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Abstract. We introduce the notion of system of meromorphic microdifferential equations.
We use it to prove a desingularization theorem for systems of microdifferential equations.

1. Introduction. Let X be a complex manifold. Let EX be the sheaf of microdiffer-
ential operators on T ∗X. Let Y be an hypersurface of X. Let j : T ∗(X \ Y )→T ∗X be
the open inclusion. Let E ′X be the sheaf of sections P of j∗j−1EX such that, given a local
generator f of IY , fkP ∈ EX , for k large enough. The restriction to the zero section of E ′X
equals the ring DX [Y ] of differential operators on X, meromorphic along Y . Nevertheless,
the sheaf E ′X is not a ring. Actually, if Y equals {x = 0} then

∂−1
x x−1 =

∑
k≥1

k!x−k∂−kx .

The ring EX is deeply related with the geometry of T ∗X. In order to localize EX along a
hypersurface of T ∗X, this hypersurface should be “special”.

Let Y be a normal crossings divisor of X. Let π : T ∗〈X/Y 〉 → X be the fiber bundle
with sheaf of sections the locally free OX -module Ω1

X 〈Y 〉 of logarithmic differential forms.
We will built in T ∗〈X/Y 〉 a sheaf EX [Y ] such that EX [Y ] equals EX outside π−1(Y ) and
the restriction of EX [Y ] to the zero section equals the ring DX [Y ]. The sheaf EX [Y ] is
a microlocalization of the sheaf DX [Y ] in the same sense as the sheaf EX is a microlo-
calization of the sheaf DX . We call a coherent EX [Y ]-module a system of meromorphic
microdifferential equations. We call the EX [Y ]-module EX [Y ]⊗DX [Y ] N the microlocaliza-
tion of a DX [Y ]-module N . The sheaf EX [Y ] is introduced in section 3. In section 2 we
have summarized without proofs the relevant material on logarithmic contact manifolds
(see [N1] and [N2]). In section 5 we use the blow ups introduced in section 4 to prove
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a desingularization theorem for holonomic systems of microdifferential equations in two
variables. This result will be used elsewhere to study the local structure of such systems.

2. Logarithmic contact manifolds. Let X be a complex manifold. We will denote
by OX the sheaf of holomorphic functions on X. Given a subvariety Y of X, we will
denote by IY the ideal of OX of holomorphic functions that vanish on Y . We say that Y
is a normal crossings divisor of X if for each y0 ∈ Y there is an open neighbourhood U

of y0 and a system of local coordinates (x1, . . . , xn) on U , centered at y0, such that

(1) Y ∩ U = {x1 . . . xν = 0}.

If condition (1) holds, we will say that the system of local coordinates (x1, . . . , xn) is
adapted to the normal crossings divisor Y .

We will denote by Ω∗X the complex of sheaves of differential forms with holomorphic
coefficients. A differential form α of degree 1 with meromorphic coeficients is said to be
a logarithmic differential form with poles along Y if IY α ⊂ Ω1

X , IY dα ⊂ Ω2
X . We will

denote by Ω1
X 〈Y 〉 the OX -module of logarithmic differential forms with poles along Y .

We define ΩpX 〈Y 〉 = ∧pΩ1
X 〈Y 〉. Under the assumption (1),

(2) Ω1
X 〈Y 〉|U =

ν∑
i=1

OU
dxi
xi

+
n∑

i=ν+1

OUdxi.

If ω =
∑ν
i=1 aidxi/xi +

∑n
i=ν+1 aidxi is a section of Ω1

X 〈Y 〉 on U , we define the
Poincaré residue of ω along {xi = 0} as the restriction to {xi = 0} of ai. This definition
does not depend on the choice of the system of local coordinates (see [D]).

Definition 1. Let X be a complex manifold of dimension 2n − 1 and Y a normal
crossings divisor of X. We say that a logarithmic differential form ω of degree 1 is a
logarithmic contact form with poles along Y if ω(dω)n−1 is a local generator of Ω2n−1

X 〈Y 〉.
We say that an invertible sub-OX -module L of Ω1

X 〈Y 〉 is a logarithmic contact structure
with poles along Y if L is locally generated by logaritmic contact forms with poles along
Y . A logarithmic contact manifold is a pair (X,L) where X is a complex manifold and L
is a logarithmic contact structure on X.

Let (X1,L1), (X2,L2) be two logarithmic contact manifolds. Let ϕ : X1 → X2 be a
holomorphic map. We say that ϕ is a contact transformation if for any local generator ω
of L2 the logarithmic differential form ϕ∗ω is a local generator of L1. We say that ϕ is a
contact isomorphism if ϕ is an invertible contact transformation.

When Y is the empty set we get the usual definitions of contact manifold and contact
transformation. We remark that in the category of logarithmic contact manifolds a contact
transformation is not always a local homeomorphism (see Proposition 4.3.1(i)).

It follows from (2) that Ω1
X 〈Y 〉 is a locally free OX -module of rank dimX. We will

denote by πY : T ∗〈X/Y 〉 → X a vector bundle on X with sheaf of sections isomorphic to
Ω1
X 〈Y 〉. This vector bundle is unique up to isomorphism. Let T ∗X denote the cotangent

bundle of X. Its sheaf of local sections equals Ω1
X . Since Ω1

X 〈Y 〉|X\Y = Ω1
X\Y , the vector

bundles T ∗〈X/Y 〉 and T ∗X are isomorphic on X \ Y . We call T ∗〈X/Y 〉 the logarithmic
cotangent bundle of X with poles along Y .
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It is well known that there is a canonical 1-form θ on T ∗X. We can define in a similar
way a canonical logarithmic differential form on T ∗〈X/Y 〉, with poles along π−1

Y (Y ), θY ,
such that θY |π−1(X\Y ) = θ|π−1(X\Y ). Given a system of local coordinates (x1, . . . , xn) on
an open subset U ofX, adapted to the divisor Y , a canonical system of local coordinates on
π−1
Y (U), adapted to the divisor Y , is the system of local coordinates (x1, . . . , xn, ξ1, . . . , ξn)

on π−1
Y (U) such that

(3) θY |π−1(U) =
ν∑
i=1

ξi
dxi
xi

+
n∑

i=ν+1

ξidxi.

We can easily deduce from (3) that (dθY )n generates Ω2n
T∗〈X/Y 〉〈π

−1(Y )〉. Because of that
we say that dθY is a logarithmic symplectic form with poles along Y .

