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Mlynská dolina, 84215 Bratislava, Slovakia

E-mail: quittner@fmph.uniba.sk

In [1], H. Amann derived an a priori bound for solutions of parabolic problems with
nonlinear boundary conditions in the Sobolev space W s

p (Ω,RN ) (s ≥ 1, p > n, Ω ⊂ Rn
bounded). The result ([1, Theorem 15.2]) is based on the assumptions of an apriori
estimate for the solutions in some weaker norm (in W s0

p0 (Ω,RN ), s > s0, p0 ≥ 1) and of
suitable growth conditions for the local nonlinearities arising in the problem. However,
the proof of this result contains some discrepancies (the choice of r in the proof does
not match the assumptions in [1, Lemma 15.1]) and the result itself is not correct in the
case n = 1: the growth of the function g arising in the boundary condition has to be
controlled by the power 1 + p0/(n − s0p0) also in this case. The aim of this paper is to
give a correct proof of a modification of the result mentioned above and to show that the
growth assumption is optimal for n = 1.

The idea of our proof is the same as that in [1]. For the sake of simplicity we consider
only the special case s0 = 0. On the other hand, unlike [1] we do not assume p > n. We
consider the problem

(P)

ut +Au = f(x, t, u,∇u) in Ω× (0, T ),
Bu = g(x, t, u) on ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

where 0 < T ≤ ∞, Ω is a bounded domain in Rn of class C2, u : Ω × [0, T ) → RN ,
Au = (−∆u1, . . . ,−∆uN ), Bu = ∂u/∂n is the derivative with respect to the outer
normal on the boundary ∂Ω (the generalization to more complicated, non-autonomous
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operators A, B as in [1] is straightforward), f , g are C1 functions with

|∂tf(x, t, ξ, η)| ≤ C(1 + |ξ|2ν1+1 + |η|ν2+1),

|∂ξf(x, t, ξ, η)| ≤ C(1 + |ξ|2ν1 + |η|ν2+min(1,ν2)),

|∂ηf(x, t, ξ, η)| ≤ C(1 + |ξ|ν1 + |η|ν2),

|∂tg(x, t, ξ)| ≤ C(1 + |ξ|ν1+1),

|∂ξg(x, t, ξ)| ≤ C(1 + |ξ|ν1),

for some ν1 < p/(n− p) (if p < n), ν2 < p/n and p > 1 (the assumptions concerning the
smoothness of f, g in t and x can be relaxed; see e.g. [1, p. 255] for sufficient assumptions
in the case p > n).

If u0∈W s
p (Ω,RN ), s∈ [1, 1 + 1/p), then the theory developed in [1] guarantees the ex-

istence of a unique maximal solution of (P) in W s
p (Ω,RN ). Moreover, u(t)∈W s+ε

p (Ω,RN )
for some ε > 0 and any t > 0 and a simple bootstrap argument together with standard
imbedding theorems show that u(t) ∈ W s̃

p̃ (Ω,RN ) for any p̃ ≥ p, s̃ < 1 + 1/p̃ and t > 0.
The solution fulfils a variation-of-constants formula of the form

u(t) = e−Atu0 +
t∫

0

e−A(t−s)F (s, u(s)) ds,

where A is an operator associated with the differential operators A, B and F is a map
induced by the nonlinear functions f, g (see [1, p. 244] for details). The results of [1,
Section 12] imply also that this solution is global if the map F fulfils an estimate of the
type

‖F (t, u(t))‖
W
s′/2−1
B

≤ c(t)
(
1 + ‖u(t)‖ε

W
s/2
B

)
for some ε < 1, s < s′ < 1 + 1/p and a nondecreasing function c : R+ → R+ (where
W

s/2
B = W s

p (Ω,RN ) and the extrapolation space W s′/2−1
B can be viewed as the dual of the

space W 2−s′
q (Ω,RN ) with 1/p+ 1/q = 1; see [1]). Moreover, if T =∞ and c : R+ → R+

is bounded then u : [0, T )→W s
p (Ω,RN ) is bounded.

Our main result is the following modification of [1, Theorem 15.2]. By ‖ · ‖s,p or ‖ · ‖p
we denote the norm in W s

p (Ω,RN ) or Lp(Ω,RN ), respectively.

