured 2-sphere). Ac-
tually , it can be computed as a sum of Wall’s cocycles associated with V(φ).

(b) If the variation structure above Σ is abelian, then

σ(Σ, ρ) =
r∑
i=1

ni · η(Lmi/ni

i M
m′i/ni

i ).

.

c) An application: Yomdin’s series

Theorem. Let f1 : (Cn+1, 0)→ (C, 0) be a germ with one-dimensional critical locus.
Choose a germ f2 in such a way that the pair φ = (f1, f2) is an ICIS. Then

σ(f1 + fq2 )− σ(f1) = −qη(M)− η(L) + η(L+ qM),

where q � 0 and L resp. M are the standard topological longitude and meridian associated
with the series {f1 + fq2 }q�0.

(The definition of L and M is the following: let ∆0 be the image φ(Sing f−1(0)) of
the singular locus of f−1(0). Consider the set UP \ E as in Problem 4. Its fundamental
group is generated by a small circle (in UP \ E) around E, called L, and a small circle
around ∆̃0, called M .)

An interesting consequence is the quasi-periodicity property (which generalizes the
corresponding result for the suspension case, conjectured by Brieskorn, Durfee and Zagier
and proved by Neumann), namely, the function q → σ(f1+fq2 ) is a sum of a linear function
and some periodic functions.

We can consider here an even more particular case: the suspension case.
Let f : (Cn, 0) → (C, 0) be an isolated singularity. Consider f1 : (Cn+1, 0) → (C, 0)

defined by f1(z, zn+1) = f(z). Set f2 = zn+1 and φ = (f1, f2) as above. The singular
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locus of the ICIS φ is Σ = {z = 0}, and the discriminant locus ∆ contains only one
irreducible component ∆ = ∆0, which is smooth. In particular, G = Z and L = 0. By
the above theorem,

σ(f + zqn+1) = ηV(f)(q)− q · ηV(f)(1),

where ηV(f)(q) is the eta-invariant of the variation structure V(f) (cf. Example 4) and
q ∈ Z = G.

Problem 10. Characterize composed germs f = p◦φ such that σ(f) can be computed
only in terms of ηV(φ) and p.

d) The eta-invariant and Hodge invariants. Let s(λ) = 0 if λ 6= 1 and s(λ) = 1 if
λ = 1. Denote the dimensions of the primitive spaces of the mixed Hodge structure of
the germ f by pp,qλ (f) (where r = p+ q − n− s(λ) ≥ 0) (cf. §4). Consider the invariant
Σppλ,±(f) =

∑
(−1)qpp,qλ , where the sum is over the pairs (p, q) so that r = p+q−n−s(λ)

satisfies (−1)r = ±1. (Recall that (r + 1) measures the sizes of the Jordan blocks of the
monodromy operator.)

Theorem.

η(V(f); a) = −
∑
λa=1
λ6=1

Σppλ,−(f)−
∑
λa 6=1
or λ=1

(1− 2{ca})Σppλ,+(f).

Problem 11. Compute the eta-invariant of the variation structure described in prob-
lem 4b in terms of the natural limit mixed Hodge structure (cf. problem 5).
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