We call a pair (X,σ) a logarithmic symplectic manifold if X is a complex manifold
and σ is a logarithmic symplectic form with poles along some normal crossings divisor
Y . We call Y the set of poles of X.

We will denote by πY : P∗〈X/Y 〉→X the projective bundle associated to the vec-
tor bundle T ∗〈X/Y 〉. We call the projective bundle P∗〈X/Y 〉 the projective logarithmic
cotangent bundle of X with poles along Y . We will denote by γ the canonical map from
T ∗〈X/Y 〉 \X onto P∗〈X/Y 〉.

The projective bundle P∗〈X/Y 〉 is our first example of a logarithmic contact manifold
(see Remark 4.1).

Definition 2. Let (X,L) be a logarithmic contact manifold with poles along a normal
crossings divisor Y . Let Y0 be a smooth irreducible component of Y . We say that a point
y0 belongs to the residual submanifold of X along Y0 if the residue of ω along Y0 vanishes
at y0, for any local section ω of L defined in a neighbourhood of y0. The residual set of
(X,L) is the union of the residual submanifolds of X. If the divisor Y is smooth, then
the residual submanifold of X is the residual submanifold of X along Y . We define in a
similar way the residual set of a logarithmic symplectic manifold.

Theorem 1. Let (X,L) be a contact manifold of dimension 2n− 1 with poles along a
normal crossings divisor Y . Given y0 ∈ X, let ν be the number of irreducible components
of Y at y0. Then ν ≤ n. Moreover ,

(i) If y0 belongs to the residual set of X, then there is an open subset U of X and
a system of local coordinates (x1, . . . , xn, p1, . . . , pn−1) on U , centered at y0, such that
Y ∩ U = {x1 · · ·xν = 0} and

dxn −
ν∑
i=1

pi
dxi
xi
−

n−1∑
i=ν+1

pidxi

is a local generator of L.
(ii) If y0 does not belong to the residual set of X, then there is an open subset U of

X and a system of local coordinates (x1, . . . , xn, p1, . . . , pn−1) on U , centered at y0, such
that Y ∩ U = {x1 . . . xν−1xn = 0} and

dxn
xn
−
ν−1∑
i=1

pi
dxi
xi
−
n−1∑
i=ν

pidxi

is a local generator of L.
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It follows from theorem 1 that the residual submanifold of X along Y0 is a submanifold
of Y0. Moreover, this theorem shows that a contact manifold is locally isomorphic to
an open set of a projective logarithmic cotangent bundle. This theorem contains as a
particular case the classical Darboux Theorem for contact manifolds.

Definition 3. We say that a submanifold Γ of a logarithmic contact manifold (X,L)
is Legendrian if the dimension of Γ equals 1

2 (dimX − 1) and the restriction to Γ of a
section ω of L vanishes for any ω. We say that a subvariety Γ of X is Legendrian if its
non-singular part is Legendrian.

Let X be a logarithmic contact manifold with poles along a normal crossings divisor
Y . Let Γ be a subvariety of X of dimension 1

2 (dimX−1). We say that Γ is a Legendrian
variety if Γ ∩ (X \ Y ) is a Legendrian subvariety of X \ Y and Γ is the closure in X of
Γ ∩ (X \ Y ).

Definition 4. Let M be a complex manifold and C a closed submanifold of X. We
define the conormal bundle T ∗CM of X along C by the exact sequence

0→ T ∗CM → C ×M T ∗M → T ∗C → 0,

where the morphism C ×M T ∗M → T ∗C is induced by the inclusion map C ↪→M . If C
is a subvariety of M we define the conormal bundle T ∗CM of M along C as the closure
in T ∗M of T ∗Creg

(M \ Csing). The projective conormal bundle of M along C is the image
P∗CM of T ∗CM \M by the canonical projection γ : T ∗M \M → P∗M .

Let N be a normal crossings divisor of M and C a subvariety of M that is the closure
in M of a closed subvariety of M \N . The logarithmic conormal bundle of M along C,
with poles along N , is the closure in P∗〈M/N〉 of the conormal bundle of N \ (N ∩ C)
along C \ (N ∩ C). We will denote it by P∗C〈M/N〉.

Proposition 2. Let M be a complex manifold of dimension 2 and N a normal cross-
ings divisor of M . Let Γ be an irreducible Legendrian subvariety of P∗〈M/N〉. Then Γ
equals the logarithmic conormal bundle P∗π(Γ)〈M/N〉 of M along π(Γ), with poles along N .

Let (X,L) be a logarithmic contact manifold with poles along a normal crossings divi-
sor Y . Let Γ be a Legendrian submanifold of (X,L). We say thatY intersects transversally
the set of poles of X at p0 if Y is smooth at p0 and Tp0Y +Tp0Γ = Tp0X. We say that Γ
intersects transversally the set of poles of X if Γ intersects Y transversally at p0 for all
p0 ∈ X ∩ Γ.

Theorem 3. Let (X,L) be a logarithmic contact manifold of dimension 3 with poles
along a normal crossings divisor Y . Let Γ be a Legendrian curve of (X,L). Let p0 be a
point of Y ∩ Γ.

(i) If Y is smooth at p0, then p0 belongs to the residual submanifold of X.
(ii) If p0 belongs to the singular set of Y , then p0 does not belong to the residual set

of X.
(iii) If Γ is smooth and Γ and Λ are transversal at a point p0, then there is an open

subset U of X and a system of local coordinates (x, y, p) on U , centered at p0, such that
dy − pdx/x is a generator of L|U and Γ ∩ U = {y = p = 0}.
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Let X be a complex manifold. A group action α : C∗ ×X → X is called a free group
action of C∗ on X if for each x ∈ X the isotropy subgroup {t ∈ C∗ : α(t, x) = x} equals
{1}. A manifold X with a free group action α of C∗ is called a conic manifold. We
associate to each free group action α of C∗ on X a vector field ρ, the Euler vector field
of α. Given λ ∈ C, put OX (λ) = {f ∈ OX : ρf = λf}. A section f of OX (λ) is called
a homogeneous function of degree λ. Given two conic complex manifolds (X1, α1) and
(X2, α2), a holomorphic map ϕ : X1 → X2 is called homogeneous if it commutes with the
actions α1, α2.

Definition 5. Let X be a complex manifold of dimension 2n and Y a normal crossings
divisor of X. We say that σ ∈ Ω2

X 〈Y 〉 is a logarithmic symplectic form if σ is locally exact
and σn is a generator of the invertible OX -module Ω2n

X 〈Y 〉. If X is a conic manifold, then
we say that a logarithmic symplectic form σ is a homogeneous logarithmic symplectic
form if α∗tσ = tσ, for any t ∈ C∗. Here αt equals α(t, ∗).