Theorem. Let p0 ≥ 1, p > max(1, p0(n− 1)/(p0 + n)), λ̂1 < 1 + 1/p,

1 ≤ λ̂j < 1 +
p0(2− j)
n+ jp0

, j = 0, 1,

1 ≤ λ̂ < 1 +
p0

n
,

|f(x, t, ξ, η)| ≤ C(1 + |ξ|λ̂0 + |η|λ̂1),

|g(y, t, ξ)| ≤ C(1 + |ξ|λ̂)

for x ∈ Ω, y ∈ ∂Ω, t ∈ [0, T ) and (ξ, η) ∈ RN×RNn. Let u0 ∈W 1
p (Ω,RN ) and let u be the

corresponding maximal solution of (P) with the maximal existence time Tmax ≤ T . Let
c : R+ → R+ be a nondecreasing function and let ‖u(t)‖p0 ≤ c(t) for any t ∈ [0, Tmax).
Then Tmax = T and supt∈[t1,t2) ‖u(t)‖s,p < ∞ for any s < 1 + 1/p, t1 > 0 and t2 ≤ T ,
t2 <∞ (or t2 =∞ if T =∞ and c : R+ → R+ is bounded).
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R e m a r k 1. The assumption λ̂1 < 1+1/p seems to be of technical nature: it is due
to the fact that we work in the space W s

p (Ω,RN ) with s < 1 + 1/p which is required by
the nonlinear boundary conditions. If we consider e.g. homogeneous Dirichlet boundary
conditions then one can use the variation-of-constants formula and corresponding esti-
mates in the space W s

p (Ω,RN ) for any s < 2 and the assumption λ̂1 < 1 + 1/p becomes
unnecessary (cf. also [2, Theorem 5.3]).

The proof of the Theorem is based on the following three lemmas.

Lemma 1. Let p0, λ, r ≥ 1, λr > 1, p > 1, s, σ ∈ [0, 2], s > 0 and

(A) 1 + p0(1/r − 1/p) < λ < 1 + p0
s− σ + n(1/r − 1/p)

n+ σp0
.

Then there exists ε ∈ (0, 1) such that

‖u‖λσ,rλ ≤ C‖u‖λ−εp0 ‖u‖
ε
s,p for any u ∈W s

p (Ω,RN ) ∩ Lp0(Ω,RN ).

P r o o f. The proof follows from [1, Lemma 15.1] by choosing ε sufficiently close to
1, s0 = 0 and observing that the assumption r ≥ p ≥ p0 in [1] can be relaxed to the
assumption 1/(λr) < (1− 1/λ)/p0 + (1/λ)/p (cf. [2, Proposition 4.1]) which is equivalent
to λ > 1 + p0(1/r − 1/p).

Lemma 2. Let p0 ≥ 1, p > max(1, p0(n − 1)/(p0 + n)), 1 ≤ λ̂ < 1 + p0/n. If
s ∈ [1, 1 + 1/p) is sufficiently close to 1 + 1/p then there exist r ≥ 1 and λ ≥ λ̂ such that
r > p(n− 1)/(n− p(s− 1)), rλ < p(n− 1)/(n− sp) (if n > sp) and (A) is fulfilled with
σ = 1/(λr).

P r o o f. If n > 1 choose s ∈ [1, 1+1/p) such that s > max(2−n+n/p, 1/n+1/p). Then
r̃ := p(n− 1)/(n− p(s− 1)) > 1. Choose r > r̃ such that r(1 + p0/n) < p(n− 1)/(n− sp)
(if n > sp) and λmax(r) > max(λ̂, λmin(r)), where

λmin(r) := 1 + p0(1/r − 1/p) and λmax(r) := λmin(r) + (p0/n)(s− 1/r).

This is possible since r̃(1+p0/n) < p(n−1)/(n−sp) (if n > sp) and λmax(r̃) = 1+p0/n >

λmin(r̃). If n = 1 and r > 1 is arbitrary then λmax(r) = 1+p0(s−1/p) > max(λ̂, λmin(r))
if s is sufficiently close to 1 + 1/p.

Now for any n ≥ 1 choose λ ∈ (max(λ̂, λmin(r)), λmax(r)). This choice guarantees (A)
with σ = 1/(λr) since the second inequality in (A) is equivalent to λ < λmax(r) in this
case.