IfX is a [conic] manifold and σ is a [homogeneous] logarithmic symplectic form, we call
the pair (X,σ) a [homogeneous] logarithmic symplectic manifold. If (X1, σ1), (X2, σ2) are
[homogeneous] logarithmic symplectic manifolds, then a [homogeneous] holomorphic map
ϕ : X1 → X2 is called a morphism of [homogeneous ] logarithmic symplectic manifolds if
ϕ∗σ2 = σ1.

We notice that if the normal crossings divisor Y equals the empty set, then we get the
usual definition of [homogeneous] symplectic manifold. We remark that a morphism of
logarithmic symplectic manifolds is not necessarily a local homeomorphism, as it happens
in the category of symplectic manifolds.

If (X,σ) is a homogeneous symplectic manifold with poles along Y and ρ is its Euler
vector field, then the interior product θ = i(ρ)σ is a logarithmic differential form with
poles along Y . Moreover, dθ equals σ. We call θ the canonical 1-form of the homogeneous
logarithmic symplectic manifold (X,σ).

Definition 6. Given a complex manifold X, we say that a C-bilinear morphism
{?, ?} : OX × OX → OX is a Poisson bracket if {f, g} = −{g, f}, {fg, h} = f{g, h} +
g{f, h} and {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0, for all local sections f, g, h of OX .
We call a complex manifold X endowed with a Poisson bracket a Poisson manifold.

An analytical subset V of X is called involutive if {IV , IV } ⊂ IV .
If (X1, {?, ?}1), (X2, {?, ?}2) are Poisson manifolds and ϕ : X1 → X2 is a holomorphic

map such that {ϕ∗f, ϕ∗g}1 = ϕ∗{f, g}2, for any holomorphic functions f , g defined in an
open set of X2, we call ϕ a morphism of Poisson manifolds.

If V is an involutive subvariety of X2 and ϕ : X1 → X2 is a morphism of Poisson
manifolds then ϕ−1(V ) is an involutive subvariety of X1.

R e m a r k 1. A logarithmic symplectic manifold has a canonical structure of Poisson
manifold. Given α ∈ Ω1

X 〈Y 〉, let H(α) denote the only vector field u ∈ ΘX 〈Y 〉 such that
〈u, α〉 = σ(u,H(α)). The bilinear form (f, g) 7→ 〈dg,H(df)〉 is a Poisson bracket on OX .
If (x, ξ) is a system of local coordinates on an open set U of X such that σ|U equals the
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differential of (3) then {f, g} equals
ν∑
i=1

xi

(
∂f

∂ξi

∂g

∂xi
− ∂f

∂xi

∂g

∂ξi

)
+

n∑
i=ν+1

(
∂f

∂ξi

∂g

∂xi
− ∂f

∂xi

∂g

∂ξi

)
.

In particular

{ξi, xj} =
{
δijxj if 1 ≤ j ≤ ν,
δij if ν + 1 ≤ j ≤ n.

R e m a r k 2. Given a homogeneous logarithmic symplectic manifold X, we endow
the manifold X of the orbits of its C∗-action with a logarithmic contact structure (see
Remark 4.1). Let γ = γX denote the canonical map X→X. A morphism of homogeneous
logarithmic symplectic manifolds ϕ : X → Y induces a contact transformation ϕ : X→ Y
such that γY ϕ = ϕγX . The functor X 7→ X is an equivalence of categories between the
category of homogeneous logarithmic symplectic manifolds and the category of contact
manifolds.

Given a logarithmic contact manifold X and a subvariety V of X, we say that V is
involutive if γ−1

X (V ) is an involutive subvariety of X̂.

3. Systems of meromorphic microdifferential equations. Given a fiber bundle
τ : E → X, we will denote by O[E] the subsheaf of OE of sections wich are polynomial
in the fibers of τ .

Let X be a complex manifold and Y a normal crossings divisor of X. We will denote
by DX 〈Y 〉 the sub-OX -algebra of HomCX (OX ,OX) generated by ΘX 〈Y 〉. We call the
elements of DX 〈Y 〉 differential operators on X tangent to Y . Let j : X \ Y ↪→ X be the
open inclusion. Let πY : T ∗〈X/Y 〉 → X be the projective cotangent bundle. A section
P of j∗j−1DX is called a meromorphic differential operator if there is a holomorphic
function f that vanishes at most in Y such that fP ∈ DX . If Y equals the empty set
then the sheaves DX 〈Y 〉 and DX [Y ] equal the sheaf DX of germs of differential operators
on X.

Definition 1. Let U be an open set of X and let (x1, . . . , xn) be a system of local
coordinates adapted to the normal crossings divisor Y . Let (x, ξ′) be the associated system
of canonical coordinates on π−1

Y (U) ⊂ T ∗〈X/Y 〉. Given a section P of DX 〈Y 〉, we define
the total symbol of P as the element (Pj) of O[T∗〈X/Y 〉]

e−〈x,ξ
′〉νPe〈x,ξ

′〉ν ,

where 〈x, ξ′〉ν =
∑ν
i=1 ξ

′
i log xi+

∑n
i=ν+1 xiξ

′
i and each Pj is a homogeneous polynomial of

degree j relative to the action of C∗ on the fibers of T ∗〈X/Y 〉 and coefficients in π−1
Y OX .

Let δxi denote xi∂xi , if 1 ≤ i ≤ ν, and ∂xi , if ν + 1 ≤ i ≤ n.
The following proposition tells us how to calculate the total symbol of the sum and

product of two differential operators tangent to Y .
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Proposition 1. Given two sections P , Q of DX 〈Y 〉, (P +Q)l = Pl +Ql,

(1) (PQ)l =
∑

l=j+k−|α|
α∈Nn

1
α!

(∂αξ Pj)(δ
α
xQk).

If P 6= 0 then the principal symbol of P relative to Y is the homogeneous part σY (P ) of
highest degree of the total symbol relative to Y and to some system of local coordinates.

Let Xn be a copy of Cn with coordinates (x1, . . . , xn). Put Y = {x1 = 0}. Let
θ =

∑n
i=1 ξidxi be the canonical 1-form of T ∗X. Let θ′ = ξ′1dx1/x1 +

∑n
i=2 ξ

′
idxi be the

canonical 1-form of T ∗〈X/Y 〉. The following equalities hold:

σ(x1∂x1) = x1ξ1, σY (x1∂x1) = ξ′1, σ(∂x1) = ξ1.

Definition 2. Let n be a positive integer. Let ν be a nonnegative integer smaller or
equal then n. Let Xn be a copy of Cn with coordinates (x1, . . . , xn). Let Yν be the normal
crossings divisor {x1 · · ·xν = 0} of Xn. Let U be an open set of T ∗〈Xn/Yν〉. Let m be
an integer. Let E(x1,...,xn,ν)(m)(U) be the complex vector space of formal series

∑
j≤m Pj ,

where Pj is a section of OT∗〈Xn/Yν〉(j) on U , such that for any compact set K contained
in U there is a real number C such that supK |P−j | ≤ Cjj!, for each j ≥ 0.

Given P , Q ∈ E(x1,...,xn,ν)(m)(U), we define their product by (2). The ring E(x1,...,xn,ν)

is endowed in this way with a structure of filtered C-algebra.

Given a complex manifold X and a normal crossings divisor Y of X, we can associate
in this way a canonical sheaf E〈X/Y 〉 on T ∗〈X/Y 〉 that equals EX on T ∗(X \ Y ). We call
this sheaf the sheaf of logarithmic microdifferential operators on X with poles along Y

(see [N1]).
Given a section P of E〈X/Y 〉, we can consider a total symbol (Pj) ∈ E(x1,...,xn,ν)

representing P as the “power expansion” of P relative to the system of local coordinates
(x1, . . . , xn). From now on we will identify the sheaves E(x1,...,xn,ν) and E〈Xn/Yν〉.

The ring EX has no nontrivial two-sided ideals. This is not the case with E〈X/Y 〉.
The ring E〈X/Y 〉 is a π−1

Y DX 〈Y 〉-module. In particular, we have a canonical imersion
π−1
Y IY ↪→ E〈X/Y 〉. The two-sided ideal generated by π−1IY is proper. We will denote it

by IY . We notice that, if f is a local generator of IY ,

fE〈X/Y 〉 = E〈X/Y 〉f = IY .

Definition 3. Let j : T ∗(X \ Y ) ↪→ T ∗〈X/Y 〉 be the open inclusion. Given P ∈
j∗j
−1E〈X/Y 〉, we will say that P is a meromorphic microdifferential operator if, given a

local generator f of IY ,

fnP ∈ E〈X/Y 〉, for n� 0.

We will denote the sheaf of meromorphic microdifferential operators by EX [Y ].

The sheaf EX [Y ] is a sheaf of rings. Given P , Q ∈ EX [Y ], there are m,n ≥ 0 such
that fmP, fnQ ∈ E〈X/Y 〉. Since fn(fmP ) = P ′fn, for some P ′ ∈ E〈X/Y 〉, fm+n(PQ) =
P ′(fnQ) ∈ E〈X/Y 〉.

Theorem 4. (i) The sheaves E〈X/Y 〉 and EX [Y ] are (left and right) noetherian Rings
with zariskian fibers.
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(ii) The following equalities hold :

E〈X/Y 〉|π−1
Y

(X\Y ) = EX [Y ]|π−1
Y

(X\Y ) = EX |π−1
Y

(X\Y )

(iii) There are canonical flat imersions

π−1
Y DX 〈Y 〉 ↪→ E〈X/Y 〉, π−1

Y DX [Y ] ↪→ EX [Y ].

Moreover , E〈X/Y 〉|X = DX 〈Y 〉, EX [Y ]|X = DX [Y ].
(iv) If the principal symbol of P ∈ E〈X/Y 〉,p does not vanish at p, then P is invertible.

P r o o f. The results on E〈X/Y 〉 were proved in [N1]. The results on EX [Y ] are straight-
forward consequences.

Since the sheaf EX [Y ] is locally constant along the fibers of γ, we can identify it with
its direct image into P∗〈X/Y 〉.

Definition 4. Let X be a logarithmic contact manifold. A logarithmic quantization
of X [meromorphic quantization of X] is a sheaf of filtered C-algebras E on X such that
for all p0 ∈ X there are a complex manifold M , a normal crossings divisor N of M , an
injective contact transformation ϕ from an open neighbourhood U of p0 onto an open set
V of P∗〈M/N〉 and an isomorphism of filtered C-algebras

Φ : ϕ∗(E|U )→ E〈M/N〉|V [Φ : ϕ∗(E|U )→ EM [N ]|V ]

such that σ(Φ(P )) = σ(P ) ◦ ϕ, for all sections P of ϕ∗(EU ).
A quantized logarithmic contact manifold [quantized meromorphic contact manifold]

is a pair (X, E), where X is a contact manifold and E is a logarithmic quantization
[meromorphic quantization] of X.

Let (X1, E1), (X2, E2) be two quantized logarithmic contact manifolds [quantized
meromorphic contact manifolds]. Let ϕ : X2 → X1 be an injective contact transforma-
tion. We say that an isomorphism of filtered C-algebras Φ : ϕ∗E2 → E1 is a quantization
of ϕ if σ(Φ(P )) = σ(P ) ◦ ϕ, for all sections P of ϕ∗E2.

A quantized contact transformation from (X1, E1) into (X2, E2) is a pair (ϕ,Φ), where
ϕ is a contact transformation and Φ : ϕ∗E2 → E1 is a quantization of ϕ.

Proposition 5. Let (X, E) be a quantized meromorphic contact manifold with poles
along a normal crossings divisor Y . LetM be a coherent E-module. The support ofM is
the closure in X of its intersection with X \ Y . Hence the support of M is an involutive
subvariety of X.

P r o o f. Let u be a section of M with support contained in Y . Then locally there is
a local generator f of IY such that fnu = 0, for n large enough. Hence u = 0.

Definition 5. Let M be a coherent DX [Y ]-module. We say that M is a holonomic
DX [Y ]-module if M|X\Y is a holonomic DX\Y -module. The characteristic variety of the
DX [Y ]-module M is the closure in T ∗〈X/Y 〉 of Char(M|X\Y ). We will denote the char-
acteristic variety of the DX [Y ]-module M by CharY (M).

Let (X, E) be a quantized meromorphic contact manifold. A system of meromorphic
microdifferential equations of (X, E) is a coherent E-module. A holonomic system of mero-
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morphic microdifferential equations is a coherent E-module whose support is a Legendrian
variety.

Notice that the support of the EX [Y ]-module EX [Y ]⊗DX [Y ]M equals the characteristic
variety of the DX [Y ]-module M.