Lemma 3. Let p0 ≥ 1, p > max(1, p0(n − 1)/(p0 + n)), 1 ≤ λ̂0 < 1 + 2p0/n, s ∈
[1, 1 + 1/p), s′ ∈ (s, 1 + 1/p). Put r = pn/(n + (2 − s′)p) if n > 1, r = 1 if n = 1.
If s ∈ [1, 1 + 1/p) is sufficiently close to 1 + 1/p then there exists λ0 > λ̂0 such that
rλ0 < pn/(n − sp) (if n > sp) and (A) is fulfilled with σ = 0 and λ replaced by λ0. If ,
moreover , 1 ≤ λ̂1 < 1 + min(p0/(n + p0), 1/p) then there exist R ≥ r and λ1 > λ̂1 such
that Rλ1 < pn/(n − (s − 1)p) and (A) is fulfilled with σ = 1, r replaced by R and λ

replaced by λ1.

P r o o f. Denote λmin = 1 + p0(1/r − 1/p), λmax = λmin + (p0/n)s. Then (A) with
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σ = 0 is equivalent to λmin < λ < λmax. It is easy to see that

1 +
2p0

n
> λmax = 1 +

2p0

n
− p0

s′ − s
n

> max(λ̂0, λmin) if n > 1,

1 +
2p0

n
> λmax = 1 + 2p0 − p0(1 + 1/p− s) > max(λ̂0, λmin) if n = 1

provided s is sufficiently close to 1 + 1/p. Moreover, r(1 + 2p0/n) < pn/(n− sp) if n > sp

and s is close to 1 + 1/p due to our assumption p > p0(n − 1)/(p0 + n). Hence, it is
sufficient to choose λ0 ∈ (max(λ̂0, λmin), λmax).

Now let 1 ≤ λ̂1 < 1 + min(p0/(n+ p0), 1/p).
If n > p0(p− 1) (i.e. p0/(n+ p0) < 1/p), put R = r,

(1) Λmax = 1 + p0
s− 1 + n(1/R− 1/p)

n+ p0
, Λmin = 1 + p0(1/R− 1/p).

Then

Λmax = 1 +
p0

n+ p0
(1− (s′ − s)), Λmin = 1 +

p0

n
(2− s′) if n > 1,

Λmax = 1 +
p0

n+ p0

(
s− 1

p

)
, Λmin = 1 + p0

(
1− 1

p

)
if n = 1.

In both cases, Λmax > max(λ̂1,Λmin) if s is sufficiently close to 1 + 1/p so that we may
choose λ1 between these values to get (A) with σ = 1. Moreover, Rλ1 < RΛmax <

pn/(n− (s− 1)p) if s is close to 1 + 1/p since p > p0(n− 1)/(n+ p0).
If n ≤ p0(p−1) (i.e. p0/(n+p0) ≥ 1/p), put R̃ = pp0/(p0 +1). Then R̃ ∈ [r, p) so that

we may choose R ∈ (R̃, p). Define Λmin = Λmin(R) and Λmax = Λmax(R) by (1). Then
Λmax(R) > Λmin(R) if and only if R > pp0/(p0 + p(s− 1)). Since Λmax(R̃) = 1 + 1/p +
(s−1−1/p)p0/(n+p0) > λ̂1 for s sufficiently close to 1+1/p, we have also Λmax(R) > λ̂1

for s close to 1 + 1/p and R close to R̃. Consequently, Λmax(R) > max(λ̂1,Λmin(R)) if s
is close to 1 + 1/p, R is close to R̃, R > pp0/(p0 + p(s − 1)), so that we may choose λ1

between these values to get (A) with σ = 1 (and r or λ replaced by R or λ1, respectively).
Moreover, Rλ1 < RΛmax(R) < pn/(n− (s− 1)p) if s is close to 1 + 1/p and R is close to
R̃ since p > p0(n− 1)/(n+ p0).

P r o o f o f t h e T h e o r e m. Let us write F = Ff + Fg where Ff or Fg represents
the contribution of the function f or g, respectively, i.e.