4. Blow up of a [meromorphic] system of microdifferential equations. We
will study in this section three types of blow ups that will be needed in the next section
in order to win the desingularization game.

Let U , V be two open sets of a complex manifold X. Two differential forms α, β
defined respectively in U and V are said to be equivalent if there is a nowhere vanishing
holomorphic function ϕ defined on U ∩V such that α|U∩V = ϕβ|U∩V . To give a logarith-
mic contact structure on X with poles along Y is equivalent to giving an open covering
(Ui) of X and for each i a logarithmic contact form ωi on Ui, with poles along Ui ∩ Y ,
such that ωi and ωj are equivalent, for all pairs i, j.

Definition 1. An affine logarithmic contact manifold of dimension 2n+ 1 is a triple

(1) (E, (a1, . . . , an+1, b1, . . . , bn+1), ω)

where E is a complex vector space of dimension 2n + 1, a1, . . . , an, b1, . . . , bn+1 are
holomorphic functions on E, ω is a meromorphic differential form on E and there is an
integer ν such that

ω =
ν∑
i=1

bi
dai
ai

+
n∑

i=ν+1

bidai.

We will denote (1) by [ω]. If ν = 0, then we call (1) an affine contact manifold.

R e m a r k 1. Let us denote by γ the canonical map from T ∗〈X/Y 〉\X onto P∗〈X/Y 〉.
Suppose for instance that X equals C2 and Y equals {x1 = 0}. In this case, θ equals
ξ1dx1/x1 + ξ2dx2. The open sets Ui = γ({ξi 6= 0}), i = 1, 2, cover P∗〈X/Y 〉. Put p=
−ξ1/ξ2, q = −ξ2/ξ1. The differential forms 1

ξi
θ, i = 1, 2, define on P∗〈X/Y 〉 differential

forms ωi, i = 1, 2, where

ω1 = dx2 − p
dx1

x1
and ω2 =

dx1

x1
− qdx2.

Since ω1|U1∩U2 = p1ω2|U1∩U2 , these logarithmic contact forms define on P∗〈X/Y 〉 a
structure of logarithmic contact manifold. We have thus shown that P∗〈X/Y 〉 is the
obvious patching of the affine logarithmic contact manifolds[

dx2 − p
dx1

x1

]
and

[
dx1 − q

dx2

x2

]
We can show in a similar way that if Y equals {xy = 0}, then P∗〈M/N〉 equals the
obvious patching of the affine logarithmic contact manifolds[

dx2

x2
− pdx1

x1

]
and

[
dx1

x1
− q dx2

x2

]
,

patched by p = 1
q . Moreover, P∗M is the patching of the affine contact manifolds

[dx2 − pdx1] and [dx1 − qdx2].
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Let M be a complex manifold of dimension n and N a normal crossings divisor of M .
Let x0 be a point of N . Let σ : M̃ → M be the blow up of M along x0. Let E be the
exceptional divisor of σ. Put Nσ = σ−1(N). The morphism σ−1DM [N ]→ D

M̃
[Nσ ] is flat.

Let N be a holonomic DM [N ]-module. The blow up of M along x0 is the D
M̃

[Nσ ]-
module Ñ = D

M̃
[Nσ]⊗DM [N ] N .

The blow up of a holonomic system is holonomic.

4.1. Let (X,L) be a contact manifold of dimension 3. Let Λ be a closed Lagrangian
submanifold of X. Let τ : X̃→X be the blow up of X along Λ. Let Ẽ be the exceptional
divisor of τ . Let j : X̃ \ E ↪→ X̃ be the inclusion map. Let O(E) be the subsheaf of
j∗j
−1OX of sections f such that fg is holomorphic for every function g in IE .

Proposition 1.1. (i) The OX̃-module L̃ = O(E)τ
∗L is a structure of logarithmic

contact manifold with poles along E. Moreover , τ |
X̃\E : X̃ \ E → X is a contact trans-

formation.
(ii) The proper inverse image of a Legendrian curve of X is a Legendrian curve of X̃.

Definition 1.1. We call the pair (τ : X̃ → X, L̃) the blow up of the contact manifold
(X,L) along its Legendrian submanifold Λ.

Theorem 1.2. Let (X, E) be a quantized contact manifold of dimension 3. Let Λ be a
Lagrangian submanifold of X. Let τ : X̃ → X be the blow up of X along Λ. Let E be the
exceptional divisor of τ .

(i) There is a meromorphic quantization Ẽ of the logarithmic contact manifold X̃

and a morphism of filtered C-algebras

(1.1) Φ : τ−1E → Ẽ

such that Φ |
X̃\E : τ−1E |

X̃\E→ Ẽ |X̃\E is an isomorphism. The morphism Φ is flat.

Given another quantization E ′ of X̃0 and another morphism of filtered C-algebras
Φ′ : τ−1E → E ′ such that Φ′ |

X̃\E : τ−1E |
X̃\E→ E

′ |
X̃\E is an isomorphism, there is one

and only one isomorphism of filtered C-algebras Ψ : Ẽ → E ′ such that ΨΦ = Φ′.
(ii) Given a holonomic E-module M the Ẽ-module M̃ = Ẽ ⊗EM is also holonomic.

Moreover , the support of M̃ equals the proper inverse image of the support of M.

We refer to (1.1) as the blow up of the quantized contact manifold (X, E) along Λ. We
call M̃ the blow up of the holonomic E-module M along Λ.

Let M be a complex manifold. Let N be a coherent DM -module. An hypersurface H
of M is called noncharacteristic to N if T ∗HM ∩ CharN ⊂ T ∗MM .

Theorem 1.3. Let M be a complex manifold of dimension 2. Let Z be a discrete subset
of M . Let σ : M̃ →M be the blow up of M̃ along Z. Let E be the exceptional divisor of
σ. Put Λ = π−1

M (Z) ⊂ P∗M .

(i) The blow up of the contact manifold P∗M along Λ equals the logarithmic contact
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manifold P∗〈M̃/E〉. Moreover , the diagram below commutes.

(1.2)
P∗〈M̃/E〉 −→ P∗M
↓ ↓
M̃ −→ M

(ii) Let H be an hypersurface of M . Let Z be a discrete subset of H. Let Hσ, [H̃] be
the inverse image [proper inverse image] of H by σ. Put M ′ = M̃ \H̃, E′ = E \H̃. Given
a holonomic DM -module N such that H is noncharacteristic to N and the intersection
of H with the singular support of N equals Z, the support of the blow up of EM ⊗DM N
along Λ is contained in P∗〈M ′/E′〉. Moreover ,

EM̃ [Hσ ]⊗DM̃ [Hσ] (DM [H]⊗DM N )̃ |P∗〈M ′/E′〉 −̃→(EM ⊗DM N )̃ |P∗〈M ′/E′〉 .

Statement 1.3(ii) says that the blow up of the microlocalization of a DM -module N
along the inverse image of a discrete subset Z of M is essentially a microlocalization of
the blow up along Z of the localization of N along a noncharacteristic curve.

We recall a classical theorem of contact geometry (see for instance [H]).

Theorem 1.4. Let (X,L) be a contact manifold and let Γ be a Legendrian submanifold
of X. If y0 ∈ Γ, then there is an open neighbourhood U of y0 and a system of local
coordinates (x1, . . . , xn, p1, . . . , pn−1), centered at y0, such that

Γ ∩ U = {x1 = · · · = xn = 0}

and dxn −
∑n−1
i=1 pidxi generates L on U .

Statements 1.1(i) and 1.3(i) were proved in [N1]. Statement 1.1(ii) follows immediately
from the definitions of proper inverse image and of Legendrian subvariety of a logarithmic
contact manifold. Statement 1.2(ii) follows immediately from the definitions of blow up
of a holonomic system along a Legendrian submanifold and Proposition 3.5.

We will now sketch the proofs of 1.1(i) and 1.3(i). Let M be a complex manifold and
let Z be a discrete subset of M . Put X = P∗M and Λ = π−1(Z). Let us show that there
is a canonical map τ : P∗〈M̃/E〉 → P∗M such that the diagram below commutes.

(1.3)
P∗(M̃ \ E) ↪→ P∗〈M̃/E〉 → M̃

|| ↓ ↓
P∗(M \ Z) ↪→ P∗M → M

Since the problem is local in M we may assume that M is a copy of C2 with coordinates
(x, y). Put x0 =x, y0 = y/x, x1 =x/y, y1 = y. The manifold M̃ is the obvious patching
of the copies M0, M1 of C2 with coordinates (x, y/x), (x/y, y). Moreover, E0 := E∩M0 =
{x0 = 0}, E1 := E ∩M1 = {y1 = 0}. The difeomorphism M̃ \ E → M \ Z induces a
symplectic transformation

(1.4) T ∗(M̃ \ E)→ T ∗(M \ Z).

Let (x0, y0; ξ0, η0) be the canonical coordinates associated to (x0, y0). The symplectic
transformation (1.4) takes (x0, y0; ξ0, η0) into(

x0, x0y0; ξ0 −
y0

x0
η0,

1
x0
η0

)
.
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Let (x0, y0; ξ′0, η
′
0) be the logarithmic canonical coordinates associated to (x0, y0) relative

to {x0 = 0}. Notice that ξ′0 = x0ξ0, η′0 = η0. The symplectic transformation considered
above is now given by

(x0, y0; ξ′0, η
′
0) 7→

(
x0, x0y0;

1
x0

(ξ′0 − y0η
′
0),

1
x0
η′0

)
.

Therefore we have a meromorphic map from T ∗〈M0/E0〉 into T ∗M [P∗〈M0/E0〉 into
P∗M ]. If we consider (ξ0, η0) and (ξ′0, η

′
0) as homogeneous coordinates, the morphism

above is still given by

(1.5) (x0, y0; ξ′0, η
′
0) 7→ (x0, x0y0; ξ′0 − y0η

′
0, η
′
0).

Since (ξ′0− y0η
′
0, η
′
0) = (0, 0) if and only if (ξ′0, η

′
0) = (0, 0), the meromorphic map (1.5) is

actually holomorphic. We leave to the reader the verification that the map τ is the blow
up of P∗M along Λ, proving 1.3(i). Statement 1.1(i) follows from Theorem 1.4 and 1.3(i).

We will now prove 1.2(i). There is a canonical isomorphism of filtered C-algebras

Φ0 : τ−1EM |P∗(M̃\E)
→ E

M̃
[E]|

P∗(M̃\E)
.

The pair ((τ |
P∗(M̃\E)

)−1,Φ0) is a quantized contact transformation. Let j : P∗(M̃ \E)→
P∗〈M̃/E〉 be the inclusion map. The morphism Φ0 induces a morphism

Φ : τ−1EM → j∗j
−1E

M̃
[E].

It suffices to show that the image of Φ is contained in E
M̃

[E]. Given a section P ∈
Γ(U, τ−1EM ), we have to show that there is Q ∈ Γ(U, E

M̃
[E]) such that Φ0(P |U\E) =

Q|U\E . Since the problem is local we may assume that M is a copy of C2 with coordinates
(x, y) and U is contained in P∗〈M0/E0〉. The restriction of Φ0 to P∗(M0 \E0) is the only
quantized contact transformation such that

Φ0(x) = x0, Φ0(y) = x0y0, Φ0(∂y) =
1
x0
∂y0 , Φ0(∂x) = 1

x0
(δx0 − y0∂y0).

Let C be a copy of C4 with coordinates (x, y, x0, y0). Let us consider in T ∗〈C/{x0 =
0}〉 the associated system of logarithmic symplectic coordinates (x, y, x0, y0; ξ, ηi, ξ0, η0).
Let W be the open set of T ∗〈C/{x0 = 0}〉 where η and η0 do not vanish. Let p, q be the
restrictions to W of the canonical projections of W into T ∗M and T ∗〈M0/{x0 = 0}. Let
I be the ideal of EC4 [x0=0]|W generated by

x− x0, y − x0y0, ∂y −
1
x0
∂y0 , ∂x −

1
x0

(δx0 − y0∂y0).

It is enough to show that, given a section P of p−1EM , there is a section Q of q−1EM0 [E0]

such that P −Q ∈ I. Actually,

Φ0(P |p(W )∩P∗(M\Z)) = Q|q(W )∩P∗(M0\E0)

(see for instance [S], section I.5). Let us assume that P has order ≤ 0. Dividing P

successively by x−x0, y−x0y0, ∂x∂−1
y −(δx0∂

−1
y0 −y0 +∂−1

y0 ) (see the division theorem for
logarithmic microdifferential operators of [N1]) we may assume that there is a logarithmic
microdifferential operator Q′ with total symbol

∑
k≥1 αkη

−k such that P − Q′ ∈ I and
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the αk are sections of q−1OT∗〈M0/E0〉(0). Now
∑
k≥1 αkx

k
0η
−k
0 is a section of q−1EM0 [E0]

and ∑
k≥1

αkη
−k −

∑
k≥1

αkx
k
0η
−k
0 ∈ I.