Ff (t, u) = f(·, t, u(·),∇u(·)),
Fg(t, u) = (σ +A)Rg(·, t, u(·)),

where σ > 0 and the operator R is described in [1, Section 11]. Denote by f̂ and ĝ the
Nemytskĭı operators defined by

f̂(t, u, v) = f(·, t, u(·), v(·)),
ĝ(t, u) = g(·, t, u(·)).

Let s, λ, r be from Lemma 2. Denoting by Tr and i the trace operator and the imbedding,
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respectively, the operator Fg can be written in the form (cf. [1, p. 258])

Fg(t, ·) : W s/2
B = W s

p (Ω,RN ) Tr→W s−1/p
p (∂Ω,RN ) i→ Lrλ(∂Ω,RN )

ĝ(t,·)−→ Lr(∂Ω,RN ) i→W s′−1−1/p
p (∂Ω,RN )

(σ+A)R−→ W
s′/2−1
B

for some s′ ∈ (s, 1+1/p) (the imbeddings are guaranteed by the inequalities in Lemma 2).
Hence, using Lemmas 1 and 2 we can estimate

‖Fg(t, u)‖
W
s′/2−1
B

≤ C‖ĝ(t, u)‖Lr(∂Ω,RN ) ≤ C(1 + ‖u‖λLrλ(∂Ω,RN ))

≤ C(1 + ‖u‖λ1/rλ,rλ) ≤ C(1 + ‖u‖λ−εp0 ‖u‖
ε
s,p)

≤ Cc(t)λ−ε(1 + ‖u‖ε
W
s/2
B

).

Similarly, if s, λ0, λ1, r, R are the constants from Lemma 3 then the operator Ff can be
written as

Ff (t, ·) : W s/2
B = W s

p (Ω,RN ) i×∇−→W s
p (Ω,RN )× (W s−1

p (Ω,RN ))n

i→ Lrλ0(Ω,RN )× (LRλ1(Ω,RN ))n
f̂(t,·,·)−→ Lr(Ω,RN ) i→W

s′/2−1
B

together with the corresponding estimate

‖Fg(t, u)‖
W
s′/2−1
B

≤ C(t)(1 + ‖u‖ε
W
s/2
B

).

R e m a r k 2. If we assume f ≡ 0 and supt∈[0,T ) ‖u(t)‖Lp0 (∂Ω,RN ) ≤ c(t) instead of
supt∈[0,T ) ‖u(t)‖Lp0 (Ω,RN ) ≤ c(t) in our Theorem then we may repeat the considerations
above with the corresponding estimate

‖Fg(t, u)‖
W
s′/2−1
B

≤ C(1 + ‖u‖λLrλ(∂Ω,RN ))

≤ C(1 + ‖u‖λ−ε
Lp0 (∂Ω,RN )

‖u‖ε
W
s−1/p
p (∂Ω,RN )

)

≤ Cc(t)λ−ε(1 + ‖u‖ε
W
s/2
B

)

under the following hypothesis on p, p0 and λ̂:

p > max
(

1,
p0(n− 1)
p0 + n− 1

)
, λ̂ < 1 +

p0

n− 1
.

This corresponds to the results of J. Filo in [4].

Example. Let n = N = 1, Ω = (−1, 1), f ≡ 0, g(x, t, u) = uλ, λ > 1, let u0 :
[−1, 1] → R+ be a smooth function, u0(−x) = u0(x) for x ∈ [−1, 1], u′0(1) = uλ0 (1) > 0
and let the first four derivatives of u0 restricted to the interval [0, 1] be non-negative. Then
[3] implies that the solution u is non-negative, it blows up in a finite time T = T (u0) and
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choosing p0 ≥ 1 we get

1
p0

d

dt

1∫
0

up0(x, t) dx =
1∫

0

up0−1ut dx =
1∫

0

up0−1uxx dx

= −
1∫

0

(p0 − 1)up0−2u2
x dx+ up0−1ux

∣∣∣1
x=0

≤ up0+λ−1(1, t) ≤
(
λ− 1
T − t

) p0+λ−1
2(λ−1)

= C(T − t)−
p0+λ−1
2(λ−1)

where we have used the estimate (2.1) from [3]. Hence ‖u(t)‖p0 stays bounded if p0+λ−1
2(λ−1) <

1, i.e. if λ > 1+p0. This shows that the condition λ̂ < 1+p0/n in our Theorem is (except
for the equality sign) optimal if n = 1.
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