If P has order m then

Φ0(P ) = Φ0(∂my (∂−my P )) = ( 1
x0

)
m∂my0Φ(∂−my P ) ∈ q−1EM0 [E0].

Statement 1.3(ii) is not used in the proof of the main theorem. Hence its proof its
omitted (see [N3]).

4.2. Let M be a complex manifold, let N be a normal crossings divisor of M and let
S be a smooth hypersurface of M . Let x0 be a point of M . We say that S intersects N
transversally at x0 if x0 is a regular point of N and S is transversal to N at x0. We say
that S intersects N transversally if S intersects N transversally at all points x0 of M .

Let (X,L) be a logarithmic contact manifold of dimension 3, with poles along a normal
crossings divisor Y . Let Λ be a closed Legendrian submanifold of X, tranversal to Y . Let
τ : X̃ → X be the blow up of X along Λ. Let E be the exceptional divisor of τ . Let
j : X̃ \ E ↪→ X̃ be the inclusion map. Put Y τ = τ−1(Y ).

Proposition 2.1. (i) The O
X̃

-module L̃ = O(E)τ
∗L is a structure of logarithmic

contact manifold with poles along Y τ . Moreover , τ |
X̃\E : X̃ \ E→X is a contact trans-

formation.
(ii) The proper inverse image of a Legendrian curve of X is a Legendrian curve of X̃.

Definition 2.1. We call the pair (τ : X̃ → X, L̃) the blow up of the logarithmic
contact manifold (X,L) along its Legendrian submanifold Λ.

Theorem 2.2. Let (X, E) be a quantized meromorphic contact manifold of dimen-
sion 3, with poles along a normal crossings divisor Y . Let Λ be a Lagrangian submanifold
of X. Let τ : X̃ → X be the blow up of X along Λ.

(i) There is a meromorphic quantization Ẽ of the logarithmic contact manifold X̃ and
a morphism of filtered C-algebras

(2.1) Φ : τ−1E → Ẽ

such that Φ |
X̃\E : τ−1E |

X̃\E→ Ẽ |X̃\E is an isomorphism. The morphism Φ is flat.

Given another quantization E ′ of X̃ and another morphism of filtered C-algebras Φ′ :
τ−1E → E ′ such that Φ′ |

X̃\E : τ−1E |
X̃\E→ E

′ |
X̃\E is an isomorphism, there is one and

only one isomorphism of filtered C-algebras Ψ : Ẽ → E ′ such that ΨΦ = Φ′.
(ii) Given a holonomic E-module M the Ẽ-module M̃ = Ẽ ⊗EM is also holonomic.

Moreover , the support of M̃ equals the proper inverse image of the support of M.

We refer to (2.1) as the blow up of the quantized contact manifold (X, E) along Λ. We
call M̃ the blow up of the holonomic E-module M along Λ.

Theorem 2.3. Let M be a complex manifold. Let N be a normal crossings divisor
of M . Let S be a smooth hypersurface of M , transversal to N . Let Λ be the logarithmic
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conormal of S relative to N . Let X̃ be the blow up of P∗〈M/N〉 along Λ. Put N0 = N∪S.
Let Γ be a Legendrian curve of P∗〈M/N〉.

(i) There is an open subset W of X̃ such that W contains the proper inverse image of
Γ and there is a canonical open imersion W ↪→ P∗〈M/N0〉 such that the diagram below
commutes.

(2.2)
P∗〈M/N0〉 ←↩ W ↪→ X̃ → P∗〈M/N〉

↓ ↓
M = M

(ii) Let N be a holonomic DM [N ]-module with characteristic variety Γ. Then

(EM [N0]⊗DM [N0] Ñ )|W −̃→(EM [N ]⊗DM [N ] N )̃ |W .

Statement 2.3(ii) says that the blow up of the microlocalization of a DM [N ]-module
N along the conormal bundle of a curve H transversal to N is essentially the microlo-
calization of the localization of N along N ∪H.

The results of geometric nature stated in this section were proved in [N2]. In order to
prove the sheaf theoretic results it is convenient to sketch the proofs of the geometrical
results.

Let X = [dy−pdx/x] be an affine logarithmic contact manifold. Some straightforward
computations show that the blow up of X along the Legendrian submanifold {y = p = 0}
equals the obvious patching of the affine logarithmic contact manifolds

Xy =
[
dy

y
− p

y

dx

x

]
and Xp =

[
dxe−y/p

xe−y/p
− y

p

dp

p

]
.

Statement 2.1(i) follows from the remark above and from Theorem 2.3(iii).
From a set theoretical point of view E ∩ (Xp \ Xy) equals {(x, y, p/y) ∈ Xy : x =

p/y = 0}. Hence E ∩ (Xp \Xy) equals the intersection of Xp with the residual set of X̃
along {x = 0}. Statement 2.3(i) follows from the remarks above and Theorem 2.3(ii).

Let M , M0, M1 be copies of C2 with coordinates (x, y), (x0, y0), (x1, y1). Put N =
{x = 0}, N0 = {x0y0 = 0}, N1 = {x1y1 = 0}. We can look at P∗〈M/N〉 as the patching
of the affine logarithmic contact manifolds X and [dxx −qdy]. We can look at P∗〈Mk/Nk〉,
k = 0, 1, as the patching of the affine logarithmic contact manifolds

Xk =
[
dyk
yk
− pk

dxk
xk

]
and

[
dxk
xk
− qk

dyk
yk

]
.

We will identify the affine logarithmic contact manifolds Xy and X0, Xp and X1. Put

E = EM [N ]|X , Ey = EM0 [N0]|Xy , Ep = EM1 [N1]|Xp .

Let P denote the section
+∞∑
k=0

1
k!
δ−ky1

k−1∏
j=0

(δx1 − j)

of the sheaf Ep. We will glue the sheaves Ey and Ep by the only quantized contact trans-
formation βta such that

β(x0) = y1P, β(y0) = −δx1x1δ
−1
y1 , β(δx0) = δy1 , β(δy0) = δx1 .
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We obtain in this way a quantization Ẽ of the blow up of the affine logarithmic contact
manifold X along Λ. We can define morphisms

Φy : τ−1E|Xy → Ey, Φp : τ−1E|Xp → Ep

by

Φy(x) = x0, Φy(y) = y0, Φy(δx) = δx0 , Φy(∂y) =
1
y0
δy0 ,

Φp(x) = y1P, Φp(y) = −δx1x1δ
−1
y1 , Φp(δx) = δy1 , Φp(∂y) = − 1

x1
δy1 .

We can glue these morphisms into a morphism Φ : τ−1E → Ẽ .
Given another quantization E ′ of X̃ and another morphism of filtered C-algebras

Φ′ : τ−1E → E ′ such that Φ′ |
X̃\E : τ−1E |

X̃\E→ E
′ |
X̃\E is an isomorphism, there is a

quantized contact transformation Ψ0 : Ẽ |
X̃\E → E

′|
X̃\E such that ΨΦ|

X̃\E = Φ′|
X̃\E .

Let Ψy be the only quantized contact transformation from Ẽ |Xy to E ′|Xy such that

Ψy(x0) = Φ′(x)|Xy ,
Ψy(δx0) = Φ′(δx)|Xy ,

Ψy(y0) = Φ′(y)|Xy ,
Ψy(δy0) = Φ′(y∂y)|Xy .

We can glue the quantized contact transformations Ψ′, Ψy into a quantized contact
transformation Φ defined outside a complex submanifold of dimension 2 of X̃ such that
ΨΦ = Φ′. It follows from Hartogs’ Theorem that we can extend Φ to X̃.

4.3. Let (X,L) be a logarithmic contact manifold of dimension 3, with poles along a
normal crossings divisor Y . Let Z be the singular part of Y . Let τ : X̃ → X be the blow
up of X along Z. Let E be the exceptional divisor of τ . Put Y τ = τ−1(Y ).

Proposition 3.1. (i) The O
X̃

-module L̃ = τ∗L is a structure of logarithmic contact
manifold with poles along Y0. Moreover , τ is a contact transformation.

(ii) The proper inverse image of a Legendrian curve of X is a Legendrian curve of X̃.

Definition 3.1. We call the pair (τ : X̃ → X, L̃) the blow up of the logarithmic
contact manifold (X,L) along the singular part of its set of poles.

Theorem 3.2. (i) Let (X, E) be a quantized meromorphic contact manifold of dimen-
sion 3. Let τ : X̃ → X be the blow up of X along the singular part of its set of poles.
Let E be the exceptional divisor of τ . Then there is a meromorphic quantization Ẽ of the
logarithmic contact manifold X̃ and a morphism of filtered C-algebras

(3.1) Φ : τ−1E → Ẽ

such that Φ |
X̃\E : τ−1E |

X̃\E→ Ẽ |X̃\E is an isomorphism. The morphism Φ is flat.

Given another quantization E ′ of X̃ and another morphism of filtered C-algebras Φ′ :
τ−1E → E ′ such that Φ′ |

X̃\E : τ−1E |
X̃\E→ E

′ |
X̃\E is an isomorphism, there is one and

only one isomorphism of filtered C-algebras Ψ : Ẽ → E ′ such that ΨΦ = Φ′.
(ii) Given a holonomic E-module M the Ẽ-module M̃ = Ẽ ⊗EM is also holonomic.

Moreover , the support of M̃ equals the proper inverse image of the support of M.
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We refer to (3.1) as the blow up of the quantized contact manifold (X, E) along Λ. We
call M̃ the blow up of the holonomic E-module M along Λ.

Theorem 3.3. Let M be a complex manifold of dimension 2. Let N be a normal
crossings divisor of M . Let C be the singular part of N . Let σ : M̃ →M be the blow up
of M along C. Let E be the exceptional divisor of σ. Put Nσgma = σ−1(N).

(i) The blow up of the contact manifold P∗〈M/N〉 along the singular part of its set of
poles equals the logarithmic contact manifold P∗〈M̃/Nσ〉. Moreover , the diagram below
commutes.

(3.2)
P∗〈M̃/Nσ〉 −→ P∗〈M/N〉

↓ ↓
M0 −→ M

(ii) Let N be a holonomic DM [N ]-module. Then

EM [Nσ]⊗DM [Nσ] Ñ −̃→(EM [N ]⊗DM [N ] N )̃ .

Statement 3.3(ii) says that the blow up of the microlocalizaton of the DM [N ]-module
N along the inverse image of the singular point {x0} of N equals the microlocalization
of the blow up of N along x0.

Proposition 3.1 and statement 3.3(i) were proved in [N2]. The proofs of Theorem 3.2
and statement 3.3(ii) are similar to the proofs of similar results in the previous subsections
and hence omitted.

5. A desingularization theorem

Theorem 1. Let (X, E) be a quantized contact manifold of dimension 3. Let M be a
holonomic E-module. Let Γ be the support of M. Then there are an open subset X0 of
X that contains Γ, a quantized meromorphic contact manifold (X̃, Ẽ) with poles along a
normal crossings divisor E, a holonomic Ẽ-module M̃ and a proper map π : X̃ → X0,
such that :

(i) The support Γ̃ of M̃ is a smooth Legendrian curve that intersects E transversally.
(ii) The holomorphic map π|

X̃\E : X̃ \E → X is a contact transformation, π(X̃ \E)

is an open neighbourhood of Γreg and π(→ Γ̃) equals Γ.
(iii) The restrictions of M and M̃ to π(X̃ \E) are isomorphic as systems of microd-

ifferential equations.

Let (X,L) be a contact manifold of dimension 3. Let Γ be a Legendrian curve of X.
Let us consider the following desingularization game: to blow up the contact manifold
(X,L) along centers of the three types considered in Section 4, taking at each step the
proper inverse image of the Legendrian curve Γ, in such a way that, after a finite number
of explosions, the proper inverse image of Γ is smooth and transversal to the normal
crossings divisor created by the explosions.

We showed in [N2] that we can always win this game, proving theorem 2. Theorem 1
follows from theorem 2 and statements 4.k.2(ii), 1 ≤ k ≤ 3, that show that the support
of the blow up of a system of meromorphic microdifferential equations only depends on
the support of the system.
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Theorem 2. Let (X,L) be a logarithmic contact manifold of dimension 3. Let Γ be
a Legendrian curve. Then there are an open subset X0 of X that contains Γ, a logarith-
mic contact manifold (X̃, L̃) with poles along a normal crossings divisor E, a smooth
Legendrian curve Γ̃ and a proper map π : X̃ → X0, such that :

(i) The curve Γ̃ intersects E transversally.
(ii) The holomorphic map π|

X̃\E : X̃ \E → X is a contact transformation, π(X̃ \E)
is an open neighbourhood of Γreg and π(Γ) equals Γ.